人工鱼礁水动力学与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工鱼礁是指由一个或多个自然或人造物体组成,并有目的的设置于海底,用来改变海洋生物资源与环境,进而促进社会经济发展的人工设施,是海洋牧场工程建设的重要组成部分。与其他海洋结构物一样,人工鱼礁在海底受到水流等水文环境因素的作用,其流场效应和受力状况与其自身的水动力学性能密切相关。关于人工鱼礁水动力学性能的研究,人们在以往的研究中通常借助于传统的渔具力学理论和动力水槽实验等方法来进行研究,而这些方法往往会受到理论深度、流体属性、观测方法和精度、人力和物力等诸多方面的影响或限制,无法满足人们对人工鱼礁水动力学性能全面认识的需求。
     本论文以不同人工鱼礁模型为研究对象,依据计算流体力学理论为基础,基于大型计算流体力学软件Fluent为平台,运用三维湍流模拟技术为研究手段,开展了人工鱼礁模型水动力学性能的数值模拟研究,得到了人工鱼礁模型各断面压力分布、流场效应和礁体的受力情况,揭示了人工鱼礁局部流场的流动结构;同时与动力水槽实验,特别是粒子图像测速(PIV)技术的实测结果进行对比分析,结果均比较吻合,使得两类方法得到了相互验证,并对各礁体模型所产生的流场效应作初步比较。由此说明,本论文所采用的数值模拟方法可以对人工鱼礁水动力学性能的预测,进而推广到实际的人工鱼礁水动力学性能研究中去,旨在为人工鱼礁流场理论的初步研究和设计的选型优化奠定理论基础,为我国日益蓬勃发展的人工鱼礁区规划和建设事业的全面发展提供科学参考。
     首先,本论文建立了一套针对多孔立方体人工鱼礁模型的三维湍流流动数值模拟模型,对其水动力学性能进行了数值模拟,预测了模型礁体周围及其内部三维流动结构和基本流态,分析了压力和流速分布之间的关系,得到了人工鱼礁模型的受力值和流速值。计算结果与动力水槽实验数据进行比较,均比较吻合,受力和速度的计算值与测量值之间的相对误差都很小,分别在2.3 %~26.2 %和1.3 %~36.4 %之间。这说明,两种方法均能体现模型礁体在流速增加时,受力增加的趋势,且数值模拟结果基本符合模型礁体局部绕流流场的特征。
     其次,以单孔立方体人工鱼礁模型为研究对象,在应用三维湍流流动模型进行非定常流动数值模拟的同时,利用PIV技术对横流中人工鱼礁绕流流场纵向断面处各局部的流动特性进行测量,清晰地了解到模型礁体的上升流区、尾流区、迎流区和内部旋涡的交替产生、发展和消亡的过程,并对主要旋涡运动的周期和影响范围做出了相应的分析。数值模拟结果与PIV实测和测力实验结果进行对比,结果较吻合,符合人工鱼礁模型局部流场的流动结构,及模型的受力情况。
     再次,运用三维湍流数值模拟技术,对梯形台人工鱼礁模型在横流作用下的非定常流动进行了数值模拟,了解了梯形台模型礁体的流场效应,通过与PIV实测流场以及测力实验的结果进行比较,数值模拟结果与实验测量结果吻合较好,进一步表明本文的数值计算和性能预测均能达到一定的精度。并对三种礁体的上升流及影响范围等进行了比较。
     最后,依据计算流体力学理论,运用三维湍流模拟技术,对人工鱼礁板块区内的流动进行数值模拟,得到了人工鱼礁区生态系统中单位板块区的流场分布情况,能够让人们直观地了解到人工鱼礁板块区所产生的流场效应,为研究人员提供人工鱼礁区规划和建设的科学参考。
An artificial reef is one or more objects of natural or human origin deployed purposefully on the seafloor to influence physical, biological, or socioeconomic processes related to living marine resources, and it is the important component of the construction of marine ranching engineering. Just like other ocean engineering structures, artificial reefs on sea bottom are withstood by the hydrological environment effects responded by the current conditions, and then the perspective of flow field effect and forces stood are nearly correlated with theirs hydrodynamic capability under the ocean field conditions. About the studies of the hydrodynamic capability of artificial reef, researchers usually recur to the reference of traditional fishing gear hydrodynamics and flume tank experiments. However, these methods may be affected or limited by theoretical profundity, fluid attributes, meterage methods and precision, manpower and material resources, etc, which can’t meet the requirement of complete understanding for the hydrodynamics of artificial reef.
     This paper, aimed at artificial reef model, according as computational fluid dynamics, based on the Fluent CFD code, utilized three-dimensional turbulent model to simulate the hydrodynamic capability of artificial reef models. The pressure distribution, flow field effect and forces stood of model reefs are obtained, which shows the flow field structure on the locals of artificial reefs. A good agreement is achieved between numerical results with flume tank experiments data, especially, the particle imagine velocimetry data. It suggested that the numerical simulation method adopted in this paper can be applied to predict the hydrodynamic capability of artificial reefs, and then popularize this method in the study of actual artificial reef. Its achievement will establish the theoretical foundation for the pilot study of artificial reef flow field theory and designs optimized, and supply the scientific reference to the progressive development of layout and construction of artificial reef areas.
     Firstly, a numerical simulation model of RNG k -εturbulent flow aimed at apertured cube artificial reef model is established in this paper. By use of this numerical model, the three-dimensional flow structure is predicted; the relationship between pressure and velocity is analyzed; and the values of forces stood and velocities are obtained. Numerical results have a good coherence compared with experiments data; the relative errors between the numerical and metrical are all small, which are in range of 2.3 %~26.2 % and 1.3 %~36.4 % respectively. It suggested that both the numerical and experimental methods could represent the increase trends of forces stood with the flow velocities increasing, and numerical results are basically accorded with the flow field characteristic of cross flow past the locals of model reef.
     Secondly, aimed at a single apertured cube artificial reef model, three-dimensional turbulent model is applied to simulate the unsteady flow of cross flow; simultaneous, by the PIV technology, the flow characteristic on the longitudinal central section of flow field of cross flow pasting the artificial reef model is measured, and the dynamic process of the vortex alternative formation, its development and extinction are realize clearly, where are in the upstream, the wake, the front, the inside areas respectively. Numerical results have a good coherence compared with PIV data, which agrees with the flow structure on the locals of artificial reef model and the forces stood by model.
     Thirdly, by three-dimensional numerical simulation technology, the unsteady flow of cross flow past a trapezoid platform artificial reef model is simulated, and the flow field effect of trapezoid platform reef model is realized. Numerical results have a good coherence compared with PIV data. These results can more indicate that both the numerical computation and characteristic predictions in this paper achieve a precision to some extent. And the incidence of upwelling and flow field were compare within three kind of artificial reef model.
     Finally, based on computational fluid dynamics theory, three-dimensional turbulent model is adopted to simulate the flow in artificial reef block, and flow field distribution in block of artificial reef ecosystem. It is feasible for people to realize the flow field effect of artificial reef block intuitively, and then supply scientific reference to the layout and construction of artificial reef areas.
引文
[1] Anderson D. A., Tannehill J. C. and Pletcher R. H., 1984. Computational fluid mechanics and heat transfer. Washington: Hemisphere, 199-201.
    [2] Anderson W.K., 1994. A grid generation and flow solution method for Euler equation on unstructured grids. Journal of Computational Physics, 110(1): 23-38.
    [3] Baine M., 2001. Artificial reefs: a review of their design, application, management and performance. Ocean and Coastal Management, 44(3): 241-259.
    [4] Batina J.T., 1990. Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA J., 28(8):1381-1388.
    [5] Bohnsack J.A. and Sutherland D.L, 1985. Artificial reef research: a review with recommendations for future priorities. Bulletin of Marine Science, 37(1): 11-39.
    [6] Bowyer A., 1981. Computing Dirichlet tessellations. The computer Journal, 24(2): 162-166.
    [7] Braaten M.E. and Connell S.D., 1996. Three–dimensional unstructured adaptive multigrid scheme for the Navier-Stokes equations. J. AIAA, 34: 281-290.
    [8] Chapman D.T., 1979. Computational aerodynamics development and outlook. AIAA, 17: 1293-1313.
    [9] Chen C.J. and Jaw S.Y., 1998. Fundamentals of turbulence modeling. Washington DC: Taylor& Francis, 91-92, 119, 69, 71, 63, 64.
    [10] Chen Hong-xun and Guo Jia-hong, 2007. Numerical simulation of 3-D turbulent flow in the multi-intakes sump of the pump station. Journal of Hydrodynamics, Ser. B, 19(1): 42-47.
    [11] Chou, L.M., 1997. Artificial reefs of Southeast Asia–do they enhance or degrade the marine environment. Environmental Monitoring and Assessment, 44: 45-52.
    [12] Chua, C.Y.Y. and Chou, L.M. 2004. The use of artificial reefs in enhancing fish communities in Singapore. Hydrobiologia, 285: 177-187.
    [13] Connell S.D. and Holmes D.G., 1994. Three–dimensional unstructured adaptive multigrid scheme for the Euler Equations. Journal of AIAA, 32(8): 1626-1632.
    [14] Facchini L., 1996. The numerical simulation of Gaussian cross-correlated wind velocity fluctuations by means of hybrid model. Journal of wind engineering and industrial aerodynamics, 64: 187-202.
    [15] Falcao M, Santos M N, Vicente M, et al, 2007. Biogeochemical processes and nutrient cycling within an artificial reef off Southern Portugal. Marine Environmental Research, 63: 429-444.
    [16] Ferziger J.H. and Leslie D.C., 1979. Large Eddy Simulation, in: A collection of technical paoers. New York: AIAA computational fluid dynamics conference, 234-246.
    [17] Fluent Inc., 2003. Fluent 6.1 User Guide. USA: Fluent Inc.
    [18] Fluent Inc., 2003. Fluent Gambit Modeling Guide. USA: Fluent Inc.
    [19] Frink N.T., 1990. Upwind scheme for solving the Euler equations on unstructured tetrahedral meshes. AIAA J., 30(1):70-77.
    [20] Fujihara M., Takeuchi T.G., Ohashi, 1997. Physical-biological coupled modeling for artificially generated upwelling. Marine Biology, 189: 69-79.
    [21] Grossman G.D., Jones G.P. and Seaman W. J., 1997. Do artificial reefs increase regional fish production? A review of existing data. Fisheries, 22, 17-23.
    [22] Hinze J. O., 1975. Turbulence. 2nd Ed., Mc Grawhill, New York.
    [23] Huang C.J. and Liu J.L.m 1991. Inviscid and viscous solutions for airfoil/cascade flows using a locally implicit algorithm on adaptive meshes. Journal of Turbomachinery, 113(4): 553-560.
    [24] Issa R.I., 1986. Solution of the implicitly discretized fluid flow equations by operator-splitting. Journal of Computational Physics, 62: 40-65.
    [25] Kondo K., Murakami S., Mochida A., 1997. Generation of velocity fluctuations for inflow boundary condition of LES. Journal of wind engineering and industrial aerodynamics, 67-68: 51-64.
    [26] Lan C.H. and Hsui C.Y., 2006. The deployment of artificial reef ecosystem: Modelling, simulation and application. Simulation Modelling Practice and Theory, 14: 663-675.
    [27] Markatos N. C., 1986. The Mathematical modeling of turbulence flows. Modeling, 10: 190-220.
    [28] Mavriplis D.J., 1990. Accurate multigrid solution of the Euler equations on unstructured and adaptive meshes. Journal of AIAA, 28(2): 213-221.
    [29] Mead S. and Black K., 1999. A Multipurpose, Artificial Reef at Mount Maunganui Beach, New Zealand. Coastal Management, 27: 355-365.
    [30] Menter F.R., 1993. Zonal two equation k-ωturbulence models for aerodynamic flows. AIAA paper, 93-2906.
    [31] Menter F.R., 1994. Two-Equation eddy-viscosity turbulence models for engineering applications.AIAA J., 32: 1598-1605.
    [32] Miao Zhen-qing, Xie Yong-he, 2007. Effects of water-depth on hydrodynamic force of artificial reef. Journal of Hydrodynamics, 19(3): 372-377.
    [33] Michael J. Rule, Stephen D.A. Smith, 2007. Depth-associated patterns in the development of benthic assemblages on artificial substrata deployed on shallow, subtropical reefs. Journal of Experimental Marine Biology and Ecology, 338: 1-14.
    [34] Muller J.D., 1994. Quality estimates and stretched meshes based on Delaunay triangulations. AIAA Journal, 32(12): 2372-2379.
    [35] Nozawa K., Tamura T., 2001. Generation of inflow turbulence and its effect on wind flow around a tall building. Kyoto: Proceedings of the fifth Asia-Pacific conference on wind engineering, 333-336.
    [36] Orszag S.A., 1977. Numerical simulation of turbulence flows, in: Handbood of Turbulence. New York: Plenum Press, 281-313.
    [37] Patanker S.V. and Spalding D.B., 1972. A calculation processor for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat Mass Transfer, 15: 1787-1806.
    [38] Peraire J., Peiro J. and Formaggia L., 1988. Finite Element Euler computations in three dimensions. International Journal of Numerical Methods Engineering, 26: 2135-2159.
    [39] Perkol-Finkel S, Benayahu Y, 2007. Differential recruitment of benthic communities on neighboring artificial and natural reefs. Journal of Experimental Marine Biology and Ecology, 340: 25-39.
    [40] Pickering H., Whitmarsh, Jensen, et al, 1998. Artificial reef as a tool to add rehabilitation ecosystems: investigating the potential. Marine Pollution Bulletin, 37(8-12): 505-514.
    [41] Pratt J.R, 1994. Artificial habitats and ecosystem restoration– managing for the future. Bulletin of Marine Science, 55: 268-275.
    [42] Pybas D., Seaman W., 1994. Artificial reef construction patterns in Florida. Bulletin of Marine Science, 5592(3): 1350.
    [43] Rebay S., 1993. Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm. Journal of Computational Physics, 106(1): 125-138.
    [44] Rodi W., 1980. Turbulence models and their applications in hydraulics-A state of the art review.IAHR, delft, The Netherlands.
    [45] Seaman W.J., 2000. Artificial reef evaluation: with application to natural marine habitats. USA: CRC press, 5-6.
    [46] Stuoufflet B., Periaux J. and Derivieus A., 1987. Numerical simulation of 3-D hypersonic Euler flows around space vehicles using adapted finite elements. AIAA paper: 87-560.
    [47] Subramanian G., Raveendra V.V.S. and Gopolakrishna K., 1994. Robust boundary triangulation and Delannay triangulation of arbitrary planar domains. International Journal of Numerical Methods Engineering, 37(10): 1779-1789.
    [48] Thomas J.F., Warsi Z.V.A. and Mastin C.W., 1982. Boundary-fitted coordinates systems for numerical solutions of partial differential equations-A Review. Journal of computational Physics, 47(1): 101-108.
    [49] Thompson J.F., 1994. Grid generation techniques in computational fluid dynamics. AIAA J., 22(11): 1505-1514.
    [50] Thomas J.L., 1990. Implicit flux-split schemes for the Euler equations. AIAA J., 28(6): 973-974.
    [51] Thomas P.D. and Middlecoff J.F., 1980. Direct control of grid point distribution in meshes generated by elliptic equations. AIAA J., 18(4):652-656.
    [52] Thomas S., Lund, Wu xiao-hua, et al., 1998. Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of computational physics, 140: 233-258.
    [53] Venkatakrishnan V., 1996. Perspective on unstructured grid flow solvers. J. AIAA, 34(3): 533-547.
    [54] Vicharn I., Michikazu B. and Haruyasu K, 1995. Comparative study on the sinking of artificial reefs by local scour between laboratory and field experiments. Fisheries Engineering, 32(2): 95-103.
    [55] Vilsmeier R. and Hanel D., 1993. Adaptive methods on unstructured grids for Euler and Navier-Stokes equations. Journal of Computers and Fluids, 22: 729-741.
    [56] Wang Xiao-jian, Cheng liang and Cui Li, 1999. Numerical analysis of side discharges into a channel flow using an RNG k ?εmodel. Journal of Hydrodynamics, Ser. B, 3: 44-54.
    [57] Watson D.F., 1981. Computing the n-dimensional Delaunay tessellation with application to voronoi polytypes. The Computer Journal, 24(2): 162-166.
    [58] Weatherdill N.P., 1988. A method for generating irregular computational grids in multiply connected planar domains. International Journal of Numerical Methods Engineering, 8(2):181-197.
    [59] Weatherdill N.P. and Hassan O., 1994. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal of Numerical Methods Engineering, 37(12): 2005-2039.
    [60] Webster B.E., Shephard M.S. and Rusak Z., 1994. Automated adaptive time discontinuous finite element method for unsteady compressible airfoil aerodynamics. AIAA Journal, 32(4): 748-757.
    [61] Wilhelmsson D., Ohman M.C., Stahl H. and Shlesinger Y., 1998. Artificial reefs and dive tourism in Eilat, Israel. Ambio, 27: 764-766.
    [62] Wolanski E., Hamner W. M., 1988. Topographically controlled fronts in the ocean and their biological influence. Science, 241(4862): 177-181.
    [63] Yakhot V. and Orzag S.A., 1986. Renormalization group analysis of turbulence: basic theory. Journal of Scientific Computation, 1(1): 3-11.
    [64] Yakhot V., Orzag S.A., Thangam S., et al, 1992. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A, 4(7): 1510-1520.
    [65] Yang R.J., Aung W., 1985. Equations and coefficients for turbulence modeling, in: natural convection-fundamentals and applications. New York: Hemisphere, 259-300.
    [66] Yohei N., Hiroyuki K., Mitsuhiko S., 2007. Experimental analysis of recruitment patterns of coral reef fishes in seagrass beds: Effects of substrate type, shape, and rigidity. Estuarine, Coastal and Shelf Science, 71: 559-568.
    [67]王福军, 2004.计算流体动力学分析: CFD软件原理与应用.北京:清华大学出版社, 1-4, 113-131.
    [68]龙永生,方佩儿, 2003.关于海洋捕捞渔民转产转业问题的探讨.中国渔业经济, 2: 17-19.
    [69]刘同渝, 2003.国内外人工鱼礁建设状况.渔业现代化, 2: 36-37.
    [70]刘同渝, 2003.人工鱼礁的流态效应.水产科技, 6: 43-44.
    [71]向友权, 2002.我国海洋环境保护面临的问题与对策.中国科技论坛, 20(5): 57-63.
    [72]孙东坡,杨慧丽,张晓松等, 2007.桥墩冲刷坑的三维流场测量与数值模拟.水科学进展, 18(5): 711-716.
    [73]孙仲康, 1982.快速傅立叶变换及其应用.北京:人民邮电出版社, 26.
    [74]孙鹤泉,康海贵. DPIV流场测试技术中的数据处理.大连理工大学学报, 40(3): 364-367.
    [75]李文涛,张秀梅, 2003.关于人工鱼礁礁址选择的探讨.现代渔业信息, 18(5): 3-6.
    [76]李永,吴玉林,袁辉靖等, 2007.三维PIV技术在吸入涡流态测量中的应用.水科学进展, 18(3): 368-373.
    [77]李杰人, 2002.中国水产养殖业的现状及展望.饲料广角, 20: 7-9.
    [78]李初福,陈丙珍,何小荣等, 2004.用于含过失误差数据稳态检测的改进滤波法.清华大学学报(自然科学版), 44(9): 1160-1162.
    [79]吴子岳,孙满昌,汤威, 2003.十字型人工鱼礁礁体的水动力计算.海洋水产研究, 24(4): 32-35.
    [80]肖洋,唐洪武,华明等, 2006.同向圆射流混合特性实验研究.水科学进展, 17(4): 512-517.
    [81]吴剑,齐鄂荣,李炜等, 2005.应用PIV系统研究横流中近壁水平圆柱绕流旋涡特性.水科学进展, 16(5): 628-633.
    [82]苏铭德,朱方林.二维非结构网格生成及自动加密技术.计算物理, 15(1): 6-10.
    [83]张国胜, 2003.中国海域建设海洋牧场的意义及可行性.大连水产学院学报, 18(2): 141-144.
    [84]陈勇,于长清,张国胜等, 2002.人工鱼礁的环境功能与集鱼效果.大连水产学院学报, 17(1): 64-69.
    [85]周天孝,白文, 1999. CFD多块网格生成新进展.力学进展, 29(3): 344-368.
    [86]宗孔德,胡广书, 1997.数字信号处理.北京:清华大学出版社, 123.
    [87]周应褀,许柳雄,何其渝.渔具力学.北京:中国农业出版社, 2001.
    [88]武彤, 2003.当前渔业经济发展的主要矛盾和对策.农村财政与财务, 18: 30-32.
    [89]洪急蓉,林利民, 2002.我国渔业问题与对策.集美大学学报(自然科学版), 7(1): 5-10.
    [90]赵淑江,吴长文,梁冰等,2005.大海洋生态渔业理论与海洋渔业的持续发展.海洋渔业,3:75-78.
    [91]陶文栓, 2006.数值传热学.西安:西安交通大学出版社, 333-375.
    [92]费业泰, 2004.误差理论与数据处理.北京:机械工业出版社, 43-49.
    [93]徐洪科, 1990.泥底质海区人工鱼礁的效果.浙江水产学院学报, 1(1): 35-69.
    [94]倪明玖, 1997.现代差分格式的发展机理新压缩机内部紊流场的数值模拟: [博士学位论文].西安:西安交通大学.
    [95]唐衍力,王磊,梁振林等, 2007.方型人工鱼礁水动力性能试验研究.中国海洋大学学报, 37(5): 713-716.
    [96]黄祥鹿,陆鑫森,1992.海洋工程流体力学及结构动力响应.上海:上海交通大学出版社, 37-41.
    [97]彪仿俊, 2005.建筑物表面风荷载的数值模拟研究. [浙江大学硕士学位论文].浙江:浙江大学建筑工程学院.
    [98]窦国仁, 1982.紊流力学.北京:人民教育出版社, 165.
    [99]小川良德, 1981.人工鱼礁と渔获效果. Ocean Age, (10): 15-20.
    [100]中村充, 1979.流環境から見ゐ人工礁漁场.水産土木, 15(2): 5-12.
    [101]中村充, 1991.水产土木学.东京:工业时事出版社, 462-469.
    [102]内海和彦, 1983.人工鱼礁设置事业の效果调查,つくゐ渔业.资源协会, 723-736.
    [103]田中惯, 1987.鱼礁渔场にぉけゐ鱼类生态に门关すゐ研究Ⅲ,计量鱼探にょゐ人工鱼礁附近の鱼群分布调查.水産土木, 24(1): 1-6.
    [104]田中惯, 1988.鱼礁渔场にぉけゐ鱼类生态に门关すゐ研究Ⅳ,计量鱼探にょゐ人工鱼礁附近の广域鱼群量调查.水産土木, 25(2): 1-8.
    [105]田中惯,柿原皓,大久保久直, 1985.鱼礁渔场にぉけゐ鱼类生态に门关すゐ研究Ⅰ,人工鱼礁にぉけゐ鱼类分布.水産土木, 21(2): 9-16.
    [106]田中惯,柿原皓,井上英雄, 1985.鱼礁渔场にぉけゐ鱼类生态に门关すゐ研究Ⅱ,出云埼人工鱼礁にぉけゐ鱼类分布.水産土木, 22(1): 1-8.
    [107]池田骏介,二瓶泰雄,秋山信义等, 1992.各種搆造物にょゐ湧昇流の発生に関すゐ實驗的研究.海岸工学论文集, 39(3): 896-900.
    [108]佐久田博司,佐久田昌昭,渡边浩一郎等, 1981.人工沉設魚礁模型に関すゐ基础研究.水産土木, 18(1): 7-19.
    [109]岗本峰雄,黑木敏朗,村井彻, 1979.人工鱼礁近傍の鱼群生态に门关すゐ予备的研究-猿导北方鱼礁群の概要.日本水産学会誌, 45: 709-713.
    [110]岗本峰雄,黑木敏郎,村井彻, 1979.人工鱼礁近傍の鱼群生态に门关すゐ基础的研究I:鱼群量の预备调查.日本水産学会誌, 45: 1085-1090.
    [111]荻也静也, 1988.人工鱼礁の交力果解析手法につぃて-(1)-昭和59、60年度の调查结果.水産土木, (10): 8-25.
    [112]铃木连雄,本田阳一, 1992. 3次元物体背后の発生すゐ湧昇渦に関すゐ研究.海岸工学论文集, 39(3): 901-905.
    [113]黑木敏郎,佐藤修,尾崎晃, 1964.鱼礁構造の物理学的研究Ⅰ.北海道水産部研究報告書, 1964, 1-19.
    [114]野添学,大桥行三,藤原正幸, 2000.铅直2次定常流场に设置された垂直型搆造物にょゐ植物ァヲンクトンとた营养盐の变化预测に关すゐ数值实验. Fisheries Engineering, 36(3): 253-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700