浮泥形成和运动特性及其应对措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮泥一直是泥沙研究中的难点,主要是缺少大量可靠的现场观测和室内试验数据,导致对现场的一些浮泥现象尚难以给出全面的解析。为了全面解析浮泥的形成条件、基本特性和运动变化特征,进而提出浮泥的应对措施,在现场开展了有关浮泥厚度、浮泥密度、浮泥密实过程、大风作用下的水文条件等测量工作,并在试验室内开展了泥沙颗分试验、浮泥流变试验、起动试验、密实试验、浮泥流动试验、减淤潜堤高程确定试验等多个试验。首先,浮泥的形成条件和发育过程研究成果表明,丰富的细颗粒泥沙来源是浮泥形成的必要条件,大风浪中底床被液化而呈浮泥状态,同时形成高度约0.5m的底部高含沙水体,以异重流形式或随潮流运移到航道而汇集形成浮泥。其次,浮泥基本特性研究发现,宾汉应力随淤泥密度呈指数关系增加;密度1050~1400kg/m~3的泥沙临界起动切应力值介于0.1~1.0Pa,泥沙临界切应力与密度呈指数关系。再次,浮泥垂向输移、冲刷、流动等整体运动特性研究表明,当理查德数小于10时,水流紊动剪切导致浮泥界面失稳,出现泥沙垂向输移现象;浮泥冲刷系数与含沙量呈正比关系,连云港浮泥的冲刷系数大多介于0.005~0.03kg/m~2/s;浮泥在水平压力梯度和床面坡度上的重力分力等作用下会发生流动现象;进而解析了半环抱式港池及进港航道(台电煤港)和开敞式航道(连云港)的浮泥运动过程。最后,浮泥应对措施研究发现,潜堤高度可取堤前水深的0.2~0.5倍;适航水深技术是目前应对浮泥碍航最为有效的方法之一。
     本文根据现场或实验室数据拟合出的淤泥质边滩密度垂线分布公式、浮泥流变参数关系式、浮泥起动公式、淤泥质边滩临界起动剖面关系式、浮泥垂线输移公式、浮泥冲刷系数计算式、确定潜堤高程关系式等都可为相关研究使用,而大量的数据,特别是珍贵的浮泥现场测量数据也可为相关研究提供第一手的资料。
The research on the fluid mud is rather difficult, mainly caused by the shortage ofdata from the field survey and lab experiments. And sometimes, the phenomena offluid mud in the harbor basin and channel cannot be explained well. To determine theconditions of formation, basic characteristics and rules of variation, and to proposecounter measurements further, many field surveies and lab experiments focusing onthe fluid mud were conducted. The field surveies included fluid mud depth, density,process of consolidation or disappearing, and hydrodynamic conditions during largewind and so on. And the lab experiments mainly focused on the granular distribution,rheology, incipient motion, consolidation, fluxion of the fluid mud, as well as theheight of submerged dike. Firstly, the results show that the sufficient cohesivesediment resource is the basic condition for the fluid mud formation. And the bed willbe liquefied with the large wind wave continuous disturbing, meanwhile, a highturbidity layer about0.5m height near bottom would be created, which can move asdensity current or with the tidal current to the channel and deposite to be fluid mud.Secondly, the research on the basic characteristics of fluid mud indicates that theBinham yield stress increases exponentially with the mud density. The critical stressof sediment incipient motion is about0.1-1.0Pa for the mud with density of1050~1400kg/m~3, and the relationship is also exponential. Thirdly, the study on thewhole characteristics of fluid mud motion presents that the interface of fluid mud andabove layer water will be instable due to the turbulent shear of flow, and theentrainment occurs, when the Richardson number is smaller than10. And the ersioncofficent increases with the sediment concentration, which is about0.005~0.03kg/m~2/s for the deposited mud in the channel of Lianyungang, China. Thefluid mud will flow along the bed slop under the action of pressure gradient andgravity. Based on these research results, the processes of fluid mud motion wereexplained in the half-surrounding harbor basin and channel for example Taishan port,as well as the open channel such as Lianyungang port. Lastly, the results of study onthe counter measurements to the fluid mud show that the height of submerged dikemay be0.2-0.5times of water depth. And the technique of nautical depth is one of the most efficient methods to settle the problem of impeding navigation caused by fluidmud. The formulas established in this paper can be used to calculate the verticaldistribution of muddy shoal density, rheological parameters, critical stress of sedimentincipient motion, vertical profile of critical stress, entraiment velocity, erosioncofficent, height of submerged dike and so on. And the data, especially the preciousdata obtained from the field survey may be the basin of further study on the fluidmud.
引文
[1]洪柔嘉,应永良.水流作用下的浮泥起动流速试验研究[J].水利学报,1988,(8).
    [2] Whitehouse r, Soulsby R, Roberts W, et al. Dynamics of estuarine muds a manualfor practical applications[M]. London: Thomas Telford Publishing,2000:63-74.
    [3] Johan C. Winterwerp,Walther G. M. van Kesteren Introduction to the physics ofcohesive sediment in the marine environment,2004.
    [4] William H.M, Carl Friebrichs, Gongles Hamiltou. Management of fluid mud inEstuaries,bays, and lakes[J].2007,133,(1):1-9.
    [5]曹祖德.浮泥特性研究进展[J].天津大学学报,2002,(3)
    [6]金镠,虞志英,陈德易.关于淤泥质港口航道适航水深的研究[J].连云港回淤研究论文集,南京:河海大学出版社,1985:249-257.
    [7]陈学良.连云港浮泥测试及“适航深度”的确定[J].连云港泥沙研究成果汇编,1985:258-266.
    [8]邓绍云.浮泥运动研究综述[J].人民黄河,27(9),2005:21~23
    [9]李九发,何青,徐海根。长江河口浮泥形成机理及变化过程。海洋与湖沼,2001,32(3):302-310
    [10]Jianyi XU,Jianzhong YUAN. Study on the possibility of occurrence of fluid mudin the Yangtze deep waterway. International Conference on Estuaries and CoastsNovember9-11,2003, Hangzhou, China
    [11]Ashish J. Mehta, Rajesh Srinivas. Fluid mud movement on an inclined bedNearshore and estuarine cohesive sediment transport. American geophysicalUnion.1993:281-294.
    [12]Ashish J. Mehta, Rajesh Srinivas. Observations on the entrainment of fluid mudby shear flow, Nearshore and estuarine cohesive sediment transport. Americangeophysical Union.1993:224-246.
    [13]P. Traykovski, W.R. Geyer, J. D. Irish, et al. The role of wave-induceddensity-driven fluid mud flows for cross-shelf transport on the Eel Rivercontinental shelf[J]. Continental shelf research,2002,20:2113-2140.
    [14]赵今声,赵子丹,曹祖德.波浪作用下新港浮泥运动规律的初步研究[J].新港回淤研究,1963,(1).
    [15]刘家驹.波浪作用下新港浮泥运动的试验研究[J].新港回淤研究,1963,(l).
    [16]练继建,赵子丹.波浪作用下软泥床面的粘性泥沙悬扬[J].水利学报,1998,29(8):47-51.
    [17]齐鹏,侯一筠.波浪作用下淤泥质底床泥体输移[J].水动力学研究与进展, A辑,2005,20(增刊):847-853.
    [18]赵子丹.波浪与浮泥海床的相互作用问题[J].海洋科学,1986,10(6)
    [19]赵子丹.论波浪与浮泥海床的相互作用[J].海洋工程,1991,(5).
    [20]Ali Oveisy, Kevin Hall, Mohsen Soltanpour, K.N. Wave generation andinteraction with fluid mud.ICCE,2008.
    [21]白玉川,田琦.不同流变模型下的淤泥与波浪相互作用规律[J].天津大学学报,2011,44(3):196-201.
    [22]白玉川,胡世雄,金玉石.泥质床面上波浪衰减规律的研究[J].水利学报,2001(11):56-61.
    [23]NG Chiu-on, FU Sau-chung,白玉川. Mass Transport in a Thin Layer ofBi-Viscous Mud Under Surface Waves[J].China Ocean Engineering.2002,16(4):421-436.
    [24]张庆河,赵子丹.不同介质底床上的波浪衰减.[J].海洋工程,2000,18(4):36-42.
    [25]姜林,赵子丹.浮泥海床上孤立波的黏滞衰减[J].水动力学研究与进展,1989,4(1):51-64.
    [26]呼和敖德,周显初,李家春,等.连云港淤泥质海床上波浪衰减研究—实验、观测及理论模型比较和评价[J].海洋工程,1994,11(2)68-77.
    [27]蔡南树,庞启秀,杨树森,等.广州港南沙港区港池适航水深综合论证研究[J].水道港口,2009,30(4):253-256.
    [28]庞启秀,杨树森,杨华,等.淤泥质港口适航水深技术研究与应用[J].水利水运工程学报,2010.9:34-39.
    [29]Pang Qixiu, Yanghua. Research and Application of Technique of Nautical Depthin China[A], PIANC MMX Congress,2010.5.
    [30]赵群,卢佐.2007年9月台风“韦帕”过境时连云港波浪、潮流、泥沙现场观测报告[R].交通部天津水运工程科学研究所,2008.
    [31]Dimas, A.A. and G.S. Triantafyllou. Nonlinear-interaction of shear-flow with afree-surface[J]. J. Fluid Mech.1994,260,211-246.
    [32]O’ Brien, J. S., and Julien, P. Y., Laboratory analysis of mudflow properties[J].Journal of Hydraulics Engineering,1988,114(8):877-887.
    [33]Otsubo, K. and muraoka, K. Critical shear stress of cohesive BottomSediments[J]. J. Hydroulic Eng.1988,114(10),1241-1257.
    [34]陈全.水流作用下浮泥的流动及其交界面的稳定性.天津大学学报,1965,(21):31-53.
    [35]练继建,洪柔嘉,于国友.水流作用下粘性泥沙悬扬的动力分析[J].水利学报,1995,26(4):25-32.
    [36]L.P. Sanford, J P.-Y. Maa. A unified erosion formulation for fine sediments[J].Marine Geology,2001,179:9-23.
    [37]S. narimousa, R. long, S. itaigorodsk. Entrainment due to turbulent shear flow atthe interface of a stably stratified fluid.[J]. Tellus,1986,38A:76-87.
    [38]K. H. M. Ali, M. Crapper, B. A. O’connor. Fluid mud transport[J]. Proc Instn Civ.Engrs Wat., Marit.&Energy.1977,124(3):64-78.
    [39]ZHU Yong-hui, LU Jin-you, LIAO Hong-zhi, et al. Research on cohesivesediment erosion by flow: An overview[J]. Science in China Series E:Technological Sciences2008,51(11):2001-2012.
    [40]Bai, Y. C., Ng, C. O., Shen, H.T., and Wang, S. Y.2002, Rheological propertiesand incipient motion of cohesive sediment in the Haihe Estuary of China. ChinaOcean Engineering, Vol.16, pp.483-498.
    [41]Maa, P.Y. and Mehta, A. J., Soft mud properties: Voigt model[J]. JournalofWaterways, Port, Coastal and Ocean Engineering,1988,114:765-770.
    [42]Jiang, F. and Mehta, A. J. Mudbanks of the southwest coast of IndiaIV: Mudviscoelastic properties[J]. Journal of Coastal Research,1995,11(3):918-926.
    [43]唐存本.含沙水流的宾汉极限应力的计算公式[J].泥沙研究,1981,2:69~75.
    [44]费翔俊.高浓度浑水的宾汉极限剪应力[J].泥沙研究,1981,3:69~75.
    [45]孙献清,黄建维.含盐淤泥的流变特性[J].水利水运科学研究,1988,1:69~75.
    [46]呼和敖德,黄振华,张袁备,等.连云港浮泥流变特性力学与实践[J].1994,16:21-24.
    [47]张庆河,王殿志,赵子丹.扰动淤泥与沉积淤泥的流变特性研究[J].水利学报,2002,33(6):77-82.
    [48]Zhenhua Huang, Huhe Aode. Laboratory Stuty of rheological properties ofmudflows in Hangzhou Bay, China. Iternational Journal of Sediment Reseach.
    [49]庞启秀,杨华,沈小明,等.国华台电港口适航水深应用研究[R].天津:交通部天津水运科学研究所.2006.7.
    [50]庞启秀,杨华,梅剑云,等.国华台电港口泥沙回淤规律与适航水深应用研究
    [R].天津:交通部天津水运科学研究所,广东国华粤电台山发电有限公司.2007.11.
    [51]庞启秀,杨华,闫新兴,等.连云港港口适航水深应用研究[R].天津:交通部天津水运科学研究所.2008.5.
    [52]韩西军,庞启秀,杨树森,等.深圳港大铲湾港区集装箱码头一期工程港池适航水深综合论证分析[R].天津:交通部天津水运科学研究所,2008.10.
    [53]杨树森,韩西军,庞启秀,等.广州港南沙港区一期、二期港池适航水深综合论证分析[R].天津:交通部天津水运科学研究所,2008.11.
    [54]庞启秀,杨华,刘涛,等.深圳港西部港区港池航道适航淤泥重度值试验研究[R].天津:交通部天津水运科学研究所,2009.4.
    [55]Isao Irie, Rahman Hidayat, Kentarou Morimoto, et al. Study of SiltationProtection in Asian Ports[C]. Proceedings of The Twelfth International Offshoreand Polar Engineering Conference,2002:539-544.
    [56]Puig, P., A. S. Ogston, B. L. Mullenbach, C. A. Nittrouer, J. D. Parsons, and R.W. Sternberg, Storm-induced sediment gravity flows at the head of the Eelsubmarine canyon, northern California margin, J. Geophys. Res.,2004,109,:1:10.
    [57]庞启秀,张瑞波.连云港徐圩港区先导试挖槽浮泥观测技术报告[R].天津:交通运输部天津水运科学研究所.2010.12.
    [58]庞启秀,左书华,张娜等.连云港赣榆港区工程泥沙研究[R].天津:交通运输部天津水运科学研究所.2009.12.
    [59]左书华,庞启秀,杨华.连云港徐圩海域波浪潮流泥沙短期连续观测及分析报告[R].天津:交通运输部天津水运科学研究所.2010.5.
    [60]Soulsby R, Hamm, Klopman g., et al. Wave-current interaction within andoutside the bottom boundary layer[J]. Coastal Engineering,1993,21(1-3):41-69.
    [61]刘家驹.在风浪和潮流作用下淤泥质浅滩含沙量的确定[J].水利水运科学研究,1988(2):69-73.
    [62]窦国仁,董风舞,窦希萍.潮流和波浪的挟沙能力[J].科学通报,1995(5):443-446.
    [63]曹祖德,李蓓,孔令双.波、流共存时的水体挟沙力[J].水道港口,2001,22(4):151-155.
    [64]庞启秀,孙连成.天津临港工业区港池航道泥沙回淤监测及分析(总报告)
    [R].交通部天津水运工程科学研究所,2009.12.
    [65]吴宋仁.海岸动力学[M],人民交通出版社,北京:2000.
    [66]黎英,海岸、河口淤泥的流变特性[D].天津大学硕士论文,1991.
    [67]Chou,Hsien-ter. Rheological response of cohesive sediments to water waves[D].PhD. dissertation of university of Valifornia,1989.
    [68]Xueyan Zhang. Mechanics of viscoelastic mud under water waves.[D]. Masterthesis of Tianjin Unversity,1991.
    [69]呼和敖德,黄振华.淤泥流变特性试验研究-杭州湾深水航道淤泥基本特性研究之二[R],中科院力学所,1994.
    [70]范家骅.异重流交界面波动失稳条件[J],水利学报,2010,41(7):849-855.
    [71]P.D. Scarlatos, A.J.Mehta. Instability and entrainment mechanisms at thestratified fluid mud-water interface. Nearshore and estuarine cohesive sedimenttransport. American geophysical Union.1993:205-223.
    [72]白玉川,徐海珏.高含沙水流流动稳定性特征的研究[J].中国科学G辑:物理学力学天文学.2008,38(2):135~155.
    [73]谢明亮.边界层两相流动稳定性理论与计算[D].浙江大学航空航天学院博士学位论文,2007.
    [74]李华国,袁美琦,张秀芹.淤泥临界起动条件及冲刷率试验研究[J].水道港口1995,16(3):20-26.
    [75]杨美卿,王桂玲.粘性细泥沙的临界起动公式[J].应用基础与工程科学学报,1995,3(1):99-109.
    [76]Thorn, M.F.C. Physical processes of siltation in tidal channel[A]. Proceedings ofthe Conference on Hydraulic Modeling Applied to Maritime EngineeringProblems, ICE, London, England.1981:47-55.
    [77]Huang Jianwei. Experiment study on souring of cohesive deposits in salt water[J].International Jounnal of sediment research,1993,8(2):67-83.
    [78]黄建维.海岸与河口粘性泥沙运动规律的研究和应用[M].北京:海洋出版社,2008.
    [79]肖辉,曹祖德,赵群,等.波、流作用下粘性淤泥的起动试验研究[J].泥沙研究,2009,(3):75-80.
    [80]洪大林,缪国斌,邓东升,等.粘性原状土起动切应力与物理力学指标的关系[J].水科学进展,2006,17(6):774-779.
    [81]Bale, A.J., Widdows, J., Harris, C.B., et al. Measurements of the critical erosionthreshold of surface sediments along the Tamar Estuary using a mini-annularflume[J]. Continental Shelf Research.2006,26(10):1206-1216.
    [82]Bale, A.J., Stephens J.A., Harris, C.B. Critical erosion profiles in macro-tidalestuary sediments: Implications for the stability of intertidal mud and the slope ofmud banks [J]. Continental Shelf Research,2007,27:2303-2312.
    [83]Houwing E.J. Determination of the Critical Erosion Threshold of CohesiveSediments on Intertidal Mudflats Along the Dutch Wadden Sea[J]. Estuarine,Coastal and Shelf Science,1999,49(4):545-555.
    [84]Maa JPY. Soft Mud Response to Water Waves [J]. Journal of Waterway, Port,Coastal and Ocean Engineering,1990,116,(5):634-650.
    [85]Trowbridge, J. H., Kineke, G. C.. Structure and dynamics of fluid muds on theAmazon continental shelf. J. Geophys. Research.1994,99:865-874.
    [86]李孟国.海岸河口泥沙数学模型研究进展[J].海洋工程.2006,24(1):139-154.
    [87]金鏐,虞志英.淤泥质海岸挖槽回淤预测的沉积动力学途径——以杭州湾试挖槽为例[J].泥沙研究.1999,(5):41-42.
    [88]C. Gladstone1, L. J. Ritchie, R. S. J. Sparks, et al. An experimental investigationof density-stratified inertial gravity currents [J]. Sedimentology.2004,51,(4):767–789.
    [89]Sequeiros, O. E., H. Naruse, N. Endo, M. H. Garcia, et al. Experimental study onself-accelerating turbidity currents [J]. J. Geophys. Res.,2009,114, C05025:1-26.
    [90]罗肇森,罗勇.浮泥挟沙力和输沙规律的研究和应用[J].泥沙研究,1997,(4):42-46.
    [91]徐福敏,曹玉洁.边抛疏浚浮泥对河口地区航道淤积的影响[J].泥沙研究,2002,(4):52-56.
    [92]Zanuttigh, B., Lamberti, A.. Experimental analysis and numerical simulations ofwaves and current flows around low crested coastal defence structures[J]. ASCEJournal of Waterway, Port, Coastal and Ocean Engineering.132(1):10-27.
    [93]H.K. Johnson, T.V. Karambas, I. Avgeris et al. Modelling of waves and currentsaround submerged breakwaters[J].Coastal Engineering,2005(52):949–969.
    [94]Ching-piao Tsal Hongbin Chen, Dong-sheng Jeng, et al. Wave transformationand soil response due to submerged permeable breakwater[C]. Proceedings ofOMAE2006.:113-120.
    [95]蒋昌波,曹永港,陈杰,等.斜坡上梯形潜堤附近流动结构的数值研究[J].水动力学研究与进展A辑.2009,24(3):286-295.
    [96] Roger A. Kuhnle, Yafei Jia, Carlos V. Alonso Measured and Simulated Flownear a Submerged Spur Dike [J]. Journal of Hydraulic Engineering,2008134(7):916-925.
    [97]A. Tominaga, K. Ijima, Y. Nakano, Flow structures around submerged spur dikeswith various relative height [C].29th IAHR Congress, Beijing. China,2001:421-427.
    [98]Isao Irie, Rahman Hidayat, Kentarou Morimoto, et al. Study of SiltationProtection in Asian Ports[C]. Proceedings of The Twelfth International Offshoreand Polar Engineering Conference,2002:539-544.
    [99]Jin-Chun Chai, Shigenori Hayashi, Hiroyuki Yamanishi. Effect of the shape ofsubmerged dike/mound on mud transport [C], Sediment and ecohydraulics:INTERCOH2005:329-337.
    [100]李昌良,谢媛媛.不同结构形式潜堤上的随机波浪运动[J].海岸工程.2008,27(1):1-9.
    [101] Isao Irie, Nobuyuki Ono, Kentaro Morimoto, et al. Cross Section of SubmergedDike for Efficient Siltation Protection[C]. Coastal Engineering2002v.2,28th.Cardiff, UK:1733-1743.
    [102] Ulrich Lemmin,Thierry Rolland. Acoustic doppler velocimeter (ADV) forlaboratory and field studies [J]. Journal of Hydraulic Engineering,1997:1089–1098.
    [103]陈纯,蒋昌波,程永舟. ADV在波浪边界层流动特性研究中的应用[J].泥沙研究,2008,(5):60-65.
    [104]白玉川,许栋.扰动对明渠湍流结构及床面稳定性影响的实验研究[J]水利学报,2007,38(1):23-31。
    [105]刘富强,孙建澎.天津港适航水深资源的开发[J].水道港口,2002,23(增刊):161-169.
    [106]邳志.论适航水深在天津港强淤现象中的应用[J].水运工程,2003,(5):23-24.
    [107]徐海根,徐海涛,李九发.长江口浮泥层“适航水深”初步研究[J].华东师范大学学报(自然科学版),1994(2):91-97.
    [108]张华,阮伟.长江口北槽深水浮泥的研究与应用[J].水运工程,2002(10):98-102.
    [109]陈晓峰,黄建维,刘建军.汕头港外航道适航水深的研究与应用[J].海洋工程,2002,20(4):26-31.
    [110]陆振邦,郑乔雄.宁波港北仑港区虾峙门航道浮泥探索及适航水深测量[J].中国港湾建设,2000,(6):8-11.
    [111]沈小明,裴文斌.适航水深测量技术介绍与探讨[J].水道港口,2003,24(2):94-96.
    [112]裴文斌,牛桂芝,曹满.走航式适航水深测量误差来源及准确度检测[J].水道港口,,2004,25(6):112-115.
    [113]蒋雎耀,杨华.天津港适航水深问题的研究与应用[R].天津:交通部天津水运工程科学研究所,2004.11.
    [114]梅剑云,孙月,李占元.国华台电煤港适航水深应用研究[J].水道港口,2008,29(5):314-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700