城市供水水源地地下水环境模拟与安全供水对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东武水源地位于山东省大汶河流域中段,隶属泰安市岱岳区,水源地分布于大汶口盆地东南部山前冲洪积平原上,地形南高北低,东高西低,东西长约8km,南北宽约3km,是泰安市一处重要的城市供水水源地。自第四系以来,在特定的沉积环境下堆积了较厚的松散冲洪积沉淀物,形成了一个具有完整的补给、径流、排泄条件的独立的水文地质单元,为地下水的储存和运移提供了良好的空间。
     近年来,为满足泰安市经济社会快速发展的需水要求,东武水源地开采量逐渐增大,导致地下水水位下降,地下水系统自身的补给、径流、排泄缓慢改变;同时大汶河作为水源地重要补给水源,水量、水质状况均不乐观,势必对东武水源地产生影响。因此,对水源地地下水环境进行客观合理地评价,对水源地安全供水提出对策,成为水源地可持续发展的关键所在。本文在收集东武水源地地质和水文地质资料的基础上,基于水流和溶质运移的连续方程,利用Aqua3D地下水数值模拟软件,建立了东武水源地三维地下水含水系统模型,并利用验证后的模型对研究区地下水环境进行了定量评价,取得的主要成果如下:
     (1)依据地质剖面和钻孔资料,建立了东武水源地水文地质概念模型和数学模型,并利用Aqua3D地下水有限元数值模拟软件建立了相应的数值模型,通过对模型反复地调参、运行、识别,结果表明模型基本达到了对水文地质体的仿真,为东武水源地地下水环境的优化、管理提供了科学依据。
     (2)为了提高模型的仿真度,在建模过程中尽可能地选择了水文地质自然边界(如断层、地表水水体)作为研究区的模型边界,模型计算面积20km~2。研究表明在现状开采条件和最大允许开采条件下,2020年研究区水位均有所下降,相同地段水位相差5m左右,最低水位未达到岩溶水顶板标高,不会引发地质环境问题。
     (3)利用建立的水流模型,耦合溶质运移模型,预测了东武水源地主供水区和人口集中区(大汶口镇)孔隙水和岩溶水亚硝酸盐浓度。
     预测主供水区在现状开采条件下,孔隙水亚硝酸盐浓度2010年为0.03mg/L,2015年为0.035mg/L,2020年为0.05mg/L;预测主供水区在最大开采条件下,孔隙水亚硝酸盐浓度2010年为0.03mg/L,2015年为0.037mg/L,2020年为0.052mg/L;预测主供水区在现状开采条件下,岩溶水亚硝酸盐浓度2010年为3×10~(-10)mg/L,2015年为3.6×10~(-10)mg/L,2020年为4.8×10~(-10)mg/L;预测主供水区在最大开采条件下,岩溶水亚硝酸盐浓度2010年为5×10~(-10)mg/L,2015年为5×10~(-10)mg/L,2020年为1×10~(-9)mg/L。
     预测大汶口镇在现状开采条件下,孔隙水亚硝酸盐浓度2010年为0.03mg/L,2015年为0.045mg/L,2020年为0.07mg/L;预测大汶口镇在最大开采条件下,孔隙水亚硝酸盐浓度2010年为0.03mg/L,2015年为0.05mg/L,2020年为0.08mg/L;预测大汶口镇在现状开采条件下,岩溶水亚硝酸盐浓度2010年为0.026mg/L,2015年为0.03mg/L,2020年为0.06mg/L;预测大汶口镇在最大开采条件下,岩溶水亚硝酸盐浓度2010年为0.03mg/L,2015年为0.047mg/L,2020年为0.07mg/L。
     (4)在评价预测的基础上,针对东武水源地实际情况,做出水源地安全状况评价,划分了水源地保护区,提出具体的保护工程和综合管理规划,为东武水源地的安全供水和可持续发展提出了对策。
The Dongwu wellfield is located in the middle of Dawen river in Shandong province, remained with Daiyue borough in Taian city.The wellfield distributing in the alluvial bajada of the southeast mountain in the Dawenkou basin. The landform can be described south higher than north, east higher than west, which is eight kilometer in long and three kilometer in width.It is a main wellfield in Taian city.There accumulated quite thick loose alluvium in special sedimentary condition since Quaternary. That formed a special hydrogeological element, which had a integrated reentry、flow-off、water drain condition and offered favorable interspaces for groundwater’s provision and migration.
     In recent years, the mining yield has been gradually accreted increased in order to meet the needs of water used for flying development of economic in Taian city. That bring on the groundwater level declining, the groundwater reentry、flow-off、water drain condition change slowly. In the same time, Dawen River, which is the main influent of water, the water quality and quantity, is not so good. It must affect the water quality and quantity in Dongwu wellfield. Therefore external groundwater evaluation and safe water supply countermeasures becomes the key to keep wellfield available. This article collected hydrogeological data of Dongwu waterhead, based on streaming flow and solute migration equations, used Aqua3D software to simulate groundwater, constituted Dongwu wellfield groundwater 3D system former. I used validated former to estimate the groundwater in Dongwu wellfield and got four productions.
     (1) I set up hydrogeological concept and math former of Dongwu groundwater based on geology section and broach data and set up numerical value former. I adjust the parameter、run and identify again and again until my former achieve the same as hydrogeological element. My former supply scientific thereunder for the management in Dongwu wellfield.
     (2) I choose the nature hydrogeological borderline (for example faultage and surface water) as the former’s borderline.The former’s calculational area.20km~2. Recent studies show that in nowaday and most allowed exploitation condition, the groundwater level will drop in 2020, the same area’s water level will drop more than five meter. The lowest water level will not get the karst water apical plate height mark, so that can’t beget geologic environment problem.
     (3) I dope out the nitrite consistency of pore water and karst water in Dongwu wellfield and Dawenkou town based on the current and solute migration former.
     The former forecast mining as the actuality in the main water supply section, the nitrite consistency of pore water will be 0.03mg/L in 2010, 0.035mg/L in 2015, 0.05mg/L in 2020. The former forecast mining as the tiptop, the nitrite consistency of pore water will be 0.03mg/L in 2010, 0.037mg/L in 2015, 0.052mg/L in 2020. The nitrite consistency of karst water will be 3×10~(-10)-10mg/L in 2010, 3.6×10~(-10)-10mg/L in 2015, 4.8×10~(-10)-10mg/L in 2020. The former forecast mining as the tiptop, the nitrite consistency of karst water will be 5×10~(-10)-10mg/L in 2010, 5×10~(-10)-10mg/L in 2015, 1×10~(-9)mg/L in 2020.
     The former forecast mining as the actuality in Dawenkou town, the nitrite consistency of pore water will be 0.03mg/L in 2010, 0.045mg/L in 2015, 0.07mg/L in 2020. The former forecast mining as the tiptop, the nitrite consistency of pore water will be 0.03mg/L in 2010, 0.05mg/L in 2015, 0.08mg/L in 2020. The nitrite consistency of karst water will be 0.02mg/L in 2010, 0.03mg/L in 2015, 0.06mg/L in 2020. The former forecast mining as the tiptop, the nitrite consistency of karst water will be 0.03mg/L in 2010, 0.047mg/L in 2015, 0.07mg/L in 2020.
     (4) I get the evaluation for the safety standards and carve up wellfields protective area based on the former and actual circumstances of the wellfield. I also bring forward idiographic protective engineering and administrant layout. These propose bring forward countermeasure for water supply safety and durative development.
引文
[1]Alumbaugh D L, Newman G A. Three-dimensional massively parallel electromagnetic inversion: analysis of across well experiment[J].Geophys J In,1997,128:355-363.
    [2]Anon D,2000. Visual MODFLOW V.2.8.2 user’s manual for professional application three-dimensional groundwater flow and contaminant transport modeling. Ontario: Waterloo Hydrogeologic Inc.
    [3]Anon. Visual Groundwater User's Manual[Z]. Ontario: Waterloo Hydrogeologic Inc.,2000.1978.
    [4]Anon. Visual MODFLOW V.2.8.2 User's Manual for Professional Applicationsin Three-Dimensional Groundwater Flowand Contaminant Transport Modeling[Z].Ontario: Waterloo Hydrogeologic Inc.,2000.13.
    [5]Anon.S S G Software[Z]. Washington: The Scientific Software Group, 2000.45.
    [6]Chen J Z. Research in the mid and long term forecast model of groundwater resources. In: Xue T Q, Bear J, eds. Proceeding of the International Conference on Modeling Groundwater Flow and Pollution. Nanjing University Press,1991.149-157
    [7]Cooley R L. Incorporation on parameters into nonlinear regression groundwater flow model.1, Theory. Water Resources Research, 1982,18(4): 965-976
    [8]Cooley R L. Incorporation on parameters into nonlinear regression groundwater flow model.2, Application. Water Resources Research, 1983, 19(3):662-676
    [9]Dagan G, Time-Dependent macrodispersion for solute transport in anistropic heterogeneous aquifers, Water Resources Research, 1998,24(9): 1491-1500
    [10]Henk Haitjema et al, Selecting MODFLOW Cell Sizes for Accurate Flow Fields. Ground Water, 2001,39(6):931-938
    [11]Hyndman D W, Harris J M, Gorelick S M. Coupled seismic and tracer test inversion for aquifer property characterization[J]. Water ResourRes,1994, 30(7):1965-1977.
    [12]John Doherty, Improved Calculations for Dewatered Cells in MODFLOW Ground Water,2001,39(6):863-869
    [13]Karasaki K, Freifeld B, Cohen A, et al. A multidisciplinary fractured rock characterization study at Raymond Field Site, Raymond, California[J].Journal of Hydrology,2000,20(4):201-211.
    [14]Lee D S, Stevenson V M, Johnston P F, et al. Time lapse cross well seismic tomography to characterize flow structure in the reservoir during the thermal stimulation[J].Geophysics,1995, 60(3):660-666.
    [15]Naff R L, Haley D F, Sudicy E A. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media, Methology and flow results, Water Resources Research, 1998,34(4):663-677
    [16]Nekut A G. Electromagnetic ray-trace tomography[J].Geophysics, 1994,55:371-377.
    [17]Neville C J, M J Tonkin. Modeling Multiaquifer Wells with MODFLOW [J]. Ground Water, 2004,(6):185-193
    [18]Norman L. Jones et al, Generating MODFLOW Grids from Boundary Representation Solid Models, Ground Water, 2002,40(2):194-200
    [19]Parkhurst D L, Appelo C A J. User's Guideto PH-REEQC (Version2) —A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations[Z]. Denver: Geological Survey, 1999.14.
    [20]Rector J W. Crosswell methods[J].Geophysics,1995,60:627-920.
    [21]Richard H McCuen. Bringing Groundwater Quality Research to the Watershed Scale[J]. Journal of the American Water Resources Association, 2005,41(5):1247-1248
    [22]Rubin Y, Gomez-Hernandez J J. Astochastic approach to the problem of upscaling of conductivity in disordered media: theory and unconductional numerical simulations[J].Water Resour Res,1990,26(4):691-701.
    [23]Smith T, Hoversten M, Gasperikova E, et al. Sharp Boundary inversion of 2D magnetotelluric data[J].Geophysical Prospecting,1999,47:469-486.
    [24]The finite element modeling of groundwater flow. Water Resources Research,1981,17(5):1529-1634
    [25]Therrien R, Sudicky E A. Well bore boundary conditions for variably saturated flow modeling [J]. Adv Water Resour,2001,(2):1239-1241
    [26]Tichelaar B W, Hatchell P J. Inversion of 4C borehole flexural waves to determine anisotropy in a fractured carbonate reservoir[J].Geophysics,1997, 62(5):1432-1441.
    [27]Vasco D W, Karasaki K K, Myer L. Monitoring of fluid injection and soil consolidation using surface tilt measurements[J]. Journal of Geotechnical and Geoenviron-mental Engineering,1998,124(1):29-37.
    [28]Vasco D W, Peterson J E, Lee K H. Ground-penetrating radar velocity tomography in heterogeneous and anisotropic media[J].Geophysics,1997, 62(6):1758-1773.
    [29]Walsh J J. Fracture estimation from parametric inversion of S V waves inmulticomponent off set VSP data[A].In: Society of Exploration Geophysicists, ed. Expanded abstracts with biographies, technical program: 63rd Annual Meeting and International Exhibition, Tulsa OK [C] [s. l.]:[s. n.], 1993.140-142.
    [30]Wilt M J, Alumbaugh D L, Morrison H F, et al. Crosswell electromagnetic tomography, system design Considerations and field result[J]. Geophysics, 1995,60(3):871-885.
    [31]Xue Y Q, Xie C H, Wu J C. A numerical model of the seawater intrusion in coastal aquifer. In: Xue T Q, Bear J, eds. Proceeding of the International Conference on Modeling Groundwater Flow and Pollution. Nanjing University Press,1991.13-20
    [32]Yeh W W G.. On the computation of Galerkin velocity and mass balance: The finite element modeling of groundwater flow. Water Resources Research, 1981,17(5):1529-1634
    [33]Zhang Y K, Neuman S P.A quasi-linear theory of non-Fickian and Fickian subsurface dispersion, Application to anisotropic media, Water Resources Research, 1990,26(5):903-913
    [34]白利平,王金生. GMS 在临汾盆地地下水数值模拟中的应用[J]. 山西建筑,2004,30(16):78-79
    [35]曹剑峰,冶雪艳,姜纪沂.等.黄河下游悬河段断流对沿岸地下水的影响评价[J].资源科学,2005,27(5):77-93
    [36]常玉萍. 大同市区供水水源区地下水动态分析. 山西水利科技,2004 (3):72-74
    [37]陈劲松,万力.MODFLOW 中不同方程组求解方法差异分析[J].工程勘察,2002(3):25-32
    [38]陈喜,陈洵洪.含水层和上覆弱透水层水文地质参数的计算方法[J]. 工程勘察,2004(5):34-36
    [39]陈喜,陈洵洪.美国 Sand Hills 地区地下水数值模拟及水量平衡分析[J].水科学进展,2004,15(2):94-99
    [40]崔亚莉,邵景力,谢振华.等.基于 MODFLOW 的地面沉降模型研究[J]. 工程勘察,2003(5):19-22
    [41]崔亚莉,赵云章,邵景力等. 黄河下游地上悬河段开采条件下侧渗量变化研究[J]. 水文地质工程地质,2005(1):57-60
    [42]杜霞,彭文启. 我国城市供水水源地水质状况分析及其保护对策[J]. 水利技术监督,2004(3):50-52
    [43]郭孟卓,赵辉.世界地下水资源利用与管理现状[J]. China Water Resources, 2005(3):59-62
    [44]郭孟卓,赵辉.世界地下水资源利用与管理现状[J].中国水利,2005(3): 11-15
    [45]郭卫星,卢国平,朱学愚等.MODFLOW:块化三维有限差分地下水流动模型[M].南京:南京大学出版社,1999
    [46]韩宏大.安全饮用水保障集成技术研究.北京工业大学博士学位论文. 2006,4
    [47]韩魏,胡立堂,陈崇希.等.疏勒河流域玉门-踏实盆地地下水流模拟设计中的几个问题探讨[J].勘探科学技术,2005(1):15-18
    [48]韩志勇,郑西来,林国庆.大沽河下游地区地下咸水恢复方案的数值分析[J]. 工程勘察,2004(6):25-28
    [49]贺国平,邵景力,崔亚莉等. FEFLOW 在地下水流模拟方面的应用[J]. 成都理工大学学报(自然科学版),2003,30(4):356-360
    [50]贺国平,周东,杨忠山,等.北京市平原区地下水资源开采现状及评价[J].水文地质工程地质,2005(2):45-48
    [51]侯燕军.临汾市土门水源地保护区划分的数值模拟方法研究.太原理工大学硕士学位论文.2006,5
    [52]胡立堂,陈崇希,钱云平.黑河中游盆地地下水流建模的若干问题[J].人民黄河,2005,27(5):11-13
    [53]贾金生, 田冰, 刘昌明. Visual MODFLOW 在地下水模拟中的应用——以河北省栾城县为例[J]. 河北农业大学学报,2003,26(2):71-78
    [54]金光炎.城市供水与地下水资源.地下水[J].1996,18(1):16-17
    [55]李斌,王刚,王开章等.Aqua3D 在傍河饮用水水源地地下水污染数值模拟中的应用[J]. 山东农业大学学报(自然科学版),2007,38(2):281-290
    [56]李宏卿,吴琼,李宏罡等. Visual Modflow 在地下水资源评价中的应用[J]. 工程勘察,2005(3):27-28
    [57]李宏卿,吴琼,张福林等. Visual Modflow 在建立长春市地下水开采预警系统中的应用[J].吉林大学学报(地球科学版),2003,33(3):319-322
    [58]李力争.划分地下水水源地保护区的研究[J].中国环境科学,1995,15(5): 338-341
    [59]李文跃,张博,洪梅等. Visual MODFLOW 在大庆龙西地区地下水数值模拟中的应用[J].世界地质,2003,22(2):161-165
    [60]廖资生.21 世纪长春市城市供水水源问题[J].水文地质工程地质, 2005(2):42-44
    [61]林国庆,郑西来,李海明. 地下水库人工补给的模型研究——以大沽河地下水库为例[J]. 中国海洋大学学报,2005,35(5):745-750
    [62]逯光明,陈伟清,李守昌等.山东省泰安市大汶口镇东武水源地勘探报告[R].山东省地勘局第五地质矿产勘查院,1996,10
    [63]马兴旺,李保国,吴春荣等. 绿洲区土地利用对地下水影响的数值模拟分析——以民勤绿洲为例[J]. 资源科学,2002,24(2):49-55
    [64]马兴旺,李保国,吴春荣等.民勤绿洲现状土地利用模式影响下地下水位时空变化的预测[J].水科学进展,2003,14(1):85-89
    [65]潘启章,曹利民.宿州市供水存在问题及其解决方法分析[J]. 地下水, 2005,27(2):136-142
    [66]彭涛,詹松.三维地下水数值模拟方法在基坑涌水量预测中的应用——以广州地铁某基坑为例[J]. 工程勘察,2005(3):20-23
    [67]钱家忠.城市供水水源地水质健康风险评价[J].水利学报,2004(8):90-93
    [68]邵景力,崔亚莉,赵云章等. 黄河下游影响带(河南段)三维地下水流数值模拟模型及其应用[J]. 吉林大学学报(地球科学版),2003,33(1):51-55
    [69]邵景力,赵云章,崔亚莉等.黄河下游影响带地下水资源评价及合理开发利用[J].自然资源学报,2003,18(1):1-7
    [70]申献辰,杜霞,邹晓雯.水源地水质评价指数系统的研究[J]. 水科学进展, 2000(3):260-265
    [71]束龙仓,Xunhong Che. 地下水开采对河流流量衰减的影响分析——以美国内布拉斯加州普拉特河谷为例[J].水利学报,2003(2):112-115
    [72]水利部水政水资源司. 全国城市供水水源地普查汇总报告[R].2002
    [73]王福刚,梁秀娟,于军.可视化地层模型信息系统在地面沉降研究中的应用[J].岩土工程学报,2005,27(2):219-223
    [74]王贵玲,蔺文静,陈浩.农业节水缓解地下水位下降效应的模拟[J].水利学报,2005,36(3):286-290
    [75]王宏,娄华君,邹立芝.MODFLOW 在华北平原区地下水库模拟中的应用[J].世界地质,2003,22(1):69-72
    [76]王开章.城市地下水水源地的防护与治理措施[J].地下水,2000,22(3): 110-112
    [77]王茂军,张学霞,盖美,等.21 世纪初大连市水资源供需保障与解决途径研究[J].地域研究与开发,2001,(20):65-68
    [78]王卫东,宋庆春,李宝兰,巩建伟.大连市滨海河谷地下水资源开发利用的可行性[J]. 地质调查与研究,2004,27(4):268-272
    [79]魏林宏,束龙仓,郝振纯.地下水流数值模拟的现状和发展趋势[J].重庆大学学报(自然科学版),2000,23:50-52
    [80]吴剑锋,朱学愚,费光灿.口泉沟南岩溶裂隙水水源地环境同位素研究和地下水资源评价[J].煤田地质与勘探,1997,25(3):35-39
    [81]吴希龙,李华民,庞军等.泰安市地下水资源开发利用[R].泰安市水利与渔业局,1997.10
    [82]武强,董东林,武 钢,刘金韬.水资源评价的可视化专业软件(Visual ModFlow)与应用潜力[J].水文地质工程地质.1999,(5):21-23
    [83]肖长来,兰盈盈,梁秀娟.洮儿河扇形地修建地下水库可行性研究[J].吉林大学学报(地球科学版),2004,34:55-59
    [84]谢先红,杨金忠. 河岸浸没预测及排水沟效果研究[J]. 中国农村水利水电,2005(6):47-50
    [85]薛禹群,吴吉春.面临 21 世纪的中国地下水模拟问题[J].水文地质工程地质,1995(5):16-21
    [86]薛禹群,朱学愚,吴吉春.地下水动力学[M].北京:地质出版社,1997
    [87]杨青春,卢文喜,马洪云. Visual Modflow 在吉林省西部地下水数值模拟中的应用[J]. 水文地质工程地质,2005(3):67-69
    [88]杨维,王恩德,陈曦. 基于 AQUA3D 的地下水流模拟实例[J]. 工程勘察, 2004(3):32-34
    [89]尹大海,胡和平,惠士博.宁夏银北灌区井渠结合灌溉三维数值模拟与分析[J].灌溉排水学报,2003,22(1):53-57
    [90]张红振,刘汉湖.我国城市供水的水质现状、问题及对策[J].净水技术, 2005,24(4):56-58
    [91]赵云章,邵景力,崔亚莉等. 黄河悬河段影响带远景水源地可采资源评价[J].人民黄河,2003,25(5):22-24
    [92]周念清,朱蓉,朱学愚.MODFLOW 在宿迁市地下水资源评价中的应用[J].水文地质工程地质,2000(6):9-13
    [93]周信鲁,张朝新.淮北地区环境地质问题调查分析[J].地下水,2000,22(1): 19-20
    [94]周仰效.国外地下水流及传输的模拟[M].现状与趋势,1995
    [95]朱学愚,孙克让.佳木斯市地下水水量水质模型[J].水科学进展,1994, 5(1):40-49
    [96]祝晓彬,吴吉春,叶淑君等.GMS 在长江三角洲(长江以南)深层地下水资源评价中的应用[J]. 工程勘察,2005,(1):26-29
    [97]祝晓彬. 地下水模拟系统(GMS)软件[J]. 水文地质工程地质,2003(5): 53-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700