日照市滨海区浅层地下水系统调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水是水资源的重要组成部分,是生命赖以生存的宝贵资源之一,也是复杂的生态环境系统中的一个敏感组成因子,其变化往往会影响生态环境系统的天然平衡状态。地下水的过量开采会引发一系列的地质环境问题,对人们的生活造成不同程度的影响。如何进行地下水资源合理开发利用的科学管理,直接关系到人与自然和谐发展的问题。
     地下水资源合理开发利用科学管理主要有行政、经济与技术措施。行政措施是通过制定有关的系列法律法规与管理条列限制地下水开采经济措施是通过征收与加收水资源费控制地下水开采与不合理利用技术措施是通过区域地下水资源调查与评价,制定地下水优化开采方案实现地下水资源的优化开采。本论文就是技术措施的角度研究地卜水资源的优化开采方案,通过研究区域地下水流的模拟,比较分析各个地下水开采方案,以保护地质环境为出发点拟定研究区域地下水优化开采方案。
     本文基于技术提出对地下水开采方案进行优化的步骤和方法,主要内容包括了地下水开采优化模型与地下水开采优化方案的研究。采用构建了研究区域多层地下水水流的模拟模型,包括水文地质层的三维概念模型与数值模拟的数学模型,奠定研究区域地下水开采方案优化分析的基础。利用软件中的模块建立了研究区的水文地质层三维立体模型,从而为方便准确全面地概化研究区水文地质条件提供良好的平台确立水文地质概念模型后,建立了研究区的数学模型并通过校正法对模型进行了识别,而后选取了若干验证时段的水位实测数据对模型进行了验证,从而验证所建立的水文地质概念模型和数学模型合理性。
     通过验证后的地下水流模拟模型演算拟定的地下水开采方案,从而对目前开采方案下地下水流场的变化趋势进行预测根据模型演算出的水位变化情况及的变化趋势,对地下水开采方案的科学合理性进行了分析评价并得出研究区域地下水开采的优化方案,从而为研究区地下水的合理开发利用提供参考。
Groundwater is an important part of water resources is a valuable resource for life on one, it is a complex ecological system composed of a sensitive factor, the change will often affect the natural ecological environment of the system equilibrium. Excessive exploitation of groundwater will lead to a series of geological environment, on people's lives in different degrees. How rational exploitation of groundwater resources and scientific management, is directly related to the harmonious development between man and nature issues.
     Rational development and utilization of groundwater resources, scientific management, mainly administrative, economic and technical measures. Administrative measures by formulating a series of laws and regulations and management of groundwater exploitation shall limit the economic measures listed are subject to water resources through fee collection and control groundwater exploitation and irrational use of technical measures by regional groundwater resources investigation and assessment, development of optimal exploitation of groundwater program to achieve optimal exploitation of groundwater resources. This paper is the perspective and technical measures to optimize water resources exploitation Bu program, through the groundwater flow simulation, comparative analysis of the various underground mining program to protect the geological environment as the starting point of optimal exploitation of ground water work on the study program.
     This article is based on groundwater mining technology proposed to optimize the program procedures and methods, mainly including the exploitation of groundwater optimization model and optimization program of groundwater exploitation. First, the study area by building a multi-simulation model of groundwater flow, including three-dimensional conceptual hydrogeologic layer model and numerical simulation of mathematical models, to lay the groundwater exploitation Optimization basis of the analysis. Firstly, the software module to establish a study area of three-dimensional model of the hydrogeological layer so as to facilitate the accurate and comprehensive generalization of the local hydrogeological conditions provide a good platform to establish the hydrogeological conceptual model, the established mathematical model of the study area through the correction method, the model is identified, then select a number of time the water level in the measured data verify the model was verified to validate the establishment of the hydrogeological conceptual model and mathematical model of rationality.
     Validated simulation model of groundwater flow calculation program developed groundwater exploitation to different mining groundwater flow field under the program to predict the trend of water level in the model calculations the changes and the trend of flow of groundwater exploitation in all programs Science and rationality was analyzed and evaluated and reached the groundwater exploitation optimization program, so as to study the rational development and utilization of groundwater for reference.
引文
[1]陈喜,陈洵洪.美国Sand Hills地区地下水数值模拟及水量平衡分析[J].水科学展,2004,(15):94-99
    [2]陈喜.泉域地下水数值模拟及泉流量动态变化预测[J].水文地质工程地质.2006,(2):36-40.
    [3]陈雨孙.用解析有限元法嵌入地下水管理模型求最优解.水科学进展.1994,5(1):50-57.
    [4]陈宗宇,聂振龙,张荷生.从黑河流域地下水年龄论其资源属性.地质学报, 2004,78(4):560~567.
    [5]代群力.地下水非线性流动模拟[J].水文地质工程地质.2000,(2):50-55.
    [6]范鹏飞.华北平原地下水演化及预测[J].地球学报,1998,19(4):346-352.
    [7]费宇红,陈树娥.滹沱河断流区水环境劣变特征与地下调蓄能力[J].水利学报.200132(11):41-44.
    [8]白利平,王金生.GMS在临汾盆地地下水数值模拟中的应用[J].山西建筑,2004,30 (16):78-79
    [9]陈葆仁.人类活动对地下水的影响[J].水文地质工程地质,1996, (2): 1-4.
    [10]陈曦,杨维.沈阳市黄家水源地水环境影响评价[J].工程勘察,1995, (6):27- 31
    [11]陈守煜,伏广涛,周惠成.含水层敏感性模糊分析评价模型与方法[J].水利学报,2002,(7):23-30
    [12]李俊亭,王文科.西北地区五城市大型水源地地下水流模型若干问题研究[J].西安地质学院学报,1994, 16(2):61-69
    [13]刘淑芬,郭永海.区域地下水防污性能评价方法及其在河北平原的应用[J].河北地质学院学报,1996,19(1):41-45
    [14]刘昌明,钱易,邵益生主编,中国城市水资源可持续开发利用中国工程院重大咨询项目:中国可持续发展水资源战略研究报告集第5卷[M].北京:中国水利水电出版社,2002 9
    [15]林桂兰,庄翠蓉,孙飒梅等.水源保护区划界的遥感与GIS技术研究.遥感技术与应用[J].2002,17 (2 ): 99-103
    [16]梁秀娟,林学钰,苏小四等.GMS与苏锡常地区地下水流模拟[J].人民长江,2005,36(11):26-28
    [17]卢薇,彭泳,刘瑞华.东莞市地下水环境质量现状评价[J].水文地质工程地质,2004,(4):70-73
    [18]马振民,陈鸿汉,刘立才.泰安市第四系水文地质结构对浅层地下水污染敏感性控制作用研究[J].地球科学.2000,25(5):31~35.
    [19]梅双斌.浅谈河北省城市地下水污染及防治[J].环境保护,1994,8(8):45
    [20]马金珠.塔里木盆地南缘地下水敏感性评价[J].中国沙漠.2001,21(2)17-21.
    [21]钱云平,刘志宏,黄彦林.郑州北郊地下水源地傍河取水对区域环境的影响分析[J].地下水,1997, 19 (3): 110-115.
    [22]任增平,李广贺.淄博市大武水源地岩溶地下水的评价及开发利用规划[J].地下水,2000, 22(4):173-174
    [23]石秋池.我国饮用水水源地应急保护应借鉴的做法[N]公众与水.2003,6-17.
    [24]申献辰,杜霞,邹晓雯.水源地水质评价指数系统的研究[J].水科学进展, 2000,11 (3):260-265
    [25]沈珍瑶,杨志峰,曹瑜.环境敏感性研究评述[J].地质科技情报,2003,22(3): 33-38.
    [26]史晓新,朱党生,张建勇,现代水资源保护规划[M].北京:化学工业出版社, 2005:12~13
    [27]孙才志,林山杉.地下水敏感性概念的发展过程与评价现状及研究前景[J].吉林地质, 2000,19(1):30-36
    [28]桑切斯.西班牙未来地下水政策面临的主要挑战[J].水利水电快报,2004, 25(12):9-13
    [29]王开章,刘福胜,孙鸣.灰色模型在大武水源地水质预测中的应用[J].山东农业大学学报(自然科学版), 2002, 33 (1): 66~71
    [30]杨彦农译.美国在地下水保护和恢复方面的进展.天津:天津地质科技情报,1990.28~29.
    [31]邵益生,钱易主编,人与自然百科(人与水)[M],辽宁:辽宁出版社,2000.27-36
    [32]赵秀云,刘琦,刘铁银等.相关分析在地下水资源评价中的应用[J].黑龙江水专学报,2000, 27(1):39-41
    [33]中华人民共和国水利部.2004年中国水资源公报[R].2004.
    [34]祝晓彬,吴吉春,叶淑君等. GMS在长江三角洲(长江以南)深层地下水资源评价中的应用[J].工程勘察,2005, (11):26-29
    [35]王宏,娄华君.Modflow在华北平原区地下水库模拟中的应用[J].世界地
    [36]彭涛,詹松.三维地下水数值模拟方法在基坑涌水量预测中的应用——以广州地铁某基坑为例[J].工程勘察,2005(3):20-23
    [37]邵景力,崔亚莉,赵云章等.黄河下游影响带(河南段)三维地下水流数值模拟模型及其应用[J].吉林大学学报(地球科学版),2003,33(1):51-55
    [38]王开章,孔凡亮,王令文.山东省地下水资源开发与环境问题[M].黄河水利出版社,2002.7:17-27,123-126
    [39]薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1995 (5):16-21
    [40]魏林宏,束龙仓,郝振纯.地下水流数值模拟的现状和发展趋势[J].重庆大学学报(自然科学版),2000,23:50-52
    [41]祝晓彬,吴吉春,叶淑君等.GMS在长江三角洲(长江以南)深层地下水资源评价中的应用[J].工程勘察,2005,(1):26-29
    [42]崔亚莉,邵景力,谢振华.等.基于MODFLOW的地面沉降模型研究[J].工程勘察,2003(5):19-22
    [43]张宗祻,沈照理,薛禹群等.华北平原地下水环境演化[M].地质出版社,2000,2.
    [44]王开章,董洁等.现代水资源分析与评价化学工业出版社[M]. 2006,7
    [45]山东水利厅.《山东省水资源公报——二00三年》,2004.8
    [46]吴佩林,王学真,高峰山东半岛城市群水资源与水环境问题及对策.辽宁工程技术大学学报[J] 2007.8
    [47]田志义,王清发地下水资源开发利用中几个问题的探讨.地下水2001.3
    [48]王延恩,李念国,梁秋生.日照市水环境质量状况及对策分析.水资源与水工程学报[J]. 2007.10
    [49]薛禹群,谢春红.地下水数值模拟[M]科学出版社2007.9
    [50]徐军祥,康风新.山东省地下水资源可持续开发利用研究[M ].北京:海洋出版社, 2001
    [51]朱奎,大区域地下水数值模拟一以华北浴阳河平原区为例.武汉大学硕士学位论文[D], 2004.5
    [52]王大纯,张人权,史毅虹等.水文地质学基础地质出版社[M] 1995.6
    [53]薛禹群等.《地下水动力学》(第二版),地质出版社[M],1997.9
    [54]孙纳正.地下水流的数学模型和数值方法,地质出版社[M],1981
    [55]日照市水利局日照市饮用水水源地安全保障规划. 2006.4
    [56] Alley G.Y.,Brenda G.L.,etal. DRASTIC, astandardized system for evaluating groundwater pollution potential using hydrogeologic settings[M]. U. S. Environmental Protection Agency, Ada, 2006(15):445-467.
    [57] Alley G.Y.,Brenda G.L. Use of geographic systemte chnology to assess DRASTIC vulnerability to shallow groundwater contamination[M]. Univ. Microfilms, Ann Arbor, MA, U. S., 1987 .(19):198-213.
    [58] Arthur, H.A.R. Wood, A.E. etal.Development and implementation of a Baye-sian-based aquifer vulnerability assessment in Florida[J].Nat Resour Res 2007 (16):93–107.
    [59] Broers T.U, Van G.C., Monitoring strategies at phreatic wellfields: a 3D travel time approach, [J].Ground Water .2005 (6) :850-896.
    [60] Britt J B, Brewer K A.Proactive watershedmanagement: modeling future
    [61] conditions in water supply watersheds. Watershed management: moving
    [62] from theory to implementation. Denver: Press, [J].1998, 561-568.
    [63] Ray.Burby.R.J, May P, Patterson R.Tmprovingcompliance with DIVERSITY regulations: choices and outcomes forlocal government. Journal of the American PLannine Association, 1993, 64(3):324-334.
    [64] Burby R J, Patterson R. Improving compliance with state environmental regulations. Journal of Policy Analysis and Management, 1993, 12(4):53-77.
    [65] Burow B, N. Dubrovsky W.Y. etal., Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, Cali-fornia, USA, [J]. Hydrogeology Journal 15 (5) (2007), 991–1007.
    [66] Foster,Bear J.GOD Dynamics of fluids in porous media [M].American Else-vier Publishing Company,INC,1987,(14)65-76.
    [67] Cacoullos, R.T. Cacoullos, P.A.Discriminant analysis and applications, Academic Press, New York, NY 1973 (16):113-129.
    [68] Cohen, A coefficient of agreement for nominal scales, [J].Educ Psychol Meas20 (1960), 37–46. Eckardt G.S. Stackelberg P.E., Relation of groundwater quality to land use on Long Island, New York, [J]. Groundwater 1995 (33), 1019–1033.
    [69] Gardner and R.M. Vogel, Predicting ground water nitrate concentration from land use, [J]. Ground Water 43 (2005). 1–10.
    [70] Gumtang,R.J,Pampoli,M.F. etal.Groundwater dynamicsand quality under in-tensive cropping systems[J].Empathic,35(2):153-166.
    [71] Gogu A.R., Dassargues Q.M. etal. Current trends and future challenges in gr-oundwater vulnerability assessment using overlay and index methods, [J]. Environ Geol 39 (2000). 549–559.
    [72] Cherry.J.A, and L Zanini. Impacts on a sand aquifer from an old septic system: Nitrate and Phosphate[J], Ground Water,1996, 34(6):1100-1113.
    [73] Jaroslav Vrba. Alexander Zaporozec. Guidebook on Mapping Groundwater Vulnerability[A]. Volume (16):159-176.
    [74] James,G.T,M.,Klaho,A.,O. Effect of sludge additions on nitrogen removal in soil columns flooded with secondary effluent. J. Environ. Qual, 1983, 15(3):289-301.
    [75] Krishnamurthy, K.N. Venkatesesa J.B. et al., An approach to demarcateground water potential maps through remote sensing and GIS [J]. Remote Sens 7 (1996): 1867–1884.
    [76] Kelly W.R., Martinsek A.T.,etal. Estimating background and threshold nitrate concentrations using probability graph, [J].GroundWater 44 (2006), 69 7–709.
    [77] Kentlorly. S. M, Daniel T. R.etal., Groundwater Vulnerability Brownfield Redevelopment and Land Use Planning, Journal of Envronmental Planning and Management, 1999, 42(6):801-810.
    [78] Kmible,G.,I.Nwan,K.,Onyekue,S.,O.Assessment of Groundwater Vulnerability and Its Application to the development of protection strategy for the water supply aquifer in Owerri.,southeastern Nigeria [J].Environmental
    [79] Monitoring and Assessment 2001.67:323–360.
    [80] Kobus H..Soil and Groundwater Contamination and Remediation Technology in Europe. In:Sato K, Lwasa Yeds. Groundwater Updates.Hong Kong: Bestset Typesetter Ltd.3-8.
    [81] Lobo-ferreira J. P.,Oliveria M M. DRASTIC groundwater vulnerability mapping of Portugal. Proceedings, Congress of International Association of Hydraulic Research, IAHR Groundwater. An endangered Resource Proceedings of the 1997 27th Congress of International Association of Hydraulic Research[C]. IAHR. PARTC.1997,132-137.
    [82] Lobo-Ferreira J. GIS and mathematical modelling for the assessment of groundwater vulnerability to pollution: application to two Chinese casestudy areas. In Proceedings of the Pnternational Conference“Ecosystem Service and Sustainable Watershed Management Towards Flood Prevention, Pollution Control, and Socio-Economic Development in North China"[C]. Beijing, PR China,2000,23-25.
    [83] Lynchanne S.D, Reynders A.G., A DARSTIC approach to groundwater vulnerability in South Africa [J].S. Afr. Journal of Science, 1997, 93, 59. Remote Sens Environ 108 (3) (2007), 209–223.
    [84] Purna,C.,Nayak,Y.,R.Satyaji,R.,A.,O. Groundwater Level Forecasting In a Sahllow Aquifer Using Artificial Neural Network Approach.WaterResources Management[J]. 2006.20:77–90.
    [85] Jain P.K, Remote sensing techniques to locate ground water potential zones in upper Urmil River basin, district Chatarpur central India [J].Ind Socre mote Sens 26 (3) (1998): 135–147.
    [86] Rao C.G.and Reddy B.R., Application of remote sensing for mapping of irrigated areas using treated water in the Hyderabad and environs, [J] Assoc Environ Geochem 1993 (1): 91–92.
    [87] Rosebaum, Lobo-ferreira J P,Oliveria M M. DRASTIC groundwater vulnerability mapping of Portugal. Proceedings, Congress of International Association of Hydraulic Research, IAHR Groundwater. An endangered Resource Proceedings of the 1997 27th Congress of International Association of Hydraulic Research[C]. IAHR. PARTC.1997,132-137.
    [88] Rosen G.L., Lapham W.W., Introduction to the U.S. Geological Survey National Water-Quality Assessment (NAWQA) of ground-water quality trends and comparison to other national programs, [J]. Journal of Environmental Quality 2008. (5)796-823.
    [89] Richards C, Roaza HP, et al. Applying GIS to groundwater assessments. In: Proceedings of AWRA symposium on GIS and water resources held in Ft.Lauderdala, Florida. USA [J].Florida Ft. Lauderdale; 1996.637-699.
    [90] Singh P, Kanwar R S·Simulating NO3-N transport to subsurface drain flows as affected by tillage under continuous cornusing modified RZWQM, Trans[J]·ASAE, 1996, 38: 499-506.
    [91] Singh A.K, Prakash S.R.An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala subwatershed, Mirzapur district, UP, India [J]. Map India conference; 2003.169-198.
    [92] Smith CN, PayneWR, Pope JD, etal. 1999. Afield study to compare performance of stainless steel research monitoring wells with existing on-farm drinking water wells in measuring pesticide and nitrate concentrations. Chemosphere, 38(4):875-889.
    [93] Spalding RF, Exner M E. Occurrence of nitrate in groundwater .A review Journal of Environmental Quality, 1993,22(3): 392-40.
    [94] Sreedhar G.T., Vijaya I.V. High resolution satellite data and GIS as a tool for assessment of groundwater potential of semi arid area. [J]. IXth thematic conference on geologic remote sensing, vol. 1. Pasadena, CA; 1993. 609-619.
    [95] Sikdar P.K. and Chakraborty S. et al., Land use land cover changes and groundwater potential zoning in and around Raniganji coal mining area, Bardhaman District, West Bengal .a GIS and remote sensing approach, J Spatial Hydrol 4 (2) (2004), 1–24.
    [96] Teevw R.M., Groundwater exploration using remote sensing and a low cost GIS [J]. Hydrogeol J 3 (3) (1999), 21–30.
    [97] Tesoriero, D.A. Saad, K.R. Burow, etal. Linking groundwater age and chemistry data along flow paths: implications for trends and transformations of nitrate and pesticides, [J].Journal of Contaminant Hydrology.2007, 94(1-2) :139.
    [98] Thurman E.M., Smith R.L, Retardation of ammonium and potassium trans-port through a contaminated sand and gravel aquifer: the role of cation exchange, [J]. ES&T Contents 23 (11) (1989), 1402.
    [99] Van Duijvenbooden, Groundwater quality monitoring in the Netherlands.Alley, Editor, Regional Groundwater Quality, [J].Van Nostrand Reinhold, New York (1993), 515–535.
    [100] Vassilis Z·Simulation of water and nitrogen dynamics in soil during waste-water applications by using a finite-elementmodel[J]·Water Resources Management, 1993, 7: 237-251.
    [101] Visser, H.P. Broers, B. Vander,etal.Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He, [J].Environmental Pollution 148 (3) (2007), 797–807.
    [102] VrbaJ, Zaporozec A. Guide book on mapping groundwater vulnerability [J].1997, 6: 257-271.
    [103] Wagenet R J,et al·Tracing the transformation of urea fertilizer during leaching [J].Soil Sci Soc Am J, 1997, 41: 896-902.
    [104] Wiliams, G.M Higgo J.W. In situ and laboratory investigations into contaminant migration[J], Journal of Hydroiogy, 1994, 159,1-25.
    [105] Zektser,I.,S.Elousova,A,P.Dudov,V.,Y.,R.Egional assssment and mapping of groundwater vulnerability tocon tamina ion[J].Environmental Geology,1995,25:225.
    [106] ANDERSON M P, WOESSNER W. Applied groundwater modeling: Simulation of flow and adjective transport [M]. New York :Academic Press Inc. ,1992
    [107] Wood W L. A note on how to avoid spurious oscillation in the finite element solution of the unsaturated flow equation [J]. Journal of Hydrology ,1996
    [108] MEHL S, HILL M C. Development and evaluation of a local grid refinement method for block2centered finite2difference groundwater models using shared nodes [J]. Advances in Water Resources ,2002
    [109] Ehlig C and Halepaska J G. A numerical study of confined-unconfined aquifers including effects of delayed yield and leakage. Water Resour. Res. , 1976.6
    [110] Stone H L.Iterative solution of implicit approximations of multi-dimensional groundwater flow equations.Water Resources Research, 1977, 13(1)
    [111] Khazaei E, Spink A.E.F, and Warner.J.W. A catchment water balance model for estimating groundwater recharge in arid and semiarid regions of south-east Iran. Hydrogeology Journal, 2003.11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700