郑东新区龙湖水资源优化配置及技术保障措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙湖是郑州市郑东新区建设的点睛之笔,水域面积6.08km~2,水体规模1,500万m~3。龙湖虽然可以取得一定的经济效益、环境效益和社会效益,但是其自身在对生态环境的影响、水质的技术保障措施、水资源综合利用等方面都存在诸多急需解决的问题。
     本为以郑东新区和龙湖的建设背景,以环境科学、环境工程、生态学、生态经济学、水文与水资源学等多学科的理论为指导,以采用综合分析、模型计算与试验研究相结合为手段,以龙湖水资源优化配置与综合利用相结合为目的,对龙湖水系的生态服务价值、龙湖水质的技术保障措施、龙湖水系的水资源优化配置三个方面进行了深入研究。
     综合结果表明,人工开挖的龙湖生态服务功能比较健全;龙湖生态系统的年服务价值为1,186.2万元;单位面积的服务价值为1.95万元/(hm~2·a),但是该生态系统比较脆弱,需要进一步研究。采用曝气生物滤池技术对城市生活污水进行脱氮除磷技术研究,在最佳运行工况下,可以满足入湖水的水质标准(Ⅲ类地表水),为龙湖的供水提供可靠的技术保障。在现状条件下,龙湖区域水资源经过统筹规划、合理的优化配置,可以很好地实现龙湖水系的良性循环。通过方案优选,确定了龙湖出湖水仅限向龙子湖供水,余水及龙子湖泄水用于下游河道兼农业灌溉的最优化方案,有利于河道生态环境和增加下游农田灌溉水量,减少下游农业灌溉所需的引黄水量18.61万m3/d(6,793万m3/a),按黄河不断流的最小流量50m3/s考虑,可维持黄河16天不断流。本研究成果为龙湖水系的建设、为实际工程的设计与应用提供重要的技术参数和科学依据。
To accelerate the urbanization, to spread the city frame, to advance the city classification, improve the living condition, to enhance the living quality, and to promote the economy development rapidly, Henan province and Zhengzhou city start to design building a new modernized area of¨beautiful water city¨- Zhengdongxinqu (ZDXQ) to the east of the old Zhengzhou city zone, with an area of 150 km2, which had the function of the ecology and the metabolism, and the Longhu lake would right be the eye of the new region.
     Longhu was a manmade lake with water area of 6.08km2, average water deep of 2.5m, and water volume of 1.5×107m3, with a scale of a middle sized reservoir. Longhu was a manmade lake system with multi-functions of city ecology, landscape travel, regional flooding control, and water resource integrated use and so on, which showed the theme of harmonious of nature and human beings, and the corresponding development of eco-environment and economic life. It was one of the biggest projects in the city developing layout of Zhengzhou city.
     It was indicated from the experience and the study that a big manmade lake would influence the local climate condition, hydraulic states and eco-environment in a certain degree. As Longhu was a important landscape and entertainment area, it was urgent to study on the eco-environment service value, the lake water quality and protection measures, water resource utilization of entering and exiting, and the study results would offer scientific study foundation and theoretical base to the optimal circle achievement of the Longhu water system in future.
     Based on the amount of literatures and references, and the analysis on related basic data, taking the building of ZDXQ and Longhu as the background, system study was mainly done on three points must take place during the building of Longhu, and they were ecology service (ES) value evaluation, technique protection measure and optimal disposal of water resources in Longhu. The research results were as following.
     1. Study on the ecology service value
     The outstanding character of the Longhu building design was the spirit of ES, so it was firstly screened out that 7 indexes that reflecting the ES value of Longhu the using the frequency analysis method, which included 4 indexes of direct using value as plant resource, entertainment culture, water supply and keep, and water purification, and 3 indexes of indirect using value as life-form variety, flood adjusting, and climate measurement. Then it was evaluated that the ES value of single index and the total in Longhu.
     The result showed that the ES value of Longhu was 1.1862×10~7yuan/a, the service value in unit area was 1.95×10~4yuan/ hm~2·a, which was obviously lower than the national lake ES value of 4.1×10~4yuan/ hm~2·a, while higher than the national ES value of 0.54×10~4yuan/ hm~2·a. As a manmade lake, Longhu was not perfect in its ecosystem. Since the water purifying function was relatively weak, and it was scare that the creatures and plants, it lost some service function of natural water out of the question, which should be perfected during the building and operating of it.
     In the total service value, the direct using value was 5.591×10~6yuan/a, and the indirect using value was 6.271×10~6yuan/a. Among the direct using value, entertainment culture occupied the biggest ratio, which showed the important of the function of Longhu landscape travel. In the Indirect UV, the highest value was on flooding control, accounting for 39.83%. Longhu was design to deal with the flood of century, at the same time, it was located in a special geographic position that colleting three rivers and one trench, even the yellow river recharged it indirectly, so it was very important that the ES function of flood control.
     The compare of Longhu to Baiyangdian and Zhalong marsh indicated that the ES value of Longhu was the lowest, which was only 1×10~7yuan/a, much smaller that the other two marsh. From the yearly service value in unit area, Longhu(1.95×10~4yuan/hm~2) was a bit lower than Baiyangdian (1.96×10~4yuan/hm~2), and Zhalong was the biggest of 5.1×10~4yuan/hm~2. Comparatively, as a manmade ecology project, Longhu was relatively perfect in ecology function so far, and showed the general ES function of marsh. The study result proved that the building theory of Longhu was right and scientific, which offered scientific base to the project building of Longhu, and provided precious reference value to the operation management of it as well.
     2. Study on the water quality protection technique measures in Longhu
     It was the precondition that saving water resource by water recycling to achieve the sustainable development of economic benefit, environment benefit and society benefit. It was used that the three stages tandem aeration biology tank in the study, thereinto, the first two stages was in oxygenic condition, and the third stage was in anaerobic condition. The denitrification and dephosphorization experiments was done to the sanitary water to make the water out reach the demand quality for entering lake. The results demonstrated that the two stages oxygenic reactors had stable efficiency on decarburization and nitrification in suitable operating condition, and the water out could reach the demand of COD and ammonia when the condition was the best of the sieving speed of 0.5m/h, ratio of gas to water of 5:1. Taking the water out from the first two stages in best condition as the treating object, adding methanol, sodium acetate and dextrose as the carbon resource in addition into the third stage anaerobic reactor, the biological denitrification was obvious. When and the C/N was 3:1-4:1, the TN satisfied the water quality standard for entering lake. There was a certain degree of function of dephosphorization in the reactor, but the efficiency was relatively low.
     For example, when the carbon resource was sodium acetate, the sieving speed was 0.5m/h, the best dephosphorization rate was only 56.13% , and not so stable as biological denitrification. The simple biological dephosphorization could not meet the demand of TP for entering lake, so there must be chemical ways in addition for it.
     The results of series of chemical dephosphorization experiments showed that the best reagent for dephosphorization chemically was ferric chloride, and the best adding point was at the exit end of the third stage reactor. When the adding amount was 210mg/L, the water out satisfied the demand for entering lake.
     From the point of view of waste water reusing, dealing with the city sewage by the treating technique of three stages denitrification and dephosphorization, the water out could meet the demand on COD, TN and TP to enter lakes, which established a good base and presupposition to the later water resource optimal disposal in Longhu.
     3. Study on the water resource optimal disposal
     To build such a big manmade lake, the distribution of the water in reason would directly influence the normal operation of the Longhu system in future, so scientific demonstrating and analyzing was necessary at the beginning of the Longhu building. At first, according to the current state of Zhengzhou city, ZDXQ and Longhu region, the usable water resource of Longhu could be Yellow River, Qialu River, groundwater, recycled water and rain. By the colligated analysis on the quantity and quality confirming of water in, the storage water resource was ascertained to be Yellow River, deeply treated waste water, ground water being pumped to decrease the groundwater level around the lake, which was mainly used for the recharge to the branches of Longhu to prevent the partial water deterioration.
     The integrated using of the water out of Longhu included the utilization in living, in eco-environment and in agriculture. Based on the water quality evaluation, water quantity estimation and the water using character of the three ways upon, it was built that four combined schemes of the water resource using, and the best way was that Longhu only supply Longzi lake, and the rest water was used in the lower reaches of the river and agriculture irrigation.
     The calculation results also indicated that it did good to the eco-environment of the riverway and increased the irrigation supply to the down stream farmland through the optimal disposal of the water resource in Longhu, thus decreased the water needed for irrigation from Yellow River of 1.861×10~5m~3/d (6.793×10~7m~3/a), which could prevent the Yellow River of 16 days from water break, according to the smallest flux of 50m~3/s for keeping the runoff.
     Since there was no such large-scale project of manmade lake system so far, the innovation and the character of the thesis was that the ES value and water resource optimal disposal was done on it. To protect the entering water quality, systemic denitrification and dephosphorization experiments was done to deal with the sanitary water under the technique of aeration biology tank, and received a series of results with important reference value, which offered scientific base to the economical and reasonable optimal circle of the Longhu water system, provided new mind and new methods to this kind of problems later, and had precious reference value for similar project building in future. So there was important meanings for both theoretical study and practical guidance.
引文
[1] Pimentel D , Harvey C,Resosudarmo P.Environmental and economic costs of soil erosion and conservation benefits. Science, 1995 , 267:1117~1123.
    [2] Peters C A , Gentry A H , Mendelsohn R O. Valuation of an Amanazonian rainforest. Nature ,1989 ,339:655~656.
    [3] Tobias D , Mendelsohn R. Valuing ecotourism in tropical rain forest reserve. Ambio, 1991 ,20:91~93.
    [4] Barbier E B , Burgess J C , Markandya A. The economics of tropicalde forestation. Ambio ,1991 , 20 (2) : 55~58.
    [5] Loomis J B , Kent P , Strange L , et al . Measuring the total economic value of restoring ecosystem services in an impaired river basin : results from a contingent valuation survey. Ecological Economics , 33 (2000) : 103~117.
    [6] 赵晟.生态系统服务价值研究:理论、方法及应用.兰州大学博士学位论文,20050501:13~17.
    [7] 谢高地.全球生态系统服务价值评估研究进展.资源科学,23(6):5~9.
    [8] 徐中民.额济纳旗生态系统恢复的总经济价值评估.地理学报,2002 , 57:107~116.
    [9] 赵同谦.中国陆地生态系统服务功能及其价值评价研究.中国科学院生态环境研究中心博士学位论文,20040601:3~8.
    [10] 项雅娟,陆雍森.生态服务功能与自然资本的研究进展.软科学,2004,18(6):12~14.
    [11] Costanza R, Groo t R. The value of the world’s eco system services and natural capital [ J ]. Nature, 1997, 386: 253~260.
    [12] 韩单恒.辽西凤凰山主要森林类型生态系统服务功能研究.中国科学院生态环境研究中心硕士学位论文,20040601:31~38.
    [13] Rapport ,D. J. et al. Assessing ecosystem health [J]. Trends in Ecol. Evol,1998 ,13 :397~402.
    [14] 阎水玉,王祥荣.生态系统服务研究进展.生态学杂志,2002,21(5):61~68.
    [15] Vitousek P M ,Beyond global warming: ecology and global change[J]. Ecology,1994,75:1861~1876.
    [16] Tilman ,D. Causes ,Consequence and ethics of biodiversity [ J ] .Nature ,2000 ,405 :208~211.
    [17] 靳芳.森林生态系统服务功能价值评估问题[J].西北林学院学报,2005,20(3):18~22.
    [18] 罗跃初.辽西半干旱区几种人工林生态系统服务功能研究.中国科学院生态环境研究中心博士学位论文,20040615:3~7.
    [19] MA (Millennium Ecosystem Assessment). Ecosystems and Human Well-being-A Frameworkf or Assessment. American: Island Press, 2003.
    [20] Daily G .C .What are ecosystem services? In: Daily G C.(e d.).Nature's services: Societal dependence on natural ecosystems. Island Press, Washington, D .C., 1997, pp:1~10.
    [21] 刘向华.我国生态服务价值评估方法的述评.理论月刊,2005,7:130~132.
    [22] 徐世晓.自然生态系统公益及其价值.生态科学,2001,20(4):78~85.
    [23] Ehrlich,P.R. The concept of human ecology: a personal view.IUCN Bulletin,1985,16:60-61.
    [24] 李金昌.生态价值论.重庆:重庆大学出版社. 1999.
    [25] 毛文永.生态环境影响评价概论.北京:中国环境科学出版社. 1998.
    [26] 薛达元,包浩生,李文化.长白山自然保护区森林生态系统间接经济价值评估.中国环境科学,1999,19(3):247~252.
    [27] 陈应发.中国森林环境资源价值评估— 国家科委自然资源核算04项目分报告之三. 中国林科院信息所. 1994.
    [28] Anderson D.1990. Carbon fixing from and economic perspective. Forestry Commission's First Economics Research Conference, New York University.
    [29] 欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究.生态学报,1999,19:607~613.
    [30] 韩维栋.中国红树木生态系统生态价值评估.生态科学,2000,19:40~45.
    [31] 陈仲新,张新时.中国生态效益的价值. 科学通报, 2000 , (45) : 17~22.
    [32] 肖寒.森林生态系统服务功能及其生态经济价值评估初探.应用生态学报,2000,11:481~484.
    [33] 吴玲玲,陆健健,童春富,刘存岐.长江口湿地生态系统服务功能价值的评估.长江流域资源与环境,2003,12(5):411~416.
    [34] 唐云梯.实用环境保护数据大会[M].武汉:湖北人民出版社,1993,50~55.
    [35] 徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展.
    [36] 孙锦宜.含氮废水处理技术与应用.化学工业出版社,2003,36~45.
    [37] 郑兴灿,李亚新.污水脱氮除磷技术.中国建筑工业出版社,1998,6~8.
    [38] 吴昌文.污水脱氮技术浅析. 芜湖职业技术学院学报,2003,12(5):90~93.
    [39] 张自杰.排水工程(第四版).中国建筑工业出版社,2000.
    [40] Siegrist H,Reithaar S,Koch G,Lais P.Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon.Wat.sci.tech,1998,38(8~9):241~248.
    [41] Hippen A,Baumgarten G,Rosenwinkel K H,etal。Aerobic deammonification-A new experience in the treatment of wastewaters.Wat.sci.tech.,1997,35(10):111~120.
    [42] Helmer C,Kunst S,Nitrogen loss in a nitrifying biofilm system.Wat.sci.tech.,1999,39(7):13~21.
    [43] Muller E B.Simultaneous NH3 and production at reduced tension by sewage sludge subcultured with chemolitrophic medium.Biodegradatin.1995,6(10):339~349.
    [44] 杨虹,李道棠,朱章玉。全程自氧脱氮新技术处理污泥脱水液的研究。环境科学。2001,25(5):105-107。
    [45] LinPing Kuai , Willy Verstraete . Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system.Appl.Envir.Microbial.1998,64:4500~4506.
    [46] Kuenen J G,Robertson L A.Combined nitrification denitrification process.FEMS Microbiol Rev,1994,15(2):109~117
    [47] Muller A,Van de Graaf L.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor.FFMS Microbiol Ecol.,1995,16(3):177~183.
    [48] Jetten M S M,Strous M.The anaerobic oxidation of ammonium [J].FEMS Microbiol Rev,1999,22:421~437.
    [49] Gupta A B.Thiosphaera pantotropha:a sulfur bacterium capable of simultaneous heterotro- phic nitrification and aerobic denitrification [J].Enzyme and Microbial Technology,1997,21:589~595.
    [50] Vidal S,Rocha C,Galvao H.A comparison of organic and inorganic carbon controls over biological denitrification in aquaria [J].Chemosphere,2002,48:445~451.
    [51] Koeing A , Liu L H . Autotrophic denitrifiation of landfill leachate using elemental sulfur [J].Wat.Sci.Tech.,1996,34(5~6):469~476.
    [52] Yoo H,Ahn K H,Nitrogen removal from synthetic waste water by simultaneous nitrification and denitrification (SND) via nitrate in an intermittently-aerated reactor.Water Res.,1999,33(1):145~154.
    [53] Christine Helmer,Sabine Kunset. Simultaneous nitrification/denitrification in an aerobic biofilm system [J] .Wat.sci.tech.,1998,37(4-5):183-187.
    [54] 李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究 [J].给水排水,2001, 27(1): 22~24.
    [55] 赵玲,张之源.复合 SBR 系统中同步硝化反硝化现象及其脱氮效果.工业用水与废水,2002,2:4~6.
    [56] 胡宇华,丁富新,范轶,陈筛林,杨海光,邢新会.有机碳源对同时硝化/反硝化(SND)过程的影响.环境工程,2001,19(4):17~23.
    [57] Hellinga C,Schellen A A J C,Mulder J W.The Sharon process:an innovative method for nitrogen removal from ammonium-rich waste water [J].Wat.Res.,1998,37:135~-142.
    [58] 李春杰,耿琰.SMSBR 处理焦化废水中的短程硝化反硝化 [J].中国给水排水,2001, 11:8~12.
    [59] Joanna S G,Andrzej C.Nitrogen removal from wastewater with high ammonia nitrogen concentration viashorter nitrification and denitrification.Wat.sci.tech.,1997,36(10):73~78.
    [60] Uemoto H,Saiki H.Behavior of immobilized nitrosomonas europaea and paracoccus denitrificans intubular gel for nitrogen removal in wastewater.Prog Biotechnol,1996,11(immpbized cells):486~493.
    [61] 邱立平,马军.曝气生物滤池的短程硝化-反硝化的机理研究.中国给水排水,2002,(18):1~4.
    [62] 高大文,彭永臻,郑庆柱.SBR 工艺中短程硝化反硝化的过程控制.中国给水排水,2002(18):13~18.
    [63] 王志盈,刘超翔,彭党聪等.高氨浓度下生物流化床内亚硝化过程的选择特性研究 [J].西安建筑科技大学学报,2000,32(1)4~7.
    [64] 徐冬梅,聂梅生.亚硝酸型硝化试验研究.给水排水,1999,25(7):37~39.
    [65] Hellingga C,van loosdrecht M C M.The Sharon process for nitrogen removal in ammonium rich wastewater.Mededelingen Faculteit Landbouwwetenschappen,Unibersiteit Gent 62(4b):1743~1750.
    [66] Jetten MS M.Towards a more sustainable municipal wastewater treatment system [J].Water Sci Tech,1997,35(9):171~180.
    [67] 吴剑,济鄂荣,程晓如等.废水生物脱氮技术的研究发展.武汉大学学报(工学版),2002,35(1):76~79.
    [68] 陈华.化学沉淀法除磷和生物法除磷的比较 [J].上海环境科学,1997,16(6):33~35.
    [69] 贾晓燕.废水除磷技术的研究进展.重庆环境科学,2003,25(12):191~192.
    [70] 徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展.工业水处理.2003,23(5):18~20.
    [71] 田淑媛,杨睿等.生物除磷工艺技术发展.城市环境与城市生态,2000,13(4):45~47.
    [72] Paul E,Laval M L,Sperandio M.Excess sludge production and costs due to phosphrus removal.Envir.Tech.2001,22:1363~1371.
    [73] Smolders G.J.F.et al.Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process.Biotechnol.Bioengng.,1994,44:837~848.
    [74] Petersen B.et al.Phosphate uptake kinetics in relation to PHB under aerobic conditions. Wat.Res.,1998,32(1):91~100.
    [75] Lie E.Carbon and phosphorus transformations in a full-scale enhanced biological phosphorus removal process.Wat.Res.,1997,31(11):2693~2698.
    [76] H raj A Khararjian,Paul J Cardinal.Discussion of Biological Phosphorus Removal in a Fedbatch Reactor without anoxic mixing sequence [J].Water Environment Research,1996,65(5):693~696.
    [77] Norbert Jardin,Johannes Poel H.Waste Activated Sludge Production of the Enhanced Biological Phosphorus Removal Process [J].Water environment Research.,1997,69(3):375~381
    [78] Muraka mi Jakao,Miyairi Atsushi,Tanaka Kazuhiro.Full scale study of biological phosphorus removal processes.Water Science and Technology,1984,17:297~298.
    [79] 张波.倒置 A2/ O 工艺的氮磷脱除功能.环境工程,1999,17(2):7~10.
    [80] Barnard J.L.Cut P and N without chemicals.Water and Wastes Eng.,1974,11(7) :33
    [81] Stander G.J.,Cillie G.G.,Hall E.J.,Henzen M.R.Wastewater technologies in south Africa:research and application.Water Science and Technology,1982,14:465~480.
    [82] Potgieter D.J.J.,Evans B.W.Biochemical changes associated with luxury phosphate uptake in a modified phoredox activated sludge system.Water Science and Technology,1982,15:105~115.
    [83] Jones P.H.Tasfi L.Effect of applied direct current on biological phosphorus uptake.Water Research,1987,25( 6):723~729.
    [84] Irvine R.L.,et al.Organic loading study of full-scale sequencing batch reactors.JWPCF,1985, 57:847.
    [85] 上海市环境保护局.废水生化处理.上海:同济大学出版社,1999,127~128.
    [86] Bortone G.et al.Biological anoxic phosphorus removal-the Dephanox process,Wat.Sci.Tech.,1996,34:(1~2),119 ~128.
    [87] Kern-Jespersen J . P ., Henze M . Biological phosphorus uptake under anoxic and oxic condition.Wat.Res.,1993 ,27(4):617~624..
    [88] Kuba T.et al.Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor.Wat.Res.,1993,27(2):241~252.
    [89] Cooper P,Day M,Thomas V.Process Option for Phosphorus and N itrogen Removal from Wastewater[J].JIWEN,1994,8:84~92
    [90] Norbert Jardin,Johannes Poel H.Behavior of Waste Activated Sludge from Enhanced Biological Phosphorus Removal during Sludge Treatment [J].Water Environment Research, 1996,68(6) :965~973.
    [91] 罗宁,罗固源,许晓毅.从细菌的生化特性看生物脱氮与生物除磷的关系.重庆环境科学.2003,25(5):33~36.
    [92] 王春英,隋军,赵庆良.反硝化聚磷机理试验.环境污染治理技术与设备,2002,3(6):65~68.
    [93] 王亚宜,杜红,彭永臻等.A2N 反硝化除磷脱氮工艺及其影响因素.中国给水排水,2003,19:(8~11).
    [94] 卢峰,杨殿海.反硝化除磷工艺的研究开发进展.中国给水排水,2003,19:(32~34).
    [95] 毕学军,高延耀.缺氧/厌氧/好氧工艺的脱氮除磷研究.上海环境科学,1999,18(1):19~21.
    [96] 沈耀良,王宝贞.废水生物处理新技术理论与应用 [M].北京:中国环境科学出版社,1999,54~56.
    [97] Mogens Henze,Poul Haxxemoe 等.污水生物处理与化学处理技术[M].国家城市给水排水工程技术研究中心译.北京:中国建筑工业出版社,1999,33~36.
    [98] 高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999,86~88.
    [99] 杨智宽,韦进宝.污染控制化学[M].武汉:武汉大学出版社,1998,75~78.
    [100] Jean-Philippe Boisseret et al.Phosphate adsorption in flocculation processes of aluminum sulphate and poly-aluminum-silicate sulphate.Wat.Res.,1997,31(8):1939~1946.
    [101] Elisabeth et al.Phosohorus removal from wastewaters:experimental and theoretical support for alternative mechanisms.Wat.Res.,1997,31(2):328~338.
    [102] Emi1 Rydin,Eugenee B.Welch.Aluminum dose required to inactive phosphate in lake sediments,Wat.Res.,1998,32(10):2969~2976.
    [103] Aesoy A,Odegaard H.Ntrogen removal efficiency and capacity in biofilms with biologically hydrolyzed sludge as a carbon source [J].Wat.Sci.Tech.,1994,30(6):63~72.
    [104] Wang B.Z.,Li G,Yang Q,Liu R.Nitrogen removal by a submerged biofilm process with fibrous carrier [J].Wat.Sci.Tech.,1992,20:37~89.
    [105] Wang B.Z.,Yang Q.,Liu R.A study on simultaneous organics and nitrogen removal by extended aeration submerged biofilm process [J].Wat.Sci.Tech.,1991,24(5):197~213.
    [106] 郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例.化学工业出版社,2002,5~13.
    [107] Pujol P.lemmdl h.,goudsilles M.A keypoint of nitrification in an upflow biofiltration reactor[J].Wat.Sci.Tech.,1998,38(3):43~49.
    [108] 齐兵强,王占生.曝气生物滤池在污水处理中的应用.给水排水,2000,26(10):4~8.
    [109] R.Pujol,S.Tarallo.Total Nitrogen Removal in Two-step Biofiltration.Wat.Sci.Tech., 2000,41(4~5):65~68.
    [110] J.J.Chen,D.Mcarty,D.Slack et al.Full Scale Studies of a Simplified Aerated Filter (BAF) for Organic and a Nitrogen Removal.Wat.Sci.Tech.,2000,41(4~5):1~4.
    [111] J.Cromphout.Design of an Upflow Biofilm Reactor for the Elimination of High Ammonia Concentration in Eutrophic Surface Water.Water Supply,1992,10(3):145~150.
    [112] F.Fdz-Polanco,E.Mendez,M.A.Uruena,et al.Spatial Distribution of Heterotrophs and Nitriers in a Submerged Biofilter for Nitrification.Water Reasearch.2000,34(10):4081~4089.
    [113] S.Zhu,S.Chen.Effects of Organic Carbon on Nitrification Rate in Fixed Film Biofilter.Aquacultural Engineering,2001,25:1~11.
    [114] M.Payraudeau,C.Paffoni,M..Gousailles.. Tertiary Nitrification in an Upflow Biofilter on Floating Media:Influence of Temperature and COD Load.Wat.Sci.Tech.,2000,41(4~5):21~27.
    [115] R.Pujol.Process Improvements for Upflow Submerged Biofilters.Water21,2000(4):25~29.
    [116] J.Oh,S.M.Yoon,J.M.Park.Denitrification in Submerged Biofilters of Concentrated –nitrate Wastewater.Wat.Sci.Tech.,2000,43(1):217~223.
    [117] N.Puzava,M.Payraudeau,D.Thornberg.Simultaneous Nitrification and Denitrification in Biofilterswith Real Time Aeration Control.Wat.Sci.Tech.,2000,2001,43(1):269 ~276.
    [118] K.H.Sφrensen,D.Thornberg,K.F.Janning.Using Advanced Control,Post-denitrification and Equalisation to Improve the Performance of Submerged Filter.Wat.Sci.Tech.,2000,41 (4~5):177~184.
    [119] P.Chudoba,R.Pujol.A There-stage biofiltration process:performances of a pilot plant Wat.Sci.Tech.,1998,38(8~9):257~265.
    [120] S.D.Chen,C.Y.Chen,Y.F.Wang.Treating high-strength nitrate wastewater by biological process.Wat.Sci.Tech.,1999,39(10~11):311~314..
    [121] R.F.Goncalves, L.le Grand,F.Rogalla.Biological Phosphours uptake in submerged biofliters with nitrogen removal.Wat.Sci.Tech.,1993,29(10~11):135~143.
    [122] R.Pujol,M.Hamo,X.kandel,et al.Biofilters:Flexible,reliable biological reactors.Wat.Sci.Tech.,1994,29 (10~11):33~38.
    [123] A.Aes?y,H.?degaard, K.Bach,et al.Denitrification in a packed bioflim reactor(Biofor)-experiments with different carbon sources.Wat.Res.,1998,32(5):1463~1470.
    [124] D.Pak,W.Chany.Simultaneous removal of nitrogten and Phosphorus in a two- biofilter system.Wat.Sci.Tech.2000,41(12):101~106.
    [125] 李汝琪,孙长虹,钱易.曝气生物滤池处理啤酒废水的研究.环境科学,1999,20:83~85.
    [126] 雷国元,吴克明,齐兵强等.曝气生物滤池的工作性能与高度的关系[J].环境污染与防治, 2002,24(l):26~28.
    [127] 谢曙光,张晓健,王占生.极低温度下两级曝气生物滤池的运行特性[J].中国给水排水,2002,18(7):17~19.
    [128] 田文华,文湘华,崔燕平,钱易.滤料粒径对曝气生物滤池硝化性能的影响.中国给水排水,2003,19(5):48~ 50.
    [129] 崔燕平,田文华,文湘华等.双室(层)曝气生物滤池充氧性能及流态特征.给水排水, 2004,30(8):41~44.
    [130] R.F.Goncalves,L.Le Grand,F Rogalla.Biological phosphorus uptake in submerged biofilters with nitrogen removal.Wat.Sci.Tech.,1994,29(10):135~143.
    [131] G.Bortone F.Malaspina L Stance,et al.Biological nitrogen and Phosphrous removal in an anaerobic/anoxic sequencing batch reactor with separated bilfilm nitrification.Wat.Sci.Tech.,1994,30(6):303~313.
    [132] Markus Boller,Daniel Kobler,Gerhard Koch.Particle separation solids budgets and headloss development in different bilfilms.Wat.Sci.Tech.,1997,36(14):239~247.
    [133] 王顺久,侯玉,张欣莉.中国水资源优化配置研究的进展与展望,水利发展研究,2002,9(2):9~10.
    [134] 柴国荣,冯家涛,周志星.水资源跨流域配置的经济学分析,西北农林科技大学学报(社会科学版),2002,2(1):42~45.
    [135] 冯尚友,刘国全,梅亚东.水资源生态经济复合系统及其持续发展,武汉水利电力大学学报,1995,28(6):624~629.
    [136] 黄奕龙,汤洁.水资源可持续利用的生态经济评价,吉林地质,2001,20(4):62-66.
    [137] 李令跃,甘泓.试论水资源合理配置和承载能力概念与可持续发展之间的关系.水科学进展,2000,11(3):307~313.
    [138] 许新宜,王浩,甘泓.华北地区宏观经济水资源规划理论与方法[M],郑州:黄河水利出版社,1997:24~28.
    [139] 高翔,王爱民,张世彪.兰州秦王川灌区水资源配置分析,中国沙漠,2001,21(1):67~71.
    [140] Yao Ruxiang,LiaoSong.Analysis and Utilizantion of Water Resources System[M],Beijing:Tsinghua University Press,1987.
    [141] 施祖麒,许丽芬.水资源:社会可持续发展的重要支撑,中国人口·资源与环境,1997,7(2):37~42.
    [142] 呼丽娟.水资源配置对区域水资源短缺的影响及其在水资源对策中的意义.烟台师范学院学报(自然科学版),1998,14(2):134~137.
    [143] 吴国昌.我国水资源面临的问题和对策.中国人口、资源与环境,1991,1(3,4):8~13.
    [144] 刘卫东,陆大道.水资源短缺对区域经济发展的影响,地理科学,1993,131(1):9~15.
    [145] 赵鸣雁,程春田,李刚.水库群系统优化调度新进展,水文,2005,12(25):18~21.
    [146] 游进军,王浩,甘泓.水资源系统模拟模型研究进展.水科学进展,2006,5(17):425~427.
    [147] 王珊琳,李杰,刘德峰.流域水资源配置模拟模型及实例应用研究.人民珠江,2004,5:11-15.
    [148] 吴泽宁,索丽生.水资源优化配置研究进展.灌溉排水学报,2004,23(2):1~2.
    [149] 徐振辞.论区域水资源优化配置理论与方法.河北水利,2003,6:22~25.
    [150] 冯钟豫.水资源规划.中国土木水利工程学会,1975,8:25~8.
    [151] 王顺久,侯玉,张欣莉,丁晶.中国水资源优化配置研究的进展与展望.水利发展研究,2002,9:9~11.
    [152] 辛玉琛,张志君.长春市水资源供需系统进行优化管理.东北水利水电,2000,1(18):15-17.
    [153] 王春得,赵忠贤.新疆渭河干河灌区水文地质条件变化及排水措施探讨.地下水,2006,12(28):88~90.
    [154] 方创琳.区域可持续发展与水资源优化配置研究——以西北干旱区柴达木盆地为例.自然资源学报,2001,7(16):341-343.
    [155] 王铁,王艳龙.区域水资源优化配置效果评价体系研究.东北水利水电,2005,12(23):6~8.
    [156] 李雪萍.国内外水资源配置研究概述.河海水利,2002,5:13~15.
    [157] 尹美娥.法国水资源优化配置与管理系统.水利发展研究,2002,2(3):35~38.
    [158] 郑州市水利建筑勘察设计院.郑州市郑东新区起步区三河一渠治理工程可行性研究报告.2002,12.
    [159] 黄河水利委员会勘测规划设计研究院.河南省郑州市北郊水源地供水水文地质勘查报告.1995.
    [160] 黄河水利委员会勘测规划设计研究院.郑州市郑东新区工程地质勘查报告(可行性研究阶段).2003.
    [161] 黄河水利委员会勘测规划设计研究院.郑东新区龙湖水系专项规划报告.2002,5.
    [162] 日本黑川纪章建筑-都市设计事务所.郑东新区总体发展概念规划.2001,10.
    [163] 郑州市市政勘查设计研究院.郑州市郑东新区基础设施总体规划(2003K-050).2003.
    [164] 河南省水利厅.河南水利统计年鉴-2001.2002,6.
    [165] 郑州市水利志编辑委员会.郑州市水利志.1995,10:25~28.
    [166] 郑州市金水区郑东新区征地拆迁协调指挥部,金水区郑东新区相关村组基本情况汇编,2003,3:22~23.
    [167] 李潮洪,郝爱民.中国森林资源可持续发展描述体系框架的构建. 东北林业大学学报, 2000, 28 (5): 122~124.
    [168] 李卫忠,郑小贤,张秋良. 生态公益林建设效益评价指标体系初探. 内蒙古农业大学学报, 2001,22(6) :12~15.
    [169] 辛琨,肖笃宁.盘锦地区湿地生态系统服务价值估算.生态学报,2002,(8):1345~1349.
    [170] 蔡邦成.南水北调东线水源地保护区生态建设的生态经济效益评估.长江流域资源与环境,2006,15(3):384~387.
    [171] 刘文.资源价格.北京:商务印书馆,1996:71~103.
    [172] 赵延茂,宋朝枢.黄河三角洲自然保护区科学考察集.北京:中国林业出版社,1995.
    [173] 谢高地等.青藏高原生态资产的价值评估.自然资源学报,2003,18(2):189-192.
    [174] 李建国,李贵宝等.白洋淀湿地生态系统服务功能与价值估算的研究.南水北调与水利科技,2005,3(3):18~21.
    [175] 崔丽娟.扎龙湿地价值货币化评价.自然资源学报,2002,17(4):451~456.
    [176] 国家环保局编.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [177] 王毓仁.提高废水生物反硝化效果的理论和实践.石油化工环境保护,1995,2:1~7.
    [178] 国家环境保护总局,国家质量监督检验检疫总局.地表水环境质量标准.GB3838-2002.
    [179] 国家环境保护总局,中华人民共和国国家质量监督检验检疫总局.城镇污水处理厂污染物排放标准.GB18918-2002.
    [180] P.G.Bird,A.Guellil,F.Thomas,et al.Production,degradation,and composition of activated sludge in aeration systems without primary sedimentation.Journal WPCF,2001,55(3):256~259.
    [181] A.Klapwijk,H.Brouwer.Control of intermittendtly aerated nitrogen removal plants by detection endpoints of nitrification and denitrification using respirometry only.Wat.Res.,1998,32(5):2086~2093.
    [182] (美)梅特卡夫和埃迪公司编.秦裕瑞等译.废水工程-处理、处置及回用.北京:化学工业出版社,1986,486~500.
    [183] 顾夏声.废水生物处理数学模式.北京:清华大学出版社,1993,200.
    [184] 章非娟.生物脱氮技术.北京:环境科学出版社,1992,67~69.
    [185] 张自杰,周帆.活性污泥生物学反应动力学.北京:环境科学出版社,1989,53~55.
    [186] Silas W.Givens et al.Biological Process Design and pilot Testing for a carbon Oxidation, Nitrfication,and Denitrification System.Environmental Progress,1991,10(2):133~146..
    [187] C.P.小莱斯利确格雷迪(美)等著.李献文等译.废水生物处理理论与应用.北京:中国建工出版社,1989,12~15.
    [188] F.Keisuke,B.Vanderhaegen.Improved design and control of industrial and municipal nutrient removal plants using dynamic models.Wat.Sci.Tech.,1997,35(10):67~72.
    [189] 邱立平.曝气生物滤池处理生活污水地运行特性及生态学研究.哈尔滨工业大学博士论文,2003.
    [190] 徐亚同编著.废水生物处理的运行和管理.上海:华东师范大学出版社,1989,181.
    [191] 王立立,刘焕彬,胡勇有等.生活污水二级处理后的铁盐混凝除磷试验研究.环境污染与防治,2002,24(6):361~364.
    [192] 田宝珍,汤鸿霄.Fe(Ⅲ)水解过程中无机阴离子的影响作用.环境化学,1993,12(5):365~372.
    [193] 田宝珍,汤鸿霄.含磷酸盐的 FeCl3 水解溶液的化学特征.环境化学,1995,14(7):329~336.
    [194] RogerLP,RogerJA.The mechanism of phosphate fixation by iron oxides.Soil. Sci.Soc.Amer.Proc.,1975,39:837~841.
    [195] Fytianos K,Voudrias E,Raikos N.Modelling of phosphorus removal from aqueous and wastewater samples using ferriciron. Environmental Pollution,1998,101:123~130.
    [196] 赵恩海,朱文亭.我国污水处理的发展趋势.城市环境与城市生态,2000,,13(4):39~41.
    [197] L.Huber.Zusammensetzung and wirkungen Von Fallungs-and Flockungsmitteln.Wasser Boden,1993(5):309~312.
    [198] 王毓仁.提高废水生物反硝化效果的理论和实践.石油化工环境保护,1995,2:1~7.
    [199] 徐亚同.废水反硝化除氮.上海环境科学,1994,13(10):8~13.
    [200] 杨殿海,章非娟.碳源和碳氮比对焦化废水反硝化工艺的影响[J].同济大学学报,1995,23(4):413~416.
    [201] 章非娟,杨殿海,傅威.碳源对生物反硝化的影响[J].给水排水,1996,22(7):26~28.
    [202] 徐亚同.不同碳源对生物反硝化的影响.环境科学,1994,15(2):29~32.
    [203] B.N.Carley,et al.The effects of ext-ernal carbon loading on nitrification and denitrification of a high-ammonia landfill leachate.Research JWPCF,1991,63(1):51~58.
    [204] Chie-chien tsing,et al.Effect of influent chemical oxygen demand to nitrogen ratio on a partial nitrification/complete denitrification process.Wat.Res.,1998,32(1):165~173.
    [205] Lotter L H.The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process.Wat.Sci.Tech.,1985,17(1):127~139.
    [206] Abu Ghararah Z H,Randall C W.The effect of organic compounds on biological phosphorus removal.Wat.Sci.Tech.,1991,23(2):585~596.
    [207] 荣宏伟,陈志强,吕炳南.有机碳源对生物除磷的影响.南京理工大学学报,2004,28(4):440~443.
    [208] Filipe CDM.,Daigger GT,Grady CPL.Effects of pH on the rates of aerobic metabolism of phosphate-accumulating and glycogen-accumulating organisms.Water Envir.Res.,2001,73(2):213~222.
    [209] 阮文权,邹华,陈坚.乙酸钠为碳源时进水 COD 和总磷对生物除磷的影响.环境科学,2002,23(3):49~52.
    [210] Cech JS,Hart man P.Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems.Wat.Res.,1993,27:1219~1225..
    [211] Maszenan AM,Seviour RJ,Patel BKC,et al.The hunt for the Cr bacterial in activated sludge biomass.Wat.Sci Tech.,1998,37(4~5):65~69.
    [213] Liu w t,Mino T,Nakamura K,et al.Role of glycogen in acetate uptake and poly -hydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate conten[J].Ferment Bioeng.,1994,77(5):535~539.
    [213] 刘延华,冯生华.用先进的除磷脱氮技术治理富营养化.中国环保产业,1998,12:35~37.
    [214] 罗固源,罗宁,吉芳英等.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水,2002,18(9):4~7.
    [215] 李军,赵琦,王宝贞.序批式生物膜法同步除磷脱氮特性研究.城市环境与城市生态,2002,15(2):1~3.
    [216] 李勇,黄勇,潘杨.泥龄对生物除磷效率影响的分析[J].苏州城建环保学院学报,2001, 14(1):16~21.
    [217] Fukase T.Shibata M,Miyaji Y.The role of an anaerobic stage on biological phosphorus romovel[J].Wat.Sci.Tech.,1985,(17):68~80.
    [218] Carlos D M Filipe,Glen T Daigger.Evaluation of the capacity of phosphorus-accumulating organisms to use nitrate and oxygen as final electron acceptors:a theoretical study on population dynamics[J].Wat.Envir.Res.,1999,71 (6):1140~150.
    [219] 李军,彭永臻,杨秀山等.序批式生物膜法反硝化除磷特性及其机理.中国环境科学,2004,24(2):219~223.
    [220] Sorm R,Bortone G.Phosphate uptake under anoxic conditions and fixed-film nitrification in nutrient removalactivated sludge system.[J].Wat.Res.,1996,7(30):1573~1584.
    [221] 王顺久,侯玉,张欣莉.中国水资源优化配置研究的进展与展望.水利发展研究,2002,9(2):9-10.
    [222] 郑东新区龙湖水系专项规划.2003,8:16~25.
    [223] 郑建华,王世梅,王卓娟.长江水质的综合评价及其预测.贵州水利发电,2006,12(6):7~8.
    [224] 河海大学.龙湖水系水质演化规律及调控方案研究.2004,6:4~8.
    [225] 张落成,陈振光,吴楚材.苏南太湖流域地下水过渡开采引起的地面沉降及其防治对策.湖泊科学,2003,15(3):257~262.
    [226] 冯尚有.水资源持续利用与管理导论.北京:科学出版社,2000,6:23~25.
    [227] 张丽,董增川,张伟.水资源可持续承载能力概念及研究思路探讨.水利学报,2003(10):12~16.
    [228] 中国地质大学.龙湖水系对水文地质、工程地质和生态环境影响分析.2004,6:45~48.
    [229] 李丽娟,郑红星.海滦河流域河流系统生态环境需水量计算.水利水电技术,2003,3:3~5.
    [230] 杨士弘.城市生态环境学.北京:科学出版社,2002,7:64~68.
    [231] 郑州市水利志编辑委员会.郑州市水利志.1995,10:25~28.
    [232] 雷乐成,杨岳平,李伟.污水回用新技术及工程设计.北京:化学工业出版社,2002,8:12~16.
    [233] 水利电力部水文局.水资源评价.北京:水利电力出版社,1987,12(8):31~35.
    [234] 郑州市水利建筑勘测设计院.郑州市郑东新区起步区“三河一渠”治理工程可行性研究报告,2002,12:8-12.
    [235] 翁焕新,城市水资源控制与管理,杭州:浙江大学出版社,2002,6:21-26
    [236] 刘昌明,陈志恺,中国水资源现状和供需发展趋势分析,北京:中国水利水电出版社,2001,12:17-19
    [237] 郑州市金水区郑东新区征地拆迁协调指挥部,金水区郑东新区相关村组基本情况汇编,2003,3:22-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700