V型冲沟多层多向荷载作用下超高路堤整体稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山区或库区高速公路采用高填方路基直穿冲沟,不仅能较好地解决难以调和的土石方填挖平衡的矛盾,以冲沟巨大的空间消除大量的挖方废方和隧道弃渣,变废为宝,节省工程造价,而且能加快高速公路工程施工进度,冲沟填料即来即压与两侧路堑开挖或隧道掘进有机结合,以挖方材料或隧道渣料做填方填料,能较好地进行工程施工组织。因此,采用高路基方式比采用桥梁方式跨越V型冲沟具有明显的经济技术比较优势。然而,不可避免的是冲沟高填方路基自身存在的诸多问题,冲沟特殊的地形、地质及水文条件无疑是高填方路基能否保证足够稳定性最主要的客观影响因素。山区或库区高填方路段皆位于冲沟发育成型地带,冲沟处沟底纵坡一般较陡,两侧岸坡也不平缓,另外冲沟地带地质差异性明显,水文条件也比较复杂,既有上方来水形成的地面径流渗透,也有下游库水季节性涨落形成的大变幅水位影响,这些都不利于路堤的稳定。同时,V型冲沟高填方路堤填筑高度大,石料实体自重大,路基变形复杂,若处理不当,极有可能出现局部沉降和整体下滑等病害,给高速公路安全运营带来危害。
     分析V型冲沟超高路堤的特性及影响超高路堤整体稳定性的主要因素可知,V型冲沟超高路堤稳定性影响因素是多方面的,既有有利的因素,也有不利的因素,并且在每一种影响因素中,不同的工程条件对路堤稳定性影响程度也存在明显的差异。另外,如果几种不利因素同时叠加在一起时,V型冲沟超高路堤的稳定性将会大大降低,有可能会快速失稳破坏,此时需考虑在路堤坡脚处设置如重力式挡土墙等有效的支护结构形式。因此,开展V型冲沟超高路堤整体稳定性研究将具有重要的理论意义与较好的工程应用价值。研究首先选取V型冲沟沟心特征断面进行超高路堤稳定性一般分析,并验证了分析工具计算结果的合理性,然后对特征断面路堤分别考虑三维效应作用、多层荷载作用、变幅水位影响与地面径流影响下超高路堤稳定性进行研究,获得了V型冲沟超高路堤在各影响因素作用下的安全系数及其变化规律,最后在多向荷载作用下并考虑所有不利因素情况对V型冲沟特高路堤的支护结构形式进行了研究。
     通过对V型冲沟三维效应作用、多层荷载作用、大变幅水位及地面径流影响下超高路堤稳定性进行系统研究,研究结果表明:
     ①V型冲沟对超高路堤存在着较为显著的三维空间效应,此空间效应作用有利于路堤的稳定。因此,对冲沟高填路堤的稳定性应尽量采用三维方法进行分析和正确评价,且三维方法的结果更加直观、可靠;而二维方法分析的结果相对保守,不能正确评价路堤的稳定性,如因三维方法分析过于复杂、困难、耗时或者无三维技术条件,应对二维方法的计算结果加以修正,乘上相应的三维效应系数。
     ②多层荷载对多层超高路基稳定性有一定的影响,进行多层超高路基稳定性分析时,将荷载等效为均布荷载更加合理于将荷载等效为当量土柱,同时坡间荷载有助于提高上边坡稳定性,坡顶荷载对下边坡稳定性的影响可以忽略,而同时作用有坡顶和坡间荷载时,多层路堤的稳定性是最不利的,如若车辆荷载超载,将更不利于V型冲沟多层高填路堤的稳定,而且超载倍数越高,路堤出现失稳破坏的可能性会越大。
     ③库水位上升不仅增大了路堤坡面水头压力,同时打破了路堤内部原有地下水的平衡,使得水流从坡外向坡内渗透,坡面土体饱和度升高,饱和浸润线向坡内倾斜,孔隙水压力增大,这些都有利于路堤的稳定,路堤的安全系数随水位升高的高度逐渐增大,至最高水位时达到最大;相反,库水位下降则不利于路堤的稳定,水位下降使得水流从坡内往坡外流出,孔隙水向外渗透、坡面水头压力消失,无疑削弱了抗滑力,增加了下滑力,超高路堤的安全系数随之减小,水位下降至最低水位时路堤处于最危险状态。
     ④降雨形成的地面径流对V型冲沟超高路堤稳定性的影响是比较显著的,尤其是持时长、强度高的降雨。一般情况下,降雨时间较短、降雨强度较小时,超高路堤整体上是稳定的,路堤的安全系数还比较高。然而,随着降雨强度的增强或者降雨时间的持续,降雨入渗深度增大,坡面饱和土向堤内充分扩展,坡面土体的重量增大,路堤填料的应力应变关系也在不断调整变化,路堤的安全系数也逐渐减小,同时路堤的破坏形式也从整体滑动变成坡脚的局部破坏。
     ⑤V型冲沟对超高路堤的三维约束作用无疑是有利于路堤稳定性,然而,车辆荷载的作用、库水位的下降以及地面径流的入渗将逐渐削弱此有限的优势。不仅如此,在这些不利因素综合影响下,路堤的安全系数已不能保证路堤的正常使用。为此,在坡脚处设置挡土墙是必要的。按最小的安全系数1.3控制计算分析,相同墙身截面条件下曲线型挡土墙的变形和应力都要小于直线型挡土墙,并按混凝土挡土墙材料最大拉应力的强度设计值1.27MPa进行控制,得到墙身合理的轴线形式为半径70m的圆弧。另外,鉴于两侧岸填土高度小于沟心填土高度,相应的两侧土压力也小于沟心处的土压力,通过逐渐减薄挡土墙两端墙体厚度,在保证挡土墙最大拉应力不超高1.27MPa的条件下,最终得到V型冲沟超高路堤合理的支护形式为中间厚两端渐薄的变截面曲线型“反拱式”挡土墙的结构形式。
     系统研究在复杂地形、水文条件、多层多向荷载作用下,V型冲沟超高路堤整体稳定性及其合理的支护形式,有助于深入了解V型冲沟超高路堤稳定性的变化规律,为山区或库区高速公路跨越冲沟时提供一种经济合理的方案,为山区或库区V形冲沟高填方路堤+拦渣坝支挡结构的公路建设提供理论依据和技术支持。
The employment of high fills over gullies at mountainous or reservoir areas makes good use of road or tunnel excavations which otherwise pose a big issue for the disposal of large quantities of earthwork. The advantages are numerous:the saving of construction cost, the saving of construction time for the short hauling distance, simultaneous compaction and road cutting or tunnel boring on both sides, thus construction organization is facilitated. It can be seen obviously that high fills over gullies prove more economical than bridges. However, the stability of the high fills is worth in-depth research due to the special topographical, geological and hydrologic conditions at the gullies. The gullies at the mountainous or reservoir areas have generally undergone years of formation, generally steep at the bottom. The hydrologic conditions at the gullies are complicated, affected by the seepage flow from the high ground and rainfall, as well as the seasonal fluctuation of water levels. To make the matter worse, the huge weight of the high fill tends to deform the whole slope, so if not properly treated, settlement or slide of the high fill might occur, which will seriously disrupt the safe operation of the highway.
     An analysis of the characteristics of a super high fill over a V-shaped gully indicates that the stability of the high fill is affected by a couple of factors, either positive or negative. For each factor, the influencing degree varies due to the specific local conditions. Where these various factors combined together, the stability of the high fill deteriorates drastically, and even fails, so retaining structure is needed at the toe of the fill. The above analysis shows that study on the overall stability of high fills over V-shaped gullies are necessary and meaningful. This research firstly gained the subgrade stability factors of a typical cross section at the gully bottom in order to verify the reliability of the calculating method. Secondly, the stability factors and stability evolution rule of a typical slope section were gained with different stability influencing factors taken into consideration:three-dimensional (3D) effect, multi-layered loadings, fluctuated water levels, and surface seepage flow due to rainfall, respectively. Finally, the appropriate type of retaining structure for the high fill subjected to multi-directional loadings, combined with all the negative stability influencing factors, was discussed.
     With the above research, the results show that:
     ①The V-shaped gully imposes obvious confining effect on the high fill, and the gully assists the stability of the high fill. So3D rather than traditional2D stability analysis should be utilized upon high fills over V-shaped gullies. The traditional2D method tends to be conservative and thus does not properly reflect the stability of the high fill. If the traditional2D method is used because3D method is too complex, difficult or timing-consuming, or can not be realized, the2D stability factor thus gained needs to be modified, by multiplying a3D influencing factor.
     ②Multi-layered loading has impact on the stability of the super high fill. In the stability analysis, assuming that the loading on the fill was uniform; the mid-slope loading helped stabilize the upper part of the slope and the effect of the top-slope loading upon the lower part of the slope was ignored, the results indicate that the fill is most instable when loadings is applied both on the top and mid slope. Where the vehicles are overloaded, the slope will become weaker and even fail if overloading becomes more serious.
     ③Rising water levels impose high pressure on the slope, so the water will infiltrate into the slope. With continuous rising of water levels, the saturation degree of the slope soil will increase, which will finally lead to deeper seepage into the slope and higher pore water pressure. All of these factors help stabilize the high fill. The higher the water level, the more stable the fill. On the contrary, the receding of water is dangerous to the slope. When the water level drops, water flows outside the slope, and water head pressure on the slope disappears, which will eventually result in overturning tendency of the slope, so the stability factor of the slope decreases. The slope becomes most instable when the water level drops to the lowest degree.
     ④The influence of surface runoff due to long lasting, heavy rainfall upon the slope stability of the high fill over a V-shaped gully is significant. Generally, short and mild rain will not affect the stability of the slope. However, the addition of either the amount or duration of the rainfall will make the water seep deeper into the slope and thus the added weight of the slope, and the changed stress-strain relationship of the fill materials, so the stability factor of the slope decreases. Regional failure rather than overall slide of the slope might occur under such condition.
     ⑤The gully's restraining effect helps stabilize the high fill, but vehicle load, decreased water level and runoff seepage into the slope will produce large negative effect. In some cases these factors are so influential that the embankment will not be stable enough for safe operation of vehicles above. To ensure the safety of the high fill, retaining structure is needed at the toe of the slope. Where the cross section of the retaining wall is given, curved wall is better than the linear wall in terms of deformation and distress. Assuming that the maximum tensile stress of the concrete fill is1.27MP, the ideal radius of the wall is calculated to be70m in circular arc. As the fill height adds from both sides of the gully to the center, the earth pressure also increases to the center of the gully. Thus it is concluded that the thickness of the retaining structure can be reduced gradually from the center to the sides of the gully when the maximum tensile stress of the materials1.27MPa is met. So the retaining structure could be formed by transformed section, thickest in the middle and thinner on both sides.
     By focusing on the overall stability study, the stability evolution rule and selection of appropriate retaining structure for super high fills constructed over V-shaped gullies subjected to complicated topographical and hydrological conditions, as well as multi-layered and multi-directional loadings, this research provides an economical and reliable design for highways built over gullies in mountainous or reservoir areas, and especially offer theoretical and technical assistance to the structure of high fill plus retaining dam over gullies in mountainous or reservoir areas.
引文
[1]天津大学编.土力学与地基,北京:人民交通出版社,1980
    [2]Terzag hi,K. Theoretical soil mechanics. New York:John Wiley& Sons, Inc, N.Y,1943,35-41
    [3]Morgenstern N.R. and Price V.E., The Analysis of the Stability of General Slip Surfaces, Geotechnique,1965, Vol.15 (1)
    [4]Spencer E.A., Method of analysis the stability of embankments assuming parallel inter-slice forces.Geotechnique, London,1967,17 (1):11-26
    [5]S.K.SARMA.Stability analysis of embankmensand slopes.Geotechnique,1973,23 (3):423-433
    [6]Low B.K., Stability analysis of embankments on soft ground, Journal of Geotechnical Engineering, ASCE,1989,115 (2):211-227
    [7]B.K. Low etc, Slope Reliability Analysis Using Generalized Method of Slices, Journal of Geotechnical and Geoenvironmental Engineering,1998,124 (4):350-361
    [8]Euoki,M,张冠军.广义极限平衡法.地下工程与隧道,1992,(3):47-48
    [9]栾茂田.土体稳定分析的改进滑楔模型及其应用.岩土工程学报,1995,17(4):1-9
    [10]朱大勇.边坡临界滑动场及其数值模拟.岩土工程学报,1997,19(1):63-69
    [11]朱大勇,周早生.边坡全局临界滑动场(GCSF)理论及工程应用.土木工程学报,1999,32(3):66-72
    [12]钱家欢,殷宗泽.土上原理与分析.北京:中国水电出版社,1998
    [13]Baker R. and Frydman S., Upper bound limit analysis of soil with non-linear failure criterion, Soils and Foundations,1983,23 (2):35-42.
    [14]Michalowski R.L., Slope stability analysis:a kinematical approach,Geotechnique,1995,45 (2):283-293
    [15]潘家铮.建筑物的抗滑稳定性和滑坡分析.北京:水利出版社,1980
    [16]张天宝.土坡稳定分析和土上建筑物的边坡设计.成都:成都科技大学出版社,1987.9
    [17]张天宝.四边形块元法和沉抗土坝的稳定分析-兼论复合土坡的最危险滑弧位置.水利学报,1981.6
    [18]阎中华.均质土坝与非均质土石坝稳定安全系数极值分布规律及电算程序简介.水利水电技术,1983.7
    [19]孙君实.条分法的堤法及其数值计算的最优化方法.水力发电学报,]983.1
    [20]孙君实.条分法的数值分析.岩土工程学报,1984.2
    [21]欧阳仲春.土坡稳定的塑性极限分析解.重庆交通学院学报,1983.3
    [22]陈祖煜.十坡稳定分析通用条分法及其改进.岩土上程学报,1983,5(4):39-59
    [23]张天宝.求解粘性土土压力的圆弧滑面整体平衡法.水利学报,1987.5
    [24]王恭先.中国滑坡防治研究综述.滑坡文集(兰州滑坡会议论文集),北京:中国铁道出版社,1988:5-18
    [25]徐邦栋.滑坡稳定性判断的理论和方法.文集编委会,兰州滑坡泥石流学术研讨会文集,兰洲:兰州大学出版社,1998:9-25
    [26]马崇武.边坡稳定性与滑坡预测预报的力学研究:[博士学位论文].兰州:兰州人学,1999
    [27]李国英,沈珠江.下限原理有限单元法及其在土工问题中的应用.岩土工程学报,1997,19(5):84-99
    [28]殷建华,陈健,李焯芬.考虑孔隙水压力的土坡稳定性的刚体有限元上限分析[[J].岩土工程学报,2003,25(3):273-277
    [29]Sloan S W. Lower bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1988, (12) 61-77
    [30]Sloan S W. Upper bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1989, (13) 263-282
    [31]Sloan S W. Upper bound limit analysis using discontinous velocity fields[J]. Comput Appl Meth Engrg,1995,127:293-314
    [32]H S Yu, R Salgado, Sloan S W. Limit analysis versus limit equilibrium for slope stability[J]. Journal of Geotechnical and Geoenvironment Engineering,1998.124 (1):1-11
    [33]Lyamin A V, Sloan S W. Upper bound limit analysis using finite element and non-linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002, (26):181-216
    [34]董倩,刘东燕.均质边坡稳定分析的上限解探讨.公路交通科技,2007,24(6):8-11
    [35]Baker R. Determination of critical slip surface in slope stability computation[J].Int.J. for Numer.and Analytical Meth. In Geomech.,1980,4:333-359
    [36]Celestino T B and Duncan J M. Simplified search for non-circular slip surface [A].Proc. of 10th Int. Conf. on Soil Mech. and Found. Engrg. [C].A. A. Balkema, Rotterdam, The Netherlands. 1981,3:391-394
    [37]Nguyen V U. Determination of critical slope failure surface[J].J. Geotech. Engng., ASCE, 1985,111 (2):238-250
    [38]Greco V R. Numerical methods for locating the critical slip surface inslope stability[A].Proc. Of 6th Int. Conf. on Numerical Methods in Geomechanics[C], Innsbruck,1988:1219-1223
    [39]Boutrup E and Lovell C W. Search technical in slope stability analysis[J].Engineering Geotechnical,1980,16 (1):51-61
    [40]Siegel R A. Kovacs W D and Lovell C W. Random surface generation in stability analysis[J].Geotech. Engng., ASCE,1981,107 (7):996-1002
    [41]Zienkiewicz O C, Humpheson C and Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J].Geotechnique,1975,25 (4):671-689
    [42]Donald.1 B Tan. C P and Goh T C A. Stability of geomechanical structures assessed by finite element method[J].Proc. of 2nd Int. Conf. In Civil Engr. Hangzhou. Science Press, Beijing. 1985:845-856
    [43]Giam S K and Donald I B. Determination of critical slip surfaces for slopes via stress-strain calculations[J].5th A. N. Z. Conf. Geomechanics. Sydney,1988:461-464
    [44]Zou J Z. Willianms D J and Xiong W L. Search for critical slip surfaces based on finite element method[J].Canadian Geotechnical Journal,1995,32:233-246
    [45]殷综泽,吕擎峰.圆弧滑动有限元土坡稳定分析[J].岩土力学,2005,26(10):525-529
    [46]Duncan J M. State of the art:Limite equilibrium and finite element analysis of slopes[J].Journal of Geotechnical Engineering, ASCE,1996,122 (7):577-596
    [47]Ugai K. A method of calculation of total factor of safety of slopes by elaso-plastic FEM [J].Soils and Foundations,1989,29 (2).190-195
    [48]Matsui T, San K C. Finite element slope stability analysis by shear strength reduction technique[J].Soils and Foundations,1992,32 (1):59-70
    [49]Ugai K, Leshchinsky D. Three2dimensional limit equilibrium and finite element analysis:a comparison of results [J].Soils and Foundations,1995,35 (4):1-7
    [50]Griffiths D V, Lane P A. Slope stability analysis by finite elements[J].Geotechnique,1999, 49 (3):387-403
    [51]Dawson E M, Roth W H, Drescher A. Slope stability analysis by strength reduction[J].Geotechnique,1999,49 (6):835-840
    [52]Manzari M T, Nour M A. Significance of soil dilatancy in slope stability analysis[J]. Journal of Geotechnical and Geoenviron mental Engineering, ASCE,2000,126 (1):75-80
    [53]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7
    [54]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,4(10):57-61
    [55]张鲁渝,郑颖人,赵尚毅,时卫民.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,1:21-27
    [56]孙伟,龚晓南.弹塑性有限元法在土坡稳定分析中的应用[J].太原理工大学学报,2003,34(2):199-202
    [57]奕茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8
    [58]张培文,陈祖煜.糯扎渡大坝设计边坡稳定的有限元分析[J].中国水利水电科学研究院学报,2003,1(3):207-210
    [59]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):333-336
    [60]陆述远.水工建筑物专题(复杂坝基和地下结构)[M].北京:水利电力出版社,1995:16-78
    [61]常晓林,陆述远.重力坝岩基失稳准则及稳定审查方法研究[J].武汉水利电力学院院报,1991,24(4):369-375
    [62]Chen W F and Mizuno E. Nonlinear analysis in soil mechanics:theory and implementation. Elsevier,1990
    [63]Swan C C and Seo Y K. Limite state analysis of earthen slopes using dual continuum/FEM approaches[J].Int.J.Numer.Anal. Meth.Geomech.,1999,23:1359-1371
    [64]Seo Y K. Computational methods for elasto-plastic slope stability analysis with seepage. Ph. D. Thesis, the University of Iowa.1998
    [65]陈宇亮.山区高速公路鸡爪沟地形路基修筑关键技术研究:[硕士学位论文].湖南:长沙理工大学,2004
    [66]王惠勇.基于鸡爪沟地形路基变形规律和路堑边坡稳定评价:[硕士学位论文].湖南:长沙理工大学,2004
    [67]李忠友,邓勇,纪秋林等.云奉高速公路奉节东立交高填方边坡数值分析[J].地下空间与工程学报,2009,5(2):378-384
    [68]WU Guo-xiong, DING Jing-sheng, WANG Min, LIU Xian-yi.3D Effect Analysis of Geometrically Complicated High-Filled Slope Stability. The 10th International Chinese Conference of Transportation Professionals, ICCTP 2010,2010.8
    [69]丁静声,吴国雄,刘先义等.冲沟路基稳定性影响因素的三维有限元分析[J].昆明理工大学学报(理工版),2010(6):57-61
    [70]刘先义,曾德云,陈东涛.侧岸约束下高填路基稳定性三维效应系数计算[J].公路交通科技(应用技术版),2010(9):59-62
    [71]张春笋.多层荷载作用下高填方路堤边坡稳定性研究[D]:重庆交通大学硕士学位论文,2009年
    [72]张春笋,吴进良,李晓军等.边坡荷载作用下的边坡稳定性[J].重庆交通大学学报(自然版),2009,28(3):569-571,583
    [73]丁静声,吴国雄.多层高填路基变形规律研究[J].重庆交通大学学报(自然版),2009(10):892-894,920
    [74]Lumb P.Effect of rainstorm on slope stability. Sym. on Hong Kong soils,1962:73-87
    [75]Sammori T and Tsnboyanma Y. Parametric study on slope stability with numerical simulation in consideration of seepage process. In:Proc.6th, Int. Symp. on Landslide. Bell (ed.). Rotterdam: Balkema,1991:539-544
    [76]Alonso E, Gens A, Lioret A, Delahaye C. Effect of rain infiltration on the stability of slopes. Unsaturated Soils.1995.1:241-249
    [77]Shimada K, Fujii H & Nishimura S and Mcrii T. Stability of unsaturated slopes considering changes of matric suction. Vol.I. Unsaturated Soils, Rotterdam:Balkema,1995.1:293-299
    [78]Sun Y, Nishigaki M & Kchno I. A study on stability analysis of shallow layer slope due to raining permeation. Unsaturated Soils,1995.1:315-320
    [79]陈守义.考虑入渗和蒸发影响的土坡稳定性分析方法.岩土力学,1997.18(2):8-12
    [80]Ng C W W and Shi Q. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and Geotechnics,1998,22 (1):313-321
    [81]吴宏伟,陈守义,庞宇威.雨水入渗对非饱和土坡稳定性影响的参数研究明.岩土力学[J],1999.3,20(1):1-14
    [82]高润德,彭良泉,王钊.雨水入渗作用下非饱和土边坡的稳定性分析[J].人民长江,2001.11,32(1]):25-27
    [83]姚海林,郑少河,李文斌,陈守义.降雨入渗对非饱和膨胀土边坡稳定性影响的参数研究[J].岩石力学与工程学报,2002,21(7):1034-1039
    [84]史弘鹤,王殿春.降水入渗对非饱和土坡稳定性的影响[J].西部探矿工程,2004.9:36-39
    [85]Morgenstern N R. Stability charts for earth slopes during rapid drawdown. Geotehnique, 1963,13:121-131
    [86]Desai C S. Drawdown analysis of slopes by numerical methods. Journal of Geotechnical Engineering. ASCE,1977,103 (7):667-676
    [87]Cousins B F. Stability charts for simple earth slopes. Journal of Geotehnlcal Engineering, ASCE,1978,104 (2):267-279
    [88]Griffiths D V, Lane P A. Slope stability analysis by finite elements. Geotehnique,1999,49 (3): 387-403
    [89]Lane P A, Griffiths D V. Assessment of stability of slopes under drawdown conditions. Journal of Geotechnical and Geoenviromental Engineering,2000,126 (5):443-450
    [90]时卫民,郑颖人.库水位下降情况下滑坡的稳定性分析[J].水利学报,2004,23(3):76-80.
    [91]杨建荣,吕小平.水库水位降落对边坡稳定性的影响[J].四川建筑,2005,24(2):60-64
    [92]夏麾,刘金龙.库水位变化对库岸边坡稳定性的影响[J].岩土工程技术,2005,19(6):292-295
    [93]刘建军,高玮,薛强等.库水位变化对边坡地下水渗流的影响.武汉上业学院学报,2006,25(3):68-71
    [94]廖红建,高石夯.渗透系数与库水位变化对边坡稳定性的影响[J].西安交通大学学报,2006,32(1):89-91
    [95]黄茂松,贾仓琴.考虑非饱和非稳定渗流的土坡稳定分析[J].岩土工程学报,2006,32(2):202-206
    [96]谢云,李刚,陈正汉.复杂条件下膨胀土边坡渗流和稳定性分析[J].后勤工程学院学报,2006,22(2):7-11
    [97]方守恩.高速公路[M].北京:人民交通出版社,2005
    [98]张永兴.边坡工程学[M].北京:中国建筑工业出版社,2008
    [99]钱家欢,殷宗泽.土工原理与分析[M].北京:中国水电出版社,1998
    [100]潘家铮.建筑物的抗滑稳定性和滑坡分析[M].北京:水利出版社,1980
    [101]高文梅.强度折减有限元法分析土坡稳定性的合理性研究[D].天津:天津大学,2006
    [102]郑颖人,赵尚毅,张玉芳.极限分析有限元法讲座——Ⅰ岩土工程极限分析有限元法[J].岩土力学,2005,26(1)163-16
    [103]徐干成,郑颖人.岩土工程中屈服准则应用的研究[J].岩土工程学报,1990,12(2):93-99
    [104]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报2004,23(19)
    [105]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报,2005,(03)
    [106]交通部第二勘察设计院.路基[M].北京:人民交通出版社,1996年
    [107]中华人民共和国行业标准.《公路工程技术标准》(JTG B01—2003).北京:人民交通出版社,2003
    [108]刘波,韩彦辉FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [109]张亮亮.考虑降雨入渗影响的公路边坡稳定性数值试验研究[D].武汉理工大学硕士论文,2006年
    [110]孙冬梅,朱岳明,徐艳杰.基于水气两相流的稳定饱和—非饱和渗流模拟研究[J].大连理工大学学报,2006.46增:213-218.
    [111]任德林.水工建筑学[M].南京:河海大学出版社,2004
    [112]陈心爽,袁耀良.材料力学[M].上海:同济大学出版社,1995
    [113]中华人民共和国标准.《混凝土结构设计规范》(GB50010-2002).北京:中国建
    [114]中华人民共和国行业标准.《公路圬工桥涵设计规范》(JTG D61-2005).北京:人民交通出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700