月球表面哥白尼纪与水星表面柯伊伯纪的地质活动对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月球和水星是内太阳系天体中大小相近、表面形态相似的两个天体。由于二者的基本物理特征相似(如均无大气、均具有硅酸质壳层),前人常类比月球和水星上的相似地质过程,以更彻底的了解其基本物理规律。
     厘定月球表面地质单元的地层年代具有岩石样品年龄作为约束,最年轻的月球地层年代是哥白尼纪,起始于-800Ma前的哥白尼撞击事件。月球上具有明亮溅射纹的撞击坑大多形成于哥白尼纪。相比之下,水星表面地质单元的地层年代是引用月球地层年代的分类原则建立的。由于没有水星样品作为约束,每个水星地层的绝对起止时间存在极大的不确定性。柯伊伯纪被认为是水星表面最年轻的地层年代,以水星表面的柯伊伯撞击坑命名。柯伊伯纪与月球上的哥白尼纪相对应,前人一般认为柯伊伯纪起始于-800Ma。水星上具有溅射纹的撞击坑形成于该时期。以往对月球与水星地质演化历史的研究认为:自大约800Ma以来,水星和月球表面的内生型地质活动已基本停止,外来天体的撞击作用基本上是水星和月球表面最主要的地质过程。
     近年来成功入轨的月球勘测轨道飞行器(Lunar Reconnaissance Orbiter; LRO)和水星信使号飞船(MErcury Surface, Space ENviroment, GEochemistry, and Ranging; MESSENGER)获取了价值巨大的探测数据,极大的增进了行星地质学界对这两个天体的认识。更重要的是,通过对比月球与水星以及其他天体上的相似地质过程,对了解太阳系天体表面地质演化的规律提供了极为重要的窗口。利用以往探测器(尤其是LRO和MESSENGER)获取的影像、光谱、重力场和激光高度计数据,本文在月球和水星表面发现了非常年轻的地质活动。其中,有些发现改变了前人对月球和水星热演化史和地质演化史的认识,例如水星表面柯伊伯纪的爆发型火山活动、水星壳层挥发分活动、月球全球发育的哥白尼纪坡面块体运动等;有些发现则加深了对天体表面(包括地球)的地质过程的基本规律的认识,例如通过类比月球哥白尼纪和水星柯伊伯纪的撞击熔融内发育的冷凝裂隙,为研究天体表面柱状节理的成因机制提供了另一扇窗口。
     总体而言,本文以水星柯伊伯纪和月球哥白尼纪的各种表面地质活动为研究对象,分别分析了其地质过程及其指示意义。本文的具体研究内容及结论包括:
     (1)更新了水星曼苏尔纪以来的地层年代的起止时间。首先统计了水星全球具有溅射纹的撞击坑以及中低纬度的形态学第一类撞击坑(包括具有溅射纹的撞击坑)。在验证数据库的完整性之后,利用撞击坑统计技术,避开相关干扰因素,采用最新获取的水星撞击坑产生方程和年代方程,计算了水星形态学第一类撞击坑坑群所代表的绝对模式年龄,大约为1.26Ga,这些撞击坑形成于曼苏尔纪;水星上所有具有溅射纹的撞击坑的绝对模式年龄大约为159Ma,其中具有明亮溅射纹的撞击坑的绝对模式年龄大约为40-60Ma。因此可将水星柯伊伯纪的起始时间划在-159Ma前。
     (2)本文在月球哥白尼撞击坑南东侧的连续溅射毯上发现一处由数十条小型地堑组成的复杂地堑系统,并以此为出发点研究了月球表面的年轻构造与岩浆活动的可能性。这些地堑从地层切割的角度证实尽管月球在哥白尼纪处于全球收缩的挤压背景下,月球表面依然可形成伸展构造。这套地堑系统的独特之处在于,其位于一个局部的地形隆起上,周围未见明显的与之相关的挤压构造,且该区域具有巨大的自由空气与布格重力异常。通过分析这些地堑的形态和几何特征,本文分析了形成其拉伸应力的可能来源,重点讨论了最近提出的月球哥白尼纪浅层岩浆侵入的假说。岩浆侵入的理论模型计算和类比研究证明:这套地堑系统不太可能是由于浅层岩浆侵入造成局部地势隆起而形成的。由于月球持续全球收缩,隐伏逆冲断层活动以及月震更可能是形成这些地堑的原因。
     (3)利用LRO获取的高分辨率影像数据,论文发现月球全球正在发生大量形式多样的块体运动。虽然月球表面缺乏流水或大气,这些块体运动的形貌与地球上的极其相似,有些具有低粘度的流动特征。基于300多个月球表面块体运动的样例,建立了每个样例的形貌、尺度、所在地质单元的坡度和年龄的数据库。结果发现坡面块体运动是改造月球表面局部地貌的重要地质过程。块体运动通过削高补低,最终夷平月面的地势差。块体运动与撞击作用是决定月面区域尺度的月壤厚度的最重要因素,对区域的撞击坑密度存在一定的影响。酒海纪和前酒海纪的地貌代表了月球表面地貌演化的最终阶段,只有月壤蠕移在其中形成。
     (4)在水星上发现了几处曼苏尔纪的小范围表面岩浆事件形成的平原物质。这些平原物质覆盖了周围形态学第一类撞击坑的溅射物,表明水星表面的岩浆活动至少持续到了1.26Ga。另外,水星上有多处柯伊伯纪的爆发型火山口,其产生的火成碎屑沉积物覆盖了附近具有溅射纹的撞击坑。表明水星幔部的熔融物在柯伊伯纪依然具有极高的挥发分含量,且水星内部的热活跃程度和壳层厚度尚不足以阻碍表面火山活动的形成。这些发现与以往对水星演化的认识截然不同。另外,水星上大部分的爆发型火山活动形成的火山口和火成碎屑沉积物的反照率比水星的全球平均反照率高,在紫外到近红外波段的反照率光谱曲线斜率相对较陡。与之相反,一些柯伊伯纪的火成碎屑沉积物和火山口的反照率比水星的平均反照率低,表明其物质成分或物理性质不同。这对了解水星内部物质的成分演化具有重要的指示意义。
     (5)前人一般认为水星自晚期大轰击结束后,也即大约3.8Ga左右,表面的挤压构造单元不再形成。本文在水星表面发现了一些切割形态学第一类撞击坑的、长达数十千米的叶片状悬崖,有些大型叶片状悬崖也可能切割具有溅射纹的柯伊伯纪的撞击坑。另外,在水星表面发现了一些较小的叶片状悬崖切割柯伊伯纪的小型撞击坑,表明水星全球收缩在柯伊伯纪依然存在。对比水星上大型平原物质和大型叶片状悬崖的相对年龄,可发现由于水星持续全球收缩导致壳层增厚,阻碍了水星幔部的熔融物大量上涌,水星表面的大范围岩浆事件在大约1.26-3.8Ga之间停止。
     (6)在水星上发现了大量与挥发分活动有关的地貌单元:白晕凹陷和暗斑。本文分析了其形貌、大小、全球分布特征、光谱特征、地层年龄、可能的物质成分以及可能的成因机制。白晕凹陷与暗斑发育在除高反照率平坦平原物质之外的所有地貌上。白晕凹陷是形态不规则的、无隆起边缘的、较浅的凹陷,周缘常由高反照率的晕状物质环绕,其反照率大于水星溅射纹的反照率。高分辨率影像数据揭示这些晕状物质上是由高反照率的小型凹陷连接形成的。内部和周围反照率均比背景地质单元高的白晕凹陷可能依然处于活跃状态,而较老的白晕凹陷则不具有高的反照率。暗斑是围绕白晕凹陷发育的薄层状低反照率物质,其反照率是目前水星上最低的。每个暗斑中心都发育有白晕凹陷,相反,并非每个水星白晕凹陷周围都有暗斑。暗斑可能是通过剧烈的富含挥发分的物质以100米/秒左右的速度喷出以脱气作用形成的。与此同时,挥发分的出口形成一个原始的白晕凹陷,后凹陷逐渐、缓慢地侧向和垂向生长出现白晕。白晕凹陷也是壳层内富含挥发分的物质不断散失而生长扩张的,但其生长速度远小于暗斑的形成速度。暗斑物质极不稳定,其存活时间小于水星表面撞击溅射纹的存活时间,因而所有观察到的水星暗斑可能都形成于柯伊伯纪。形成暗斑与白晕凹陷的挥发分物质都富硫,造成二者反照率的差异可能是其物质成分和/或颗粒物理性质不同。
     (7)月球哥白尼纪和水星柯伊伯纪的撞击坑底形成了大量新鲜的撞击熔融。这些撞击熔融是通过热辐射方式冷却的,冷凝过程中形成的拉张应力造成岩石破裂形成冷凝裂隙。通过分析月球和水星撞击熔融中的冷凝裂隙的形态、大小和组合样式,本文发现撞击熔融的深度、固体碎屑物在撞击熔融中的含量以及撞击熔融冷凝过程中的垂直沉降量控制了裂隙的发育。将月球和水星上的冷凝裂隙与火星和地球上的柱状节理相比,可发现热辐射造成的冷凝速率可能不足以形成柱状节理,热对流和/或热传导是形成柱状节理的主要散热方式,挥发分可能在所有天体表面的柱状节理的形成过程中必不可少。
     (8)月球和水星上的平均撞击速度和表面重力加速度不同。对比月球和水星上的撞击坑,可分析撞击过程中的主控因素。本文测量并对比了水星和月球上一些形态学第一类复杂撞击坑的外部沉积物(包括连续溅射沉积物和连续二次撞击坑相)的形态与大小,研究了撞击挖掘阶段的主控因素。与前人的研究结果相似,本文证实重力是复杂撞击坑形成过程的挖掘阶段的一个主控因素。另外,本文发现撞击速度在撞击挖掘过程中也起到不可忽视的作用。不同于典型的月球二次撞击坑,有些水星撞击坑形成了大量分布相对离散的圆形二次撞击坑。分析其原因表明水星局部区域和层位的物质具有独特的物性,影响了撞击挖掘过程中的溅射角度。该物质特性很可能与水星壳层内部富含挥发分的低反照率物质有关。
     (9)在太阳系天体表面,撞击坑内的中央凹陷一般归因于被撞击体中的水冰等挥发分对撞击过程的影响。由于月球和水星的壳层内相对缺乏挥发分,前人一般认为水星和月球撞击坑中不存在中央凹陷。本文在一些月球撞击坑和水星撞击坑内(包括哥白尼纪和柯伊伯纪的撞击坑)发现了中央凹陷。通过建立其形态、大小、年龄、和分布位置的数据库,本文对比了水星和月球与其他天体上的撞击坑内的中央凹陷,并提出形成月球和水星撞击坑的中央凹陷不需要挥发分,而与撞击过程自身有关。
The Moon and Mercury are the two similar-sized bodies in the inner Solar System that resemble each other in the appearance. The two bodies share many common physical similarities, for examples both of them have silicate crust and airless surfaces, so that previous studies usually compare similar geological activity on the Moon and Mercury to better understand the basic mechanical rules of the geological activity.
     The lunar stratigraphic ages are well-constrained with the help of returned samples. The most recent geological epoch on the Moon is the Copernican age that started~800Ma represented by the Copernicus impact. All lunar rayed craters (i.e., craters with impact rays) formed during the Copernican age. On the contrary, the stratigraphic ages of Mercury were referred from those of the Moon and their absolute ages were not well established due to the lack of samples. The Kuiperian age is regarded as the youngest stratigraphic age on Mercury which was named after the Kuiper crater. The Kuiperian age corresponds to the Copernican age on the Moon and previous studies assigned an age of~800Ma for the Kuiperian age. All rayed craters on Mercury formed during the Kuiperian age. It is generally accepted that after~800Ma, endogenic geological activity has ceased on both the Moon and Mercury, and meteor impacts have been the dominant surface geological activity.
     Recently, the success insertion of the Lunar Reconnaissance Orbiter (LRO) to the orbit about the Moon and the MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) spacecraft to the orbit about Mercury has obtained huge amount of valuable scientific data, which have greatly promoted our understanding of the surface geological evolution of these two bodies. More importantly, analog studies of geologic activity on the Moon and Mercury provide new windows for understanding surface geological evolution across Solar System bodies. Using imagery, topography, gravity and reflectance spectral data returned from various spacecrafts (especially from LRO and MESSENGER), we find that some very recent geological activity has been occurring on both the Moon and Mercury. Among these discoveries, some have changed previous understandings about the thermal evolution and surface geological evolution of both the Moon and Mercury, such the Kuiperian explosive volcanism, activity of crustal volatile on Mercury, and widely-occurred Copernican-aged mass wasting features. Some others have improved our understanding of the basic mechanical rules for each geological activity, for example, analog studies for cooling fractures developed in Copernican-aged impact melt on the Moon and Kuiperian-aged impact melt on Mercury shed light on the development of columnar joints on different planetary bodies.
     In general, this dissertation targets the Copernican-aged and Kuiperian-aged geological activity on the Moon and Mercury, and also their indications. The abstracts for the discovered recent geological activity are the following:
     (1) This dissertation updates the absolute age scale for mercurian straitigraphies younger than Calorian. Global rayed craters and morphological Class1craters in the mid-low latitude regions on Mercury are collected. After testing the completeness of the database, the absolute model ages for these crater populations are calculated using the most updated crater counting technique and avoiding potential problems. The results suggest that the Class1crater population on Mercury has an average model age of~1.26Ga and the rayed crater population has an average model age of159Ma. Mercurian craters that have sharp rays yield a model age of40-60Ma.
     (2) A complex graben system that is composed of dozens of small graben is found in the southeastern continuous ejecta deposits of the Copernicus crater on the Moon. These graben verify that Copernican-aged extensional structures could form on the Moon although its global stress state has been compressional due to continuous global contraction. The graben system is located on a local high-relief area and no adjacent compressional features are visible associated with the graben. This area is located within a free-air and Bouguer gravity anomaly. After analyzing the morphology, geometry, and assemblage pattern of the graben system, we analyze the possible sources for the extensional stresses that formed the graben, especially about the reliability of the recently proposed shallow igneous intrusion model. Model calculation of the igneous intrusion model suggests that the gravity anomaly is not likely to be associated with the graben, and shallow igneous intrusion is not likely, or necessary in explaining the origin for the graben. The graben are most likely to form by a combined effect of activity of blind thrust faults and moonquakes, which is consistent with late-stage global contraction of the Moon.
     (3) Global-wide mass wasting movements have been happening on the Moon as seen in high-resolution images returned from the LRO mission. Although no surface water or atmosphere exists on the Moon, the mass wasting features highly resemble those on the Earth and some exhibit characteristics of low viscosity. Based on over300examples of various lunar mass wasting features, the morphology, geometry, slope angles, and ages of these features are included in a database. This dissertation finds that mass wasting is an important surface geological process in shaping regional geomorphology on the Moon. Mass wasting tends to decrease slope gradients over time. Nectarine and Pre-Nectarine terrains represent the final stage of surface topographic evolution on the Moon, where only regolith creeps occur. Mass wasting and impact cratering is the most important geological process in determining the thickness of regolith at regional scales, and mass wasting also affects the density of impact craters on slopes.
     (4) Several Mansurian-aged small-scale smooth plains that have formed from extrusive volcanic activity are found on Mercury. The plain material covers ejecta from adjacent morphological Class1craters, suggesting that extrusive volcanism occurred on Mercury after-1.26Ga. Moreover, some Kuiperian-aged volcanoes and pyroclastic deposits that have formed from explosive volcanism are found on Mercury. The pyroclastic deposits cover impact rays from adjacent craters indicating that melted material caused by partial melting of Mercury's mantle retains a high content of volatiles during Kuiperian, and the crustal thickness and thermal state of Mercury are still suitable to form surface volcanism. These findings are dramatically different from previous believes. Moreover, normal volcanoes and pyroclastic deposits on Mercury have both a higher reflectance and a larger spectral slope at the UV-VIR wavelengths compared with the global average of the planet. On the contrary, some Kuiperian-aged volcanoes and pyroclastic deposits have reflectances lower than the global average and smaller spectral slopes than the older ones. This suggests that the Kuiperian-aged pyroclastic deposits have different compositions and/or physical properties, which is meaningful to understand the thermal evolutionary history of the interior of Mercury.
     (5) Previous studies believed that after the end of late heavy bombardment in the inner Solar System (-3.8Ga), compressional tectonic features no longer formed in the crust of Mercury. However, here some giant lobate scarps on Mercury that are dozens of kilometers long are found to have transected both morphological Class1craters and also potentially rayed craters. Some lobate scarps crosscut small Kuiperian-aged craters on Mercury, indicating that compressional features caused by late-stage global contraction of Mercury occurred at Kuiperian. Comparing the relative age between vast areas of smooth plains and giant lobate scarps, it could be certain that due to continuous cooling and global contraction, the thickening of Mercury's crust have prohibited the extrusion of enormous amounts of melted material from the mantle during1.26-3.8Ga, and vast areas of extrusive volcanism has ceased during that time.
     (6) Numerous hollows and dark spots that are caused by loss of crustal volatiles are found on Mercury. Their morphology, geometry, global distributions, reflectance spectral, stratigraphic ages, potential compositions, and possible formation mechanisms are discussed. Both hollows and dark spots occur on various terrains on Mercury, except for high-reflectance smooth plains material. Bright haloed hollows are irregular-shaped rimless shallow depressions that are sometimes surrounded by high-reflectance material. The surrounding material has the highest reflectance on Mercury, and high-resolution images reveal that the high-reflectance surroundings are actually composed of numerous small pits that would grow larger to join the parent hollow. Hollows that have both bright interiors and exteriors may be still active and those without high reflectances might have ceased growing. Dark spots are thin surfacial dark material that occurs around hollows. The dark spot material has the lowest reflectance yet identified on the planet. However, not every hollow on Mercury has a surrounding dark spot. Dark spots may have formed from intense outgassing events that feature outgassing velocity exceeds~100m/s. Simultaneously, an embryonic hollow forms with the outgassing event that would steadily grow slowly to form bright haloed hollows. The dark spot material is very unstable on the surface of Mercury and its life time is smaller than that of impact rays on the planet. Therefore, all visible dark spots on Mercury must have formed at late Kuiperian. Materials forming dark spots and hollows are rich in volatiles that might have a high concentration of sulfur. The reason for the dramatically different reflectances between hollows and dark spots might be their different compositions and/or physical properties.
     (7) Impact melt vastly occur on floors and ejecta blankets of Copernican-aged lunar impact craters and Kuiperian-aged mercurian impact craters. Impact melt deposits on the Moon and Mercury mainly cool by thermal emission and the cooling process can form large enough thermal stresses creating extensional fractures. The morphology, geometry, and assemblage pattern of cooling fractures in impact melt deposits on the Moon and Mercury are studied and compared. The results suggest that the combined effect of depths of impact melt deposits, amounts of entrained solid debris in impact melt, and degree of vertical subsidence formed during the cooling process controls the development of cooling fractures. By comparing the cooling efficiency of impact melt and lava between the Moon and Mercury, it could be ascertain cooling rate caused solely by thermal radiation is not large enough to form columnar joints, and thermal convection and/or conduction is more important. Volatiles may be a necessary element in forming columnar joints on planetary bodies.
     (8) The median impact velocity of projectiles and surface gravity on the Moon and Mercury are different. We study the morphology and geometry of crater exterior structures for similar-sized fresh complex craters on the Moon and Mercury (including continuous ejecta deposits and continuous secondaries facies), the controlling factors during the impact excavation stage is analyzed using impact cratering scaling laws and comparative studies. This dissertation confirms a previous finding that gravity is a dominant controlling factor during the impact excavation stage of forming complex craters. We also find that impact velocity plays an equivalent role. Some craters on Mercury have more circular and isolated secondaries on the continuous secondaries facies than typical lunar secondaries. The most possible reason is that at some layers and positions on Mercury, the crustal material has special properties that have affected the impact excavation stage causing larger ejection angles and more circular secondaries. These target properties might be associated with low-reflectance material that may be caused by a higher content of volatiles compared with the average of the planet.
     (9) Central pits in impact craters on planetary bodies are supposed to be caused by the effect of target volatiles on cratering processes. Previous studies suggested that central pits would not form in impact craters on the Moon and Mercury due to the assumed low concentration of crustal volatiles. Here some impact craters on the Moon and Mercury are found to have both floor pits and summit pits (occur on central peaks) that are morphologically similar with those on Mars and icy satellites. Based on the database for the morphology, geometry, global distributions, and age of the central pit craters on the Moon and Mercury, central pit craters on different planetary bodies are compared. It is suggested that the central pits in impact craters on the Moon and Mercury do not need crustal volatiles to form, and forming central pits are related to an unknown mechanical process related to the cratering event.
引文
[1]肖龙.行星地质学.北京.地质出版社,2013.1-495.
    [2]Arvidson R E, Grimm R E, Phillips R J, et al.1990. On the nature and rate of resurfacing of Venus. Geophysical Research Letters,17 (9),1385-138.
    [3]Strom R G, Schaber G G, Dawson D D.1994. The global resurfacing of Venus. Journal of Geophysics Research,99 (E5),10,899-10,926.
    [4]Carr M H. The surface of Mars. U.K:Cambridge University Press.2006. Cambridge.
    [5]Solomon S C, McNutt R L, Gold R E, et al.2007. The MESSENGER mission to Mercury: Scientific objectives and implementation. Planetary and Space Science,49 (14),1445-1465.
    [6]Chin G, Brylow S, Foote M, et al.2007. Lunar Reconnaissance Orbiter Overview:The instrument suite and mission. Space Science Review,129,391-419.
    [7]Stern S A.1999. The lunar atmosphere:history, status, current problems, and context. Review of Geophysics 37,453-492.
    [8]Heiken G, Vaniman D, French B M.1991. Lunar source book:A user's guide to the Moon. Cambridge University Press, Cambridge.
    [9]Epstein S, Taylor Jr H P.1970. The concentration and isotopic composition of hydrogen, carbon and silicon in Apollo 11 lunar rocks and minerals. Geochimica et Cosmochimica Acta Suppl.1,1085-1096.
    [10]Epstein S, Taylor Jr. H P.1971. O18/O16, Si3o/Si28, D/H and C13/C12 ratios in lunar samples. Lunar and Planetary Science Conference Proceedings, pp.1421-1422.
    [11]Epstein S, Taylor Jr. H P, Trombka J I, et al.1972. O18/O16, Si3o/Si28, C13/C12 and D/H studies of Apollo 14 and 15 samples, In:Metzger, A.E. (Ed.), Lunar and Planetary Science Conference Proceedings, pp.1429-1430.
    [12]Friedman I, Gleason J D, Hardcastle K.1970. Water, hydrogen, deuterium, carbon and 13C content of selected lunar material. Geochimica et Cosmochimica Acta Supplement 1, 1103-1109.
    [13]Anand M.2010. Lunar water:A brief review. Earth Moon and Planets,107,65-73.
    [14]Papike J J, Ryder G, Shearer C K.1998. Lunar Samples. In:Papike J J (Ed.), Planetary Materials. Min. Soc. of Am., Washington, D.C., USA, pp.1-234.
    [15]Feldman W C, Maurice S, Binder A B et al.1998. Fluxes of fast and epithermal neutrons from lunar prospector:evidence for water ice at the lunar poles. Science,281,1496-1500.
    [16]Feldman W C, Lawrence D J, Elphic R C, et al.2000. Polar hydrogen deposits on the Moon. Journal of Geophysical Research 105,4175-4196.
    [17]Nozette S, Lichtenberg C L, Spudis P, et al.1996. The Clementine bistatic radar experiment. Science,274,1495-1498.
    [18]Nozette S, Shoemaker E M, Spudis P, et al.1997. The possibility of ice on the Moon. Science,278,144-145.
    [19]Clark R N.2009. Detection of adsorbed water and hydroxyl on the Moon. Science,326. 562-564.
    [20]Pieters C M, Goswami J N, Clark R N, et al.2009. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science,326,568-572.
    [21]Sunshine J M, Farnham T L, Feaga L M, et al.2009. Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science,326,565-568.
    [22]Colaprete A, Schultz P, Heldmann J, et al.2010. Detection of water in the LCRUSS ejecta plume. Science,330,463-468.
    [23]Jaumann R, Hiesinger H, Anand M, et al.2012. Geology, geochemistry, and geophysics of the Moon:Status of current understanding. Planetary and Space Science,74 (1),15-41. http://dx.doi.org/10.1016/j.pss.2012.08.019.
    [24]Chyba C F.1991. Terrestrial mantle siderophiles and the lunar impact record. Icarus,92, 217-233.
    [25]Shearer C K, Hess P C, Wieczorek M, et al.2006. Thermal and magmatic evolution of the Moon. In:Jolliff B, Wieczorek M, Shearer C K, Neal C (Eds.), New views of the Moon. Min. Soc. of Am.,365-518.
    [26]Solomon S C, Longhi J.1977. Magma oceanography. Ⅰ-Thermal evolution. In:Merril, R.B. (Ed.), Lunar and Planetary Science Conference Proceedings,583-599.
    [27]Longhi J.1980. Lunar crust, Achondrites. Geotimes,25,19-20.
    [28]Shearer C K, Newsom H E.2000. W-Hf isotope abundances and the early origin and evolution of the Earth-Moon system. Geochimica et Cosmochimica Acta,64,3599-3613.
    [29]Neal C R, Taylor L A, Schmitt H H, et al.1992. Using Apollo 17 High-Ti Mare Basalts as Windows to the Lunar Mantle. In:Ryder, G. (Ed.), Geology of the Apollo 17 Landing Site, 40-41.
    [30]Taylor L A, Longi J.1991. Workshop on mare volcanism and basalt petrogenesis: astounding fundamental concepts (AFC) developed over the last fifteen years. In:Taylor, L A (Ed.), Mare Volcanism and Basalt Petrogenesis:Astounding Fundamental Concepts.
    [31]Pieters C M, Head J W, Whitford-Stark J L, et al.1980. Late high-titanium basalts of the western maria-geology of the Flamsteed region of Oceanus Procellarum. Journal of Geophysical Research,85,3913-3938.
    [32]Taylor S R.1982. Lunar and terrestrial crusts-a contrast in origin and evolution. Physics of the Earth and Planetary Interiors 29,233-241.
    [33]Cohen B A, Swindle T D, Kring D A.2000. Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science,290,1754-1756.
    [34]Terada K, Anand M, Sokol A K, et al.2007. Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature,450,849-852.
    [35]Hiesinger H, Jaumann R, Neukum G, et al.2000. Ages of mare basalts on the lunar nearside. Journal of Geophysical Research,105,29239-29276.
    [36]Stoffler D, Knoell H D, Marvin U B, et al.1980. Recommended classification and nomenclature of lunar highland rocks-A committee report. In:Merrill, R.B. (Ed.), Lunar Highlands Crust,51-70.
    [37]McKay D S, Morris R V, Jurewicz A J.1991. Experimental reduction of simulated lunar glass by carbon and hydrogen and implications for lunar base oxygen production. Lunar and Planetary Science Conference Abstracts 22,49-52.
    [38]Bart G D, Nickerson R D, Lawder M T, et al.2011. Global survey of lunar regolith depths from LROC images. Icarus,215,485-490.
    [39]Lammlein D R, Latham G V, Dorman J, et al.1974. Lunar seismicity, structure and tectonics. Rev Geophys Space Phys.,12,1-21.
    [40]Pike R J.1980. Geometric interpretation of lunar craters. U. S. Geol. Survey Prof. Paper, 1046-C.
    [41]Melosh H J.1989. Impact Cratering:A Geological Process. Oxford University Press.
    [42]Melosh H J.2010. Planetary Surface Processes. Cambridge University Press, Cambridge, UK.
    [43]Hartmann W K, Wood C A.1971. Moon:origin and evolution of multi-ring basins. Moon 3, 3-78.
    [44]Wilhelms D E, McCauley J F, Trask N J.1987. The geologic history of the Moon. U. S. Geol. Survey Prof. Paper 1348.
    [45]Spudis P D.1993. The geology of multi-ring impact basins. Cambridge Planet. Sci Ser.8, 263 pp. Cambridge Univ. Press.
    [46]Frey H V, Romine G C.2011. New Candidate Large Lunar Basins from LOLA Data. Lunar and Planetary Science Conference Abstracts,1190-1191.
    [47]Frey H V, Meyer H M, Romine G C.2012. Improving the inventory of large lunar basins: using LOLA data to test previous candidates and search for new ones. Lunar and Planetary Science Conference Abstracts,1848-1849.
    [48]Head III J W.1976. Lunar volcanism in space and time. Review of Geophysics Space Science 14,265-300.
    [49]Head Ⅲ J W, Wilson L.1992. Lunar mare volcanism-stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochimica et Cosmochimica Acta,56,2155-2175.
    [50]Horz F, Grieve R A F, Heiken G H, et al.1991. Lunar surface processes. In:Heiken, GH., Vaniman, D.T., French, B.M. (Eds.), Lunar Sourcebook-A User Guide to the Moon. Cambridge Univ. Press, Cambridge, UK, pp.61-120.
    [51]Gifford A W, El-Baz F.1978. Thickness of mare flow fronts. Lunar Planet Sci IX,382-384, Lunar and Planetary Institute.
    [52]Howard K A, Head J W, Swann G A.1973. Geology of Hadley Rille. Proc Lunar Sci Conf, 3,1-14.
    [53]Brett R.1975. Thicknesses of some lunar mare basalt flows and ejecta blankets based on chemical kinetic data. Geochim Cosmochim Acta,39,1135-1143.
    [54]Schaber G G. 1973. Lava flows in Mare Imbrium:geologic evaluation from Apollo orbital photography. Proc Lunar Planet Sci Conf 4,73-92.
    [55]Schaber G G, Boyce J M, Moore H J.1976. The scarcity of mapable flow lobes on the lunar maria:Unique morphology of the Imbrium flows. Proc Lunar Sci Conf 7,2783-2800.
    [56]Hiesinger H, Head J.2006. New views of lunar geoscience:an introduction and overview. Reviews in Mineralogy and Geochemistry 60,1-81.
    [57]Hurwitz D M, Head J W, Wilson L, et al.2012. Origin of lunar sinuous rilles:modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz. Journal of Geophysical Research 117, E00H14.
    [58]Williams J G, Boggs D H, Yoder C F, et al.2001. Lunar rotational dissipation in solid body and molten core. Journal of Geophysical Research,106,27933-27968
    [59]Schubert G, Lingenfelter R E, Peale S J.1970. The morphology, distribution, and origin of lunar sinuous rilles. Review of Geophysics Space Science,8,199-224.
    [60]Head J W, Wilson L.1979. Alphonsus-type dark-halo craters:Morphology, morphometry and eruption conditions. Proc Lunar Planet Sci Conf.,10,2861-2897.
    [61]Gaddis L R, Pieters C M, Hawke B R.1985. Remote sensing of lunar pyroclastic mantling deposits. Icarus,61,461-489.
    [62]Weitz C M, Head J W, Pieters C M.1998. Lunar regional dark mantle deposits:Geologic, multispectral, and modeling studies. J Geophys Res,103,22725-22760.
    [63]Head J W. Wilson L.1992. Lunar mare volcanism:Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta,56,2155-2175.
    [64]Head J W.1976. Lunar volcanism in space and time. Rev Geophys Space Phys,14, 265-300.
    [65]Antonenko I, Head J W, Mustard J F, et al.1995. Criteria for the detection of lunar cryptomaria. Earth, Moon and Planets,69,141-172.
    [66]Giguere T A, Hawke B R, Blewett D T, et al.2003. Remote sensing studies of the Lomonosov-Fleming region of the Moon. Journal of Geophysics Research, doi 10.1029/2003 JE002069.
    [67]Hawke B R, Gillis J J, Giguere T A, et al.2005. Remote sensing and geologic studies of the Balmer-Kapteyn region of the Moon. Journal of Geophysics Research,110, doi 10.1029/2004 JE002383.
    [68]Ahrens T J, Rubin A M.1993. Impact-induced tensional failure in rock. Journal of Geophysics Research,98(E1),1185-1203.
    [69]Solomon S C, Head J W.1979. Vertical movement in mare basins:Relation to mare emplacement, basin tectonics, and lunar thermal history. Journal of Geophysics Research, 84,1667-1682.
    [70]Solomon S C, Head J W.1980. Lunar mascon basins:Lava filling, tectonics, and evolution of the lithosphere. Rev Geophys Space Phys.,18,107-141.
    [71]Yoder C F.1981. The free librations of a dissipative moon. Royal Society of London Philosophical Transactions Series A,303,327-338.
    [72]Dickey J O, Bender P L, Faller J E, et al.1994. Lunar laser ranging:a continuing legacy of the Apollo Program. Science,265,482-490.
    [73]Weber R C, Lin P-Y, Garnero E J, et al.2011. Seismic detection of the lunar core. Science, 331,309-312.
    [74]Wieczorek M A, Neumann G A, Nimmo F, et al.2013. The crust of the Moon as seen by GRAIL. Science,339 (6120),671-675.
    [75]Nakamura Y.2005. Farside deep moonquakes and deep interior of the Moon. Journal of Geophysical Research 110, E01001.
    [76]Wieczorek M, Jolliff B, Khan A, et al.2006. The constitution and structure of the lunar interior. Reviews on Mineralogy and Geochemistry,60,221-364.
    [77]Nakamura Y, Latham G, Lammlein D, et al.1974. Deep lunar interior inferred from recent seismic data. Geophysical Research Letters,1,137-140.
    [78]Nakamura Y.1977. HFT events-shallow moonquakes. Physics of the Earth and Planetary Interiors 14,217-223.
    [79]Nakamura Y, Latham G V, Dorman H J, et al.1979. Shallow moonquakes:depth, distribution and implications as to the present state of the lunar interior. In:Hinners, N.W. (Ed.), Lunar and Planetary Science Conference Proceedings,2299-2309.
    [80]Binder A B, Oberst J.1985. High stress shallow moonquakes-evidence for an initially totally molten moon. Earth and Planetary Science Letters,74,149-154.
    [81]Shirley J H.1985. Shallow moonquakes and large shallow earthquakes:a temporal correlation. Earth and Planetary Science Letters,76,241-253.
    [82]Oberst J.1987. Unusually high stress drops associated with shallow moonquakes. Journal of Geophysical Research,92,1397-1405.
    [83]Frohlich C, Nakamura Y.2006. Possible extra-Solar-System cause for certain lunar seismic events. Icarus,185,21-28.
    [84]Elkins-Tanton L T.2012. Magma oceans in the inner Solar System. Review of Earth and Planetary Sciences,40,113-139.
    [85]Hartmann W K, Davis D R.1975. Satellite-sized planetesimals and lunar origin. Icarus,24, 504-514.
    [86]Canup R M, Esposito L W.1996. Accretion of the Moon from an impactgenerated disk. Icarus 119,427-446.
    [87]Canup R M.2004. Simulations of a late lunar-forming impact. Icarus,168,433-456.
    [88]Canup R M.2012. Forming a Moon with an Earth-like composition via a giant impact. Science,338 (6110),1052-1055.
    [89]Pollack H N, Hurter S J, Johnson J R.1993. Heat flow from the earth's interior-analysis of the global data set. Review of Geophysics,31,267-280.
    [90]Spohn T, Konrad W, Breuer D, et al.2001. The longevity of lunar volcanism:implications of thermal evolution calculations with 2D and 3D mantle convection models. Icarus,149, 54-65.
    [91]Langseth Jr M G, Clark Jr S P, Chute Jr J L, et al.1972. The Apollo 15 lunar heat-flow measurement. Moon,4,390-410.
    [92]Langseth M G, Keihm S J, Peters K.1976. Revised lunar heat-flow values. In:Kinsler, D.C. (Ed.), Lunar and Planetary Science Conference Proceedings,3143-3171.
    [93]Warren P H, Rasmussen K L.1987. Megaregolith insulation, internal temperatures, and bulk uranium content of the moon. Journal of Geophysical Research,92,3453-3465.
    [94]Jolliff B L, Gillis J J, Haskin L A, et al.2000. Major lunar crustal terranes. Surface expressions and crust-mantle origins. Journal of Geophysical Research,105,4197-4216.
    [95]Warren P H, Wasson J T.1979. The origin of KREEP. Reviews of Geophysics and Space Science,17,73-88.
    [96]Morota T, Haruyama J, Ohtake M, et al.2011. Timing and duration of mare vulcanism in the central region of the northern farside of the Moon. Earth, Planets, and Space,63,5-13.
    [97]Laneuville M, Wieczorek M A, Breuer D, et al. Asymmetric thermal evolution of the Moon. 2013. Journal of Geophysical Research,118,1435-1452.
    [98]Stoffler D, Ryder G.2001. Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Science Reviews,96,9-54.
    [99]Stoffler D, Ryder G, Ivanov, B A, et al.2006. Cratering history and lunar chronology. In: Jolliff B L, Shearer M A W, Neal C K (Eds.), New Views of the Moon Min. Soc. of Am., pp. 519-596.
    [100]Neukum G, Ivanov B A, Matthews M S, et al.1994. Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data. In: Gehrels, T. (Ed.), Hazards Due to Comets and Asteroids,359-360.
    [101]Haskin L A, Korotev R L, Rockow K M, et al.1998. The case for an Imbrium origin of the Apollo Th-rich impact-melt breccias. Meteorite and Planetary Science,33,959-975.
    [102]Haskin L A, Moss B E, McKinnon W B.2003. On estimating contributions of basin ejecta to regolith deposits at lunar sites. Meteorite and Planetary Science,38(Nr 1),13-33.
    [103]Neukum G, Ivanov B A.1994. Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data. In:Hazard Due to Comets and Asteroids. Gehrels T (ed) Univ. of Ariz. Press,359-416.
    [104]Marchi S, Bottke W F, Kring D A, et al.2012. The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth and Planetary Science Letters,325,27-38.
    [105]Tera F, Papanastassiou D A, Wasserburg G J.1974. Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters,22,1-21.
    [106]Bottke W F, Vokrouhlicky D, Minton D, et al.2012. An Archean heavy bombardment from a destabilized extension of the asteroid belt. Nature,485,78-81.
    [107]Andrews-Hanna J C, Asmar S W, Head J W, et al.2013. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science,339 (6120), 675-678.
    [108]Wieczorek M A, Zuber M T, Phillips R J.2001. The role of magma buoyancy on the eruption of lunar basalts. Earth and Planetary Science Letters,185,71-83.
    [109]Hiesinger H, Head J W, Wolf U, et al.2003. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. Journal of Geophysical Research 108, E5065.
    [110]Hiesinger H, Head J, Wolf U, et al.2011. Ages and stratigraphy of lunar mare basalts:a synthesis. The Geological Society of America Special Paper,477,1-51.
    [111]Wagner R, Head J W, Wolf U, et al.2010. Lunar red spots:stratigraphic sequence and ages of domes and plains in the Hansteen and Helmet regions on the lunar nearside. Journal of Geophysical Research 115, E06015.
    [112]Wagner R, Head J W, Wolf U, et al.2002. Stratigraphic sequence and ages of volcanic units in the Gruithuisen region of the Moon. Journal of Geophysical Research,107, E5104.
    [113]Bruno B C, Lucey P G, Hawke B R, et al.1991. High-resolution UV-visible spectroscopy of lunar red spots. In:Ryder, G. (Ed.), Lunar and Planetary Science Conference Proceedings,405-415.
    [114]Schultz P H, Spudis P D.1983. Beginning and end of lunar mare volcanism. Nature 302,233-236.
    [115]Watters T R, Robinson M S, Beyer R A, et al.2010. Evidence of recent thrust faulting on the moon revealed by the lunar reconnaissance orbiter camera. Science,329,936-940.
    [116]Watters T R, Robinson M S, Banks M E, et al.2012. Recent extensional tectonics on the Moon revealed by the Lunar Reconnaissance Orbiter Camera. Nature Geoscience,5, 181-185.
    [117]Banks M E, Watters T R, Robinson M S, et al.2012. Morphometric analysis of small-scale lobate scarps on the Moon using data from the Lunar Reconnaissance Orbiter. Journal of Geophysical Research,117, E00H11, doi:10.1029/2011JE003907.
    [118]Holsapple K A.1993. The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci.21,333-373.
    [119]Chabot N L, Ernst C M, Harmon J K, et al.2013. Craters hosting radar-bright deposits in Mercury's north polar region:Areas of persistent shadow determined from MESSENGER images. Journal of Geophysical Research,118,26-36, doi:10.1029/2012JE004172.
    [120]Chabot N L, Ernst C M, Denevi B W, et al.2012. Areas of permanent shadow in Mercury's South Polar Region ascertained by MESSENGER orbital imaging, Geophysical Research Letters, doi:10.1029/2012GL051526.
    [121]Pike R J.1988. Geomorphology of impact craters on Mercury. In:Mercury. Eds., Vilas F, Chapman C R, Matthews M S, University of Arizona Press, pp.165-273, Tucson, Arizona.
    [122]Baker D M H, Head III J W, Schon S C, et al.2011. The transition from complex crater to peak-ring basin on Mercury:new observations from MESSENGER flyby data and constraints on basin formation models. Planetary and Space Science,15,1932-1948, doi: 10.1016/j.pss.2011.05.010.
    [123]Head J W, Murchie S L, Prockter L M, et al.2008. Volcanism on Mercury:Evidence from the first MESSENGER flyby. Science,321,69-72, doi:10.1126/science.1159256.
    [124]Wilhelms D E.1976. Mercurian volcanism questioned. Icarus,28,551-558.
    [125]Oberbeck V R, Quaide W L, Arvidson R E, et al.1977. Comparative studies of lunar, Martian, and Mercurian craters and plains. Journal of Geophysical Research,82(11), 1681-1698, doi:10.1029/JB082i011p01681.
    [126]Murray B C.1975. The Mariner 10 pictures of Mercury:An overview. Journal of Geophysical Research,80(17),2342-2344, doi:10.1029/JB080i017p02342.
    [127]Murray B C, Strom R G, Trask N J, et al.1975. Surface history of Mercury: implications for terrestrial planets. Journal of Geophysical Research,80,2508-2514.
    [128]Trask N J, Guest J E.1975. Preliminary geologic terrain map of Mercury. Journal of Geophysical Research,80,2461-2477.
    [129]Strom R G, Trask N J, Guest J E.1975. Tectonism and volcanism on Mercury. Journal of Geophysical Research,80,2478-2507.
    [130]Strom R G.1977. Origin and relative age of lunar and mercurian intercrater plains. Phys. Earth Planet. Inter.,15,156-172.
    [131]Dzurisin D.1978. The tectonic and volcanic history of mercury as inferred from studies of scarps, ridges, troughs, and other lineaments. Journal of Geophysical Research, 83(B10),4883-4906, doi:10.1029/JB083iB10p04883.
    [132]Strom R G, Banks M E, Chapman C R, et al.2011. Mercury crater statistics from MESSENGER flybys:Implications for stratigraphy and resurfacing history. Planetary and Space Science,59,1960-1967.
    [133]Spudis P D, Guest J E.1988. Stratigraphy and geologic history of Mercury. In: Mercury, edited by Vilas F, Chapman C R, Matthews M S.118-164, University of Arizona Press, Tucson, Ariz.
    [134]Nittler L R, Starr R D, Weider S Z, et al.2011. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry. Science,333,1847-1850.
    [135]Weider S Z, Nittler L A, Starr R D, et al.2012. Chemical heterogeneity on Mercury's surface revealed by the MESSENGER X-Ray Spectrometer. Journal of Geophysical Research,117, E00L05, doi:10.1029/2012JE004153.
    [136]Denevi B W, Ernst C M, Meyer H M, et al.2013. The distribution and origin of smooth plains on Mercury, Journal of Geophysical Research,118, doi:10.1002/jgre.20075.
    [137]Strom R G, Malhotra R, Ito T, et al.2005. The origin of planetary impactors in the inner solar system. Science,309,1847-1850.
    [138]Marchi S, Chapman C R, Fassett C I, et al.2013. Global resurfacing of Mercury 4.0-4.1 billion years ago by heavy bombardment and volcanism. Nature,499,59-61.
    [139]Head J W, Chapman C R, Strom R G, et al.2011. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science,333,1853-1856.
    [140]Murchie S L Watters T R, Robinson M S, et al.2008. Geology of the Caloris Basin, Mercury:A new view from MESSENGER. Science,321,73-76.
    [141]Robinson M S, Murchie S L, Blewett D T, et al.2008. Reflectance and color variations on Mercury:Regolith processes and compositional heterogeneity. Science,321,66-69.
    [142]Strom R G, Chapman C R, Merline W J, et al.2008. Mercury cratering record viewed from MESSENGER's first flyby. Science,321,79-81.
    [143]Fassett C I, Head J W, Blewett D T, et al.2009. Caloris impact basin:Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth and Planetary Science Letters,285,297-308.
    [144]Denevi B W, Robinson M S, Solomon S C, et al.2009. The evolution of Mercury's crust:A global perspective from MESSENGER. Science,324,613-618.
    [145]Stockstill-Cahill K R, McCoy T J, Nittler L R, et al.2012. Magnesium-rich crustal compositions on Mercury:Implications for magmatism from petrologic modeling. Journal of Geophysical Research,117, E00L15, doi:10.1029/2012JE004140.
    [146]Peplowski P N, Lawrence D J, Rhodes E, et al.2012. Variations in the abundances of potassium and thorium on the surface of Mercury:Results from the MESSENGER Gamma-Ray Spectrometer. Journal of Geophysical Research,117, E00L04, doi:10.1029/2012JE004141.
    [147]Byrne P K, Klimczak C, Williams D A, et al.2013. An assemblage of lava flow features on Mercury. Journal of Geophysical Research,118,1303-1322, doi:10.1002/jgre.20052.
    [148]Hurwitz D M, Head J W, Byrne P K, et al.2013. Investigating the origin of candidate lava channels on Mercury with MESSENGER data:Theory and observations. Journal of Geophysical Research, doi:10.1029/2012JE004103.
    [149]Kerber L, Head J W, Solomon S C, et al.2009. Explosive volcanic eruptions on Mercury:Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth and Planetary Science Letters,285,263-271, doi:10.1016/j.epsl.2009.04.037.
    [150]Kerber L, Head J W, Blewett D T, et al.2011. The global distribution of pyroclastic deposits on Mercury:The view from MESSENGER flybys 1-3. Planetary and Space Science,59,1895-1909, doi:10.1016/j.pss.2011.03.020.
    [151]Prockter L M, Ernst C M, Denevi B W, et al.2010. Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science.329,668-671.
    [152]Goudge T A, Head J W, Kerber L, et al.2012. Global inventory and characterization of pyroclastic deposits on Mercury:New insights into pyroclastic activity from MESSENGER orbital data. Lunar Planet. Sci.,43, abstract 1325.
    [153]Gillis-Davis J J, Blewett D T, Gaskell R W, et al.2009. Pit-floor craters on Mercury: Evidence of near-surface igneous activity. Earth and Planetary Science Letters,285, 243-250, doi:10.1016/j.epsl.2009.05.023.
    [154]Watters T R, Solomon S C, Robinson M S, et al.2009. The tectonics of Mercury:The view after MESSENGER'S first flyby. Earth and Planetary Science Letters,285,283-296, doi:10.1016/j.epsl.2009.01.025.
    [155]Harmon J K, Slade M A, Butler B, et al.2007. Mercury:Radar images of the equatorial and midlatitude zones. Icarus,187 (2),374-405.
    [156]Melosh H J, McKinnon W B.1988. The tectonics of Mercury. In:Mercury. Edited by F. Vilas, C. R. Chapman, and M. S. Matthews, pp.374-400, University of Arizona Press, Tucson, Ariz.
    [157]Thomas P G, Masson P, Fleitout L. In:Mercury. Edited by F. Vilas, C. R. Chapman, and M. S. Matthews, pp.401-428, University of Arizona Press, Tucson, Ariz.
    [158]Watters T R, Solomon S C, Klimczak C, et al.2012. Extension and contraction within volcanically buried impact craters and basins on Mercury. Geology,40 (12),1123-1126.
    [159]Head J W, Chapman C R, Domingue D L, et al.2007. The geology of Mercury:the view prior to the MESSENGER Mission. Space Science Review,131,41-84.
    [160]Watters T R, Nimmo F, Robinson M S.2005. Extensional troughs in the Caloris basin of Mercury:evidence of lateral crustal flow. Geology,33,669-672.
    [161]Klimczak C, Watters T R, Ernst C M, et al.2012. Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury:Strain analysis and implications for plains evolution, Journal of Geophysics Research,117, E00L03, doi:10.1029/2012JE004100.
    [162]Watters T R, Robinson M S, Bina C R, et al.2004. Thrust faults and the global contraction of Mercury. Geophysical Research Letters,31, L04071, doi: 10.1029/2003GL019171.
    [163]Freed A M, Solomon S C, Watters T R, et al.2009. Could Pantheon Fossae be the result of the Apollodorus crater-forming impact within the Caloris basin, Mercury? Earth and Planetary Science Letters,285,320-327, doi:10.1016/j.epsl.2009.02.038.
    [164]Byrne P K, Watters T R, Murchie S L, et al.2012. A tectonic survey of the Caloris basin, Mercury, Lunar Planet. Sci.,43, abstract 1722.
    [165]Blewett D T, Chabot N L, Denevi B W, et al.2011. Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science.333, 1856-1859, doi:10.1126/science.1211681.
    [166]Blewett D T, Vaughan W, Xiao Z, et al.2013. Mercury's hollows:Constraints on formation and composition from analysis of geological setting and spectral reflectance. Journal of Geophysics Research,118,1013-1032, doi:10.1029/2012JE004174.
    [167]Xiao Z, Strom R G, Blewett D T.2012. The youngest geologic terrains on Mercury. Lunar Planet. Sci.,43, abstract 2143.
    [168]Xiao Z, Strom R G, Blewett D T, et al.2013. Dark spots on Mercury:A distinctive low-reflectance material and its relation to hollows. Journal of Geophysics Research,118, doi:10.1002/jgre.20115.
    [169]Smith D E, Zuber M T, Phillips R J, et al.2012. Gravity field and internal structure of Mercury from MESSENGER. Science,336,214-217, doi:10.1126/science.1218809.
    [170]Charlier B, Grove T L, Zuber M T.2013. Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth and Planetary Science Letters,363,50-60.
    [171]Benz W, Slattery W L, Cameron A G W.1988. Collisional stripping of Mercury's mantle. Icarus,74,516-528.
    [172]Benz W, Anic A, Horner J.2007. The origin of Mercury. Space Sci Rev,132,189-202.
    [173]Hauck S A, Dombard A J, Phillips R J, et al.2004. Internal and tectonic evolution of Mercury. Earth and Planetary Science Letters,222,713-728.
    [174]Marchi S, Massironi M, Cremonese G, et al.2011. The effects of the target material properties and layering on the crater chronology:the case of Raditladi and Rachmaninoff basins on Mercury. Planetary and Space Science,59 (15),1968-1980.
    [175]Solomon S C.1977. The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth Planet. Inter.,15,135-145.
    [176]Strom R G. 1979. Mercury: a post Mariner-10 assessment. Space Sci. Rev.24,3-70.
    [177]Zuber M T, Aharonson O, Aurnou J M, et al. The Geophysics of Mercury:Current Status and Anticipated Insights from the MESSENGER Mission. Space Science Reviews, 131 (1-4),105-132.
    [178]Lewis J S,1972. Metal/silicate fractionation in the solar system. Earth Planet. Sci. Lett. 15,286-290.
    [179]Boynton W V, Sprague A L, Solomon S C, et al.2007. MESSENGER and the Chemistry of Mercury's Surface. Space Science Reviews,131 (1-4),85-104.
    [180]Schultz P H.1988. Cratering on Mercury:a relook. In:Mercury. Eds., Vilas, F., Chapman, C. R., Matthews, M. S. University Arizona Press, Tucson, Arizona, pp.274-335.
    [181]Gault D E, Gust J E, Murry J B, et al.1975. Some comparisons of impact craters on Mercury and the Moon. Geophys. Res. Lett.80 (17),2444-2460.
    [182]Barlow N G, Bradley T L.1990. Martian impact craters:correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus,87,156-179, http://dx.doi.org/10.1016/0019-1035(90)90026-6.
    [183]Barlow N G 2006. Impact craters in the northern hemisphere of Mars:layered ejecta and central pit characteristics. Meteoritics & Planetary Science,41,1425-1436.
    [184]Barlow N G. 2010. Central pit craters:observations from Mars and Ganymede and implications for formation models. Geological Society of America Special Papers,465, pp. 15-27.
    [185]Alzate N, Barlow N G. 2011. Central pit craters on Ganymede. Icarus,211,1274-1283.
    [186]Bray V J, Schenk P M, Melosh H J, et al.2012. Ganymede crater dimensions-implications for central peak and central pit formation and development. Icarus, 217,115-129.
    [187]Elder C M, Bray V J, Melosh H J.2012. The theoretical plausibility of central pit crater formation via melt drainage. Icarus,221,831-843.
    [188]Zuber M T, Smith D E, Lehman D H, et al.2013a. Gravity Recovery and Interior Laboratory (GRAIL):mapping the lunar interior from crust to core. Space Science Reviews, 174, doi:10.1007/s11214-012-9952-7.
    [189]Zuber M T, Smith D E, Watkins M M, et al.2013b. Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Science,339 (6120): 668-671.
    [190]Zuber M T, Smith D E, Asmar S W, et al.2013c. Gravity Recovery and Interior Laboratory (GRAIL):Extended Mission and Endgame Status.44th Lunar and Planetary Science Conference, abstract 1719.
    [191]Robinson M S, Brylow S M, Tschimmel M, et al.2010. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space. Sci. Rev.,150 (1-4),81-124.
    [192]Smith D E, Zuber M T, Neumann G A, et al.2010. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophysical Research Letters 37 (18), L18204, doi:10.1029/2010GL043751.
    [193]Scholten F, Oberst J, Matz K D,et al.2012. GLD100:The near-global lunar 100 m raster DTM from LROC WAC stereo image data. Journal of Geophysical Research,117, E00H17, doi:10.1029/2011JE003926.
    [194]Kato M, Sasaki S, Tanaka K, et al.2008. The Japanese lunar mission SELENE: Science goals and present status. Adv. Space Res.42,294-300.
    [195]Hawkins S E, Boldt J D, Darlington E H, et al.2007. The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev.,131,247-338, doi:10.1007/s11214-007-9266-3.
    [196]肖智勇,Strom R G,曾佐勋.2013.撞击坑统计技术在行星表面定年的应用中的误区.地球科学,待刊.
    [197]Arthur D W G, Agnierary A P, Howath R A, et al.1963. The system of lunar craters. Commun. Lunar Planet. Lab.,2,71-78.
    [198]Wood C A, Anderson L.1978. New morphometric data for fresh lunar craters. Proc. Lunar Planet. Sci. Conf.9th,3669.
    [199]Wood C A, Cintala M J, Head J W.1976. Morphological characteristics of fresh craters: Mercury, Moon and Mars. Abstracts of Papers Presented to the Conference on Conference on Comparisons of Mercury and the Moon.1976LPICo.262...38W.
    [200]Watters T R, Maxwell T A.1983. Cross-cutting relations and relative ages of ridges and faults in the Tharsis region of Mars. Icarus,56,278-298.
    [201]Raitala J. Composite graben tectonics of Alba Patera on Mars. Earth, Moon, and Planets,42 (3):277-291.
    [202]Boyce J M, Dial A L.1975. Relative ages of flow units in Mare Imbrium and Sinus Iridum. (Ed.) R. B. Merrill, Proceedings of the Sixth Lunar Conference, Pergamon Press, 2585-2595.
    [203]Craddock R A, Howard A D.2000. Simulated degradation of lunar impact craters and a new method for age dating farside mare deposits. Journal of Geophysics Research,105(8), 20387-20401.
    [204]Arvidson R E, Boyce J, Chapman C R, et al.1979. Standard techniques for presentation and analysis of crater size-frequency data. Icarus,37,467-474, doi:10.1016/0019-1035(79)90009-5.
    [205]Neukum G, Ivanov B A, Hartmann W K.2001a. Cratering records in the inner Solar System in relation to the lunar reference system. Space Sci. Rev.,96,55-86.
    [206]Neukum G, Oberst J, Hoffmann H, et al.2001b. Geologic evolution and cratering history of Mercury, Planetary and Space Sci.,49 (14-15),1507-1521.
    [207]Ivanov B A.2001. Mars/Moon cratering rate ratio estimates. Space Sci. Rev.,96, 87-104.
    [208]Hartmann W K, Neukum G. 2001. Cratering chronology and the evolution of Mars. Space Sci. Rev.,96,165-194.
    [209]陈圣波,孟治国,崔腾飞,等.2010.虹湾地区月球卫星遥感地质解析制图.中国科学:物理学、力学、天文学,40(11):1370-1379.
    [210]Huang J, Xiao L, He X X, et al.2011, Geological characteristics and model ages of Marius Hills on the Moon. Journal of Earth Science,22(5):601-609. doi: 10.1007/S12583-011-0211-8.
    [211]赵健楠,黄俊,肖龙,等.2013.撞击坑统计定年法及对月球虹湾地区的定年结果.地球科学,38(2):351-361.
    [212]Housen K R, Schmidt R M, Holsapple K A.1983. Crater ejecta scaling laws: fundamental forms based on dimensional analysis. Journal of Geophysics Research,88(B3), 2485-2499, doi:10.1029/JB088iB03p02485.
    [213]Le Feuvre M, Wieczorek M A.2011. Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus,214,1-20, doi:10.1016/j.icarus.2011.03.010.
    [214]Marchi S, Mottola S, Cremonese G, et al.2009. A new chronology for the Moon and Mercury. Astronomical Journal,137,4936-4948.
    [215]杨捷,肖龙,黄俊,等.2010.基于THEMIS图像分析的火星Icaria Fossae地区古老火山地貌特征与形成时间.地质科技情报.29(4):51-55.
    [216]Xiao L, Huang J, Christensen P., et al.2012. Ancient volcanism and its implication for thermal evolution of Mars. Earth and Planetary Science Letters,323,9-18, doi:10.1016/j.epsl.2012.01.027.
    [217]Chapman C R, Haefner R R.1967. A critique of methods for analysis of diameter-frequency relation for craters with special application to the Moon. Journal of Geophysics Research,72,549-557.
    [218]Hartmann W K.1964. On the distribution of lunar crater diameters. Comm. LPL,2, 197-203.
    [219]Neukum G, Konig B, Arkani-Hamed J.1975. A study of lunar impact crater size-distributions. Moon,12,201-229.
    [220]Strom R G 1977. Origin and relative age of lunar and Mercurian intercrater plains. Lunar and Planetary Science Conference 8th,914-916.
    [221]Chapman C R.2012. Assessment of evidence for two populations of impactors in the inner Solar System:Implications for terrestrial planetary body history. In:Microsymposium 53:Early History of the Terrestrial Planets:New Insights from the Moon and Mercury, March 17-18, Houston, TX.
    [222]Marchi S, McSween H Y, O'Brien D P, Pet al.2012b. The violent collisional history of asteroid 4 Vesta. Science,336,690-694.
    [223]Strom R G, Malhotra R, Xiao Z, et al.2013. The inner solar system cratering record and the evolution of impactor populations, Research in Astronomy and Astrophysics, submitted.
    [224]Head III J W, Fassett C I, Kadish S J, et al.2010. Global distribution of large lunar craters:Implications for resurfacing and impactor populations. Science,329,5998, 1504-1507.
    [225]Fassett C I, Head J W, Kadish S J, et al.2012. Lunar impact basins:Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data. Journal of Geophysics Research,117, E00H06, doi:10.1029/2011JE003951.
    [226]Mangold N, Adeli S, Conway S, et al.2012. A chronology of early Mars climatic evolution from impact crater degradation. Journal of Geophysics Research,117, E04003, doi:10.1029/2011JE004005.
    [227]Gault D E.1970. Saturation and equilibrium conditions for impact cratering on the lunar surface. Criteria and implications. Radio Science,5 (2),273-291.
    [228]Woronow A.1977. Crater saturation and equilibrium-A Monte Carlo simulation. J. Geophys. Res.,82,2447-2456.
    [229]Woronow A.1978. A general cratering-history model and its implications for the lunar highlands. Icarus,34,76-88.
    [230]Chapman C R, McKinnon W B.1986. Cratering of planetary satellites. In:Burns, J. A., Matthews, M. S. (Eds.), Satellites,492-580.
    [231]Richardson J E.2009. Cratering saturation and equilibrium:A new model looks at an old problem. Icarus,204,697-715.
    [232]Hartmann W K, Gaskell R W.1997. Planetary cratering 2:Studies of saturation equilibrium. Meteorit. Planet. Sci.,32,109-121.
    [233]Hartmann W. K.1984. Does crater'saturation equilibrium' occur in the Solar System? Icarus,60,56-74.
    [234]Namiki N, Honda C.2003. Testing hypotheses for the origin of steep slope of lunar size-frequency distribution for small craters. Earth Planets Space,55,39-51.
    [235]Xiao Z, Strom R G.2012. Problems determining relative and absolute ages using the small crater population. Icarus,220,254-267.
    [236]Ivanov B A.2006. Earth/Moon impact rate comparison:Searching constraints for lunar secondary/primary cratering proportion/Icarus.183 (2),504-507.
    [237]Michael G G, Neukum G.2010. Planetary surface dating from crater size-frequency distribution measurements:Partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett.,294,223-229.
    [238]Hiesinger H, Head J W, Wolf U, et al.2010. Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements. J. Geophys. Res. (Planets),115(E3):03003. doi:10.1029/2009JE003380.
    [239]Oberbeck V R, Morrison R A.1973. The lunar herringbone pattern. NASA Spec. Publ., 330, section 32, pp.15-29.
    [240]McEwen A S, Preblich B S, Turtle E P, et al.2005. The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus,176,351-381.
    [241]Dundas C M, McEwen A S.2007. Rays and secondary craters of Tycho. Icarus,186, 31-40.
    [242]Xiao Z, Strom R G, Chapman C R, et al.2013. Controlling factors in impact excavation processes:Insights from comparisons of fresh impact craters on Mercury and the Moon. Icarus, submitted.
    [243]Bierhaus E B, Chapman C R, Merline W J.2005. Secondary craters on Europa and implications for cratered surfaces. Nature,437,1125-1127.
    [244]McEwen A S, Bierhaus E B.2006. The importance of secondary cratering to age constraints on planetary surfaces. Annu. Rev. Earth Planet. Sci.,34,540-567.
    [245]Robbins S J, Hynek B M.2011. Distant secondary craters from Lyot crater, Mars, and implications for surface ages of planetary bodies. Geophys. Res. Lett.,38, L05201, doi:10.1029/2010GL046450.
    [246]Hartmann W K.2005. Martian cratering.8. Isochron refinement and the history of martian geologic activity. Icarus,174,294-320.
    [247]Hartmann W K.2007. Martian cratering.9:Toward resolution of the controversy about small craters. Icarus,189,274-278.
    [248]Werner S C, Ivanov B A, Neukum G. 2009. Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains. Icarus,200,406-417.
    [249]McEwen A S, Eliason E M, Bergstrom J W, et al.2007. Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. (Planets),112, doi:E05S02, doi:10.1029/2005JE002605.
    [250]Hiesinger H, Bogert C H, Robinson M S, et al.2010. New crater size-frequency distribution measurements for Tycho crater based on lunar reconnaissance orbiter camera images. Lunar Planet. Sci. XXXXI, Abstract 2287.
    [251]Xiao Z, Zeng Z, Ding N, Molaro J.2013. Mass wasting on the Moon:How active is the lunar surface? Earth and Planetary Science Letters,376,1-11, http://dx.doi.org/10.1016/j.epsl.2013.06.015.
    [252]Coombs C R, Hawke B R, Lucey P G, et al.1990. The Alphonsus region:A geologic and remote-sensing perspective. Proc. Lunar and Plan. Sci. Conf.,20,161-174.
    [253]Wilcox B B, Robinson M S, Thomas P C, et al.2005. Constraints on 829 the depth and variability of the lunar regolith. Meteorit. Planet. Sci.,40 (695-710),830. http://dx.doi.org/10.1111/j.1945-5100.2005.tb00974.x.
    [254]Ostrach L R, Robinson M S, Denevi BW, et al.2011. Effects of incidence angle on crater counting observations. Lunar Planet Sci. Conf. XXXXII, Abstract 1202.
    [255]Schmedemann N, Kneissl T, Michael G, et al.,2012. Crater size-frequency distribution (CSFD) and chronology of Vesta-Crater counts matching HED Ages. Lunar Planet. Sci. XXXXIII, Abstract 2554.
    [256]Neukum G, Wagner R J, Wolf U, et al.,2006. The cratering record and cratering chronologies of the saturnian satellites and the origin of impactors:Results from Cassini ISS Data. Euro. Planet. Sci. Conf.,2006-A-00610.
    [257]Dones L, Chapman C R, McKinnon W B, et al.2009. Icy satellites of Saturn:Impact cratering and age determination, in Saturn from Cassini-Huygens. Springer Science+Business Media.
    [258]Strom R G, Woronow A, Gurnis M.1981. Crater Populations on Ganymede and Callisto. J. Geophys. Res.,86(A10),8659-8674, doi:10.1029/JA086iA10p08659.
    [259]Strom R G, Croft S K, Boyce J M.1990. The impact cratering record on Triton. Science,250,437-439.
    [260]McKinnon W B, Chapman C R, Housen K R.1991. Cratering of the Uranian satellites. In:Uranus, pp.629-692, University of Arizona Press.
    [261]Morota T, Furumoto M.2003. Asymmetrical distribution of rayed craters on the Moon. Earth Planet. Sci. Lett.,206,315-323, doi:10.1016/S0012-821X(02)01111-1.
    [262]Watters T R, Johnson C L.2010. Lunar tectonics. In:Watters, T. R., Schultz, R. A. (Eds.), Planetary Tectonics. Cambridge University Press, New York,121-182.
    [263]Wolfe E W, Bailey N G, Lucchitta B K, et al.1981. The geologic investigation of the Taurus-Littrow Valley:Apollo 17 landing site. U. S. Geological Survey Professional Paper, 1080,280pp.
    [264]Binder A B.1982. Post-Imbrian global lunar tectonism:Evidence for an initially totally molten Moon. The Moon and the Planets,26,117-133.
    [265]Binder A B, Gunga H C.1985. Young thrust-fault scarps in the highlands:Evidence for an initially totally molten Moon. Icarus,63:421-441, doi:10.1016/0019-1035(85)90055-7.
    [266]Nelson D M, Watters T R, Banks M E, et al.2013. Mapping lobate scarps on the Moon. 44th Lunar and Planetary Science Conference. abstract#2736.
    [267]Williams N R, Bell III J F, Watters T R, et al.2013. Small Graben and Recent Tectonic Deformation in Mare Frigoris.44th Lunar and Planetary Science Conference. abstract 2949.
    [268]Xiao Z, Zeng Z, Huang Q, et al.2013. Small graben in the southeastern ejecta blanket of the lunar Copernicus crater:Implications for recent shallow igneous intrusion on the Moon. Meteoritics & Planetary Science, under review.
    [269]Konopliv A S, Park R S, Yuan D, et al.2013. The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission. Journal of Geophysical Research Planets 118,1415-1434, doi:10.1002/jgre.20097.
    [270]McGill G E.1971. Attitude of fractures bounding straight and arcuate lunar rilles. Icarus,14:53-58.
    [271]Golombek M P.1979. Structural analysis of lunar grabens and the shallow crustal structure of the Moon. Journal of Geophysical Research,84(B9):4657-4666, doi:10.1029/JB084iB09p04657.
    [272]McGetchin T R, Settle M, Head J W.1973. Radial thickness variation in impact crater ejecta:Implications for lunar basin deposits. Earth Planetary Science Letters,20,226-236.
    [273]Solomon S C, Chaiken J.1976. Thermal expansion and thermal stress in the Moon and terrestrial planets:Clues to early thermal history. Proceedings in Lunar and Planetary Science Conference 7th, pp.3229-3243.
    [274]Li Z, Bruhn R L, Pavlis T L, et al.2010. Origin of sackung uphillfacing scarps in the Saint Elias orogen, Alaska:LIDAR data visualization and stress modeling. Geol. Soc. Am. Bull.122(9-10),1585-1589.
    [275]Wichman R W, Schultz P H.1995. Floor-fractured craters in Mare Smythii and west of Oceanus Procellarum:implications of crater modification by viscous relaxation and igneous intrusion models. Journal of Geophysical Research,100:21,209-21,218.
    [276]Jozwiak L M, Head J W, Zuber M T, et al.2012. Lunar floor-fractured craters: classification, distribution, origin and implications for magmatism and shallow crustal structure. Journal of Geophysical Research,117, E11005, doi:10.1029/2012JE004134.
    [277]Schultz P H.1976. Floor-fractured lunar craters. Moon 15,241-273.
    [278]Dombard A J, Gillis J J.2001. Testing the viability of topographic relaxation as a mechanism for the formation of lunar floor-fractured craters. Journal of Geophysical Research,106 (E11):27901-27909.
    [279]Dunne W M, Ferrill D A.1988. Blind thrust systems. Geology,16:33-36.
    [280]Lettis W, Wells D, Baldwin J.1997. Empirical observations regarding reverse earthquakes, blind thrust faults, and quaternary deformation:are blind thrusts truly blind? Bulletin of the Seismological Society of America,87:1171-1198.
    [281]Roering J J, Cooke M L, Pollard D D.1997. Why blind thrust faults do not propagate to the Earth's surface:numerical modeling of coseismic deformation associated with thrust-related anticlines. Journal of Geophysics Research,102(B6):11901-11912, doi:10.1029/97JB00680.
    [282]Lucchitta B K.1976. Mare ridges and related highland scarps:results of vertical tectonism? Proceedings Lunar Science Conference 7th, pp.2761-2782.
    [283]Schultz R A.2000. Localization of bedding plane slip and back thrust faults above blind thrust faults:keys to wrinkle ridge structure. Journal of Geophysics Research,105(E5), 12,035-12,052.
    [284]Nahm A L, Velasco A A.2013. Seismic energy release from moonquakes on small lunar lobate scarps.44th Lunar and Planetary Science Conference, abstract#1422.
    [285]Sleep N H.2011. Deep-seated downslope slip during strong seismic shaking. Geochemistry Geophysics Geosystems,12, Q12001, doi:10.1029/2011GC003838.
    [286]Bowin C.1983. Depth of principal mass anomalies contributing to Earth's geoid undulations and gravity anomalies. Marine Geodedy,7 (1-4):61-100, doi:10.1080/15210608309379476.
    [287]Featherstone W E, Hirt J, Kuhn M.2013. Band-limited Bouguer gravity identifies new basins on the Moon. Journal of Geophysical Research,118, doi:10.1002/jgre.20101.
    [288]Long P E, Wood B J.1986. Structures, textures, and cooling histories of Columbia River basalt flows. Geol. Soc. Am. Bull.,97,1144-1155.
    [289]Grossenbacher K, McDuffie S.1995. Conductive cooling of lava:Columnar joint diameter and stria width as functions of cooling rate and thermal gradient. J. Volcanol. Geotherm. Res.,69,95-103, doi:10.1016/0377-0273(95)00032-1.
    [290]DeGraff J M, Aydin A.1993. Effect of thermal regime on growth increment and spacing of contraction joints in basaltic lava. J. Geophys. Res.,98(B4),6411-6430, doi:10.1029/92JB01709.
    [291]Keszthelyi L, Denlinger R.1996. The initial cooling of pahoehoe flow lobes, Bull Volcanol,58,5-18.
    [292]Budkewitsch P, Robin P.1994. Modelling the evolution of columnar joints. J. Volcanol. Geotherm. Res.,59,219-239.
    [293]Head J W, Wilson L.1986. Volcanic processes and landforms on Venus:theory, predictions, and observations. J. Geophys. Res.,91:9407-9446.
    [294]Griffiths R W, Fink J H.1992. The morphology of lava flows in planetary environments:Predictions from analog experiments. J. Geophys. Res.,97(B13), 19739-19748, doi:10.1029/92JB01953.
    [295]Wilson L, Head J W.1994. Mars:review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys.,32,221-263.
    [296]Dragoni M.1989. A dynamical model of lava flows cooling by radiation. Bull. Volcanol.,51,88-95.
    [297]DeGraff J, Aydin A.1987. Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geol. Soc. Am. Bull.,99,605-617, doi: 10.1130/0016-7606(1987)99<605:SMOCJA>2.0.CO;2.
    [298]Peck D L, Minakami T.1968. The formation of columnar joints in the upper part of Kilauean lava lakes, Hawaii. Geol. Soc. Am. Bull.,79,1151-1166.
    [299]Ryan M P, Sammis C G.1978. Cyclic fracture mechanism in cooling basalt. Geol. Soc. Am. Bull.,89,1295-1308.
    [300]Wilson L, Head J W.2012. Impact melt sheets in lunar basins:Estimating thickness from cooling behavior.42nd Lunar Planet. Sci. Conf., Abstract 1345.
    [301]Spray J G, Thompson L M.1995. Friction melt distribution in a muti-ring impact basin. Nature,373,130-132.
    [302]Weinberger R.2001. Evolution of polygonal patterns in stratified mud during desiccation:The role of flaw distribution and layer boundaries. Geol. Soc. Am. Bull.,113(1), 20-31.
    [303]Denevi B W, et al.2012. Physical constraints on impact melt properties from Lunar Reconnaissance Orbiter Camera images,219,665-675.
    [304]Xiao Z, Zeng Z, Li Z, et al.2013. Cooling fractures in impact melt deposits on the Moon and Mercury:Indications of cooling solely by thermal radiation. Journal of Geophysics Research, preparing.
    [305]Lawn B R, Wilshaw T R.1975. Fracture of Brittle Solids.204 pp., Cambridge University Press, New York.
    [306]Bray V J, Tomabene L L, Keszthelyi L P, et al.2010. New insight into lunar impact melt mobility from the LRO camera. Geophys. Res. Lett.,37, L21202, doi:10.1029/2010GL044666.
    [307]Xiao Z, Zeng Z, Xiao L, et al.2010. Origin of pit chains in the floor of lunar Copernican craters. Sci. China Phys. Mech.,53(12),2145-2159, doi: 10.1007/s11433-010-4174-z.
    [308]Ashley J W, Robinson M S, Hawke B R, et al.2012. Geology of the King crater region: New insights into impact melt dynamics on the Moon. J. Geophys. Res.,117, E00H29, doi: 10.1029/2011JE003990.
    [309]Morris A R, Head J W, Margot J, et al.2009. Impact melt distribution and emplacement on Tycho:A new look at an old question.39th Lunar Planet. Sci. Conf., Abstract 1828.
    [310]Shoemaker E M, Batson R M, Holt H E, et al.1969. Television observations from Surveyor. In:Surveyor Program Results, U.S. National. Aeronautics Space Admin. Spec. Publ.,SP-184,19-128.
    [311]Zanetti M, Hiesinger H, Jolliff B L.2013. Mapping Aristarchus crater:Geology, Geomorphology, and pre-impact stratigraphy.43rd Lunar Planet. Sci. Conf., Abstract 3114.
    [312]Grieve R A F, Cintala M J.1992. An analysis of differential impact melt-crater scaling and implications for the terrestrial cratering record. Meteoritics,27,526-538.
    [313]Settle M J, Head J W.1977. The role of rim slumping in the modification stage of lunar impact crater formation. J. Geophys. Res.,84 (B6),3081-3096.
    [314]Mtuler G 1998. Starch columns:Analog model for basalt columns. J. Geophys. Res., 103,15,239-15,253.
    [315]Bohn S, Pauchard L, Couder Y.2005. Hierarchical crack pattern as formed by successive domain divisions. I. Temporal and geometrical hierarchy. Phys. Rev. E,71, 046214.
    [316]Xiao Z, Komatsu G 2013. Impact craters with ejecta flows and central pits on Mercury. Planetary and Space Science,82,62-78, http://dx.doi.org/10.1016/j.pss.2013.03.015.
    [317]Waltham D, Pickering KT, Bray VJ.2008. Particulate gravity currents on Venus. J. Geophys. Res.,113, E02012,http://dx.doi.org/10.1029/2007JE002913
    [318]McEwen A S.1989. Mobility of large rock avalanches:Evidence from Valles Marineris, Mars. Geology,17,1111-1114.
    [319]Schenk P M, Buhner M K.1998. Origin of mountains on Io by thrust faulting and large-scale mass movements. Science,279,1514-1517.
    [320]Pike R J.1971. Some preliminary interpretations of lunar mass-wasting process from Apollo 10 photography. In:Analysis of Apollo 10 Photography and Visual Observations. NASA SP-232, Washington, DC, pp.14-20.
    [321]Lindsay J.1976. Energy at the lunar surfaces. In:Kopal, Z., Cameron, A.GW. (Eds.), Lunar Stratigraphy and Sedimentology. In:Developments in Solar System and Space Science, vol.3. Elsevier, pp.45-55.
    [322]Bart G D.2007. Comparison of small lunar landslides and martian gullies. Icarus,187, 417-421.
    [323]Brady T, Paschall S.2010. The challenge of safe lunar landing. In:IEEE Aerospace Conference, Abstract 1117,14 pp.
    [324]Ritter D F, Kochel C R, Miller J R.2006. Process Geomorphology, fourth edition. Waveland Press, Long Grove, pp.79-133.
    [325]Anderson R S, Anderson S P.2010. Geomorphology:The mechanics and chemistry of landscapes. Cambridge University Press, Cambridge, pp.304-347.
    [326]Cruden D M, Varnes D J.1996. Landslide types and processes. In:Turner, A.K., Schuster, R.L. (Eds.), Landslides, Investigation and Mitigation, Special Report 247. Transportation Research Board, Washington DC, pp.36-75
    [327]Highland L M, Bobrowsky P.2008. The Landslide Handbook:A Guide to Understanding Landslides. U.S. Geological Survey Circular 1325, pp.3-25.
    [328]Varnes D J.1978. Landslides:Analysis and control. TRB Special Report. Transportation Research Board, National Research Council, Washington, DC.
    [329]Malin M C, Edgett K S.2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science,288,2330-2335.
    [330]Losiak A, Wilhelms D E, Byrne C J, et al.2009. A new lunar impact crater database. In: 40th Lunar and Plan. Sci. Conf., Abstract 1532.
    [331]Blewett D T, Robinson M S, Denevi B W, et al.2009. Multispectral images of Mercury from the first MESSENGER flyby:Analysis of global and regional color trends. Earth Planet. Sci. Lett.,285,272-282, doi:10.1016/j.epsl.2009.02.021.
    [332]Trask N J.1971. Geologic comparison of mare materials in the equatorial belt/ including Apollo 11 and 12 landing sites. In:Geological Survey Research 1971, ppD138-D144. U. S. Geol. Surv. Prof. Pap.750-D.
    [333]Freed A M, Blair D M, Watters T R,et al.2012. On the origin of graben and ridges at buried basins in Mercury's northern plains.. J. Geophys. Res.,115, E00L06, doi:10.1029/2012JE004119.
    [334]Blair D M, Freed A M, Byrne P K, et al.2013. The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury. J. Geophys Res. Planets,118,47-58, doi:10.1029/2012JE004198.
    [335]Dzurisin D.1977. Mercurian bright patches:Evidence for physio-chemical alteration of surface material? Geophys. Res. Lett.,4,383-386, doi:10.1029/GL004i010p00383.
    [336]Schultz P H.1977. Endogenic modification of impact craters on Mercury. Phys. Earth Planet. Inter.,15,202-912, doi:10.1016/j.bbr.2011.03.031.
    [337]Rava B, Hapke B.1987. An analysis of the Mariner 10 color ratio map of Mercury. Icarus,71,397-429, doi:10.1016/j.bbr.2011.03.031.
    [338]Blewett D T, Denevi B W, Robinson M S, et al.2010. The apparent lack of lunar-like swirls on Mercury:Implications for the formation of lunar swirls and for the agent of space weathering. Icarus,209,239-246, doi:10.1016/j.icarus.2010.03.008.
    [339]Vaughan W M, Helbert J, Blewett D T, et al.2012. Hollowforming layers in impact craters on Mercury:Massive sulfide deposits formed by impact melt differentiation? Lunar Planet Sci.,43, abstract 1187.
    [340]Schultz P H, Staid M I, Pieters C M.2006. Lunar activity from recent gas release. Nature,444,184-186.
    [341]Staid M, Isaacson P, Petro N, et al.2011. The spectral properties of Ina:New observations from the Moon Mineralogy Mapper. Lunar Planet Sci.,42, abstract 2499.
    [342]Stooke P J.2012. Lunar meniscus hollows. Lunar Planet. Sci.,43, abstract 1011.
    [343]Garry W B, Robinson M S, Zimbelman J R, et al.2012. The origin of Ina:Evidence for inflated lavaflows on the Moon. J. Geophys. Res.,117, E00H31, doi:10.1029/2011JE003981.
    [344]Peplowski P N, Evans L G, Hauck S A, et al.2011. Radioactive elements on Mercury's surface from MESSENGER:Implications for the planet's formation and evolution. Science, 333,1850-1852, doi:10.1126/science.1211576
    [345]Evans L G, Peplowski P N, Rhodes E A, et al.2012. Major-element abundances on the surface of Mercury:Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res.,117, E00L07, doi:10.1029/2012JE004178, in press.
    [346]Malin M C, Caplinger M A, Davis S D.2001. Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science,294,2146-2148, doi:10.1126/science.1066416.
    [347]Byrne S, Ingersoll A P.2003. A sublimation model for martian south polar ice features. Science,299,1051-1053.
    [348]Le Feuvre M, Wieczorek M A.2008. Nonuniform cratering of the terrestrial planets. Icarus,197,291-306.
    [349]Helbert J, Maturilli A, D'Amore M, et al.2012. Spectral reflectance measurements of sulfides at the Planetary Emissivity Laboratory-Analogs for hollow-forming material on Mercury? Lunar Planet. Sci.,43, abstract 1381.
    [350]Trombka J I, Squyres S W, Bruckner J, et al.2000. The elemental composition of asteroid 433 Eros:Results of the NEAR-Shoemaker X-ray spectrometer. Science,289, 2101-2105, doi:10.1126/science.289.5487.2101.
    [351]Killen R M.2003. Depletion of sulfur on the surface of the asteroid Eros and the Moon. Meteorit. Planet. Sci.,38,383-388.
    [352]Kracher A, Sears D W G. 2005. Space weathering and the low sulfur abundance of Eros. Icarus,174,36-45, doi:10.1016/j.icarus.2004.10.010.
    [353]Sarantos M, Killen R M, Kim D.2007. Predicting the long-term solar wind ion-sputtering source at Mercury. Planet. Space Sci.,55,1584-1595.
    [354]Slavin J A, Anderson A B, Baker D N, et al.2010. MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail. Science,329,665-668.
    [355]Potter A E, Morgan T H.1985. Discovery of sodium in the atmosphere of Mercury. Science,229,651-653, doi:10.1126/science.229.4714.651.
    [356]McCord T B, Clark R N.1979. The Mercury soil:Presence of Fe2+. J. Geophys. Res., 84,7664-7668.
    [357]Vilas F.1988. Surface composition of Mercury from reflectance spectrophotometry, inMercury. Edited by F. Vilas, C. R. Chapman, and M. S. Matthews, pp.59-76, University of Arizona Press, Tucson, Ariz.
    [358]Warell J.2003. Properties of the hermean regolith III:Disk resolved vis-NIR reflectance spectra and implications for the abundance of iron. Icarus,161,1992-222.
    [359]Warell J, Blewett D T.2004. Properties of the hermean regolith V:New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modeling. Icarus, 168,257-276.
    [360]Warell J, Sprague A L, Emery J P, et al.2006. The 0.7-5.3mm IR spectra of Mercury and the Moon:Evidence for high-Ca clinopyroxene on Mercury. Icarus,180,281-291.
    [361]McClintock W E, Izenberg N R, Holsclaw G M, et al.2008. Spectroscopic observations of Mercury's surface reflectance during MESSENGER's first Mercury flyby. Science,321,62-65, doi:10.1126/science.1159933.
    [362]Domingue D L, Murchie S L, Denevi B W, et al.2011. Photometric correction of Mercury's global color mosaic. Planet. Space Sci.,59,1873-1887.
    [363]Denevi B W, Robinson M S.2008. Mercury's albedo from Mariner 10:Implications for the presence of ferrous iron. Icarus,197,239-246.
    [364]Warell J, Sprague A, Kozlowski R, et al.2010. Constraints on Mercury's surface composition from MESSENGER and ground-based spectroscopy. Icarus,209,138-163.
    [365]Lucey P G, Riner M A.2011. The optical effects of small iron particles that darken but do not redden:Evidence of intense space weathering on Mercury. Icarus,212,451-462.
    [366]Riner M A, Lucey P G.2012. Spectral effects of space weathering on Mercury:The role of composition and environment. Geophys. Res. Lett.,39, L12201, doi:10.1029/2012GL052065.
    [367]Blewett D T, Lucey P G, Hawke B R, et al.1997. A comparison of mercurian reflectance and spectral quantities with those of the Moon. Icarus,102,217-231.
    [368]Blewett D T, Hawke B R, Lucey P G.2002. Lunar pure anorthosite as a spectral analog for Mercury. Meteorit. Planet. Sci.,37,1245-1254.
    [369]Burbine T H, McCoy T J, Nittler L R, et al.2002. Spectra of extremely reduced assemblages:Implications for Mercury. Meteorit. Planet. Sci.,37,1233-1244
    [370]Nash D B.1987. Sulfur in vacuum:Sublimation effects on frozen melts, and applications to Io's surface and torus. Icarus,72,1-34.
    [371]Greeley R, Lee S W, Crown D A, et al.1990. Observations of industrial sulfurflows: Implications for Io. Icarus,84,374-402.
    [372]Moses J I, Nash D B.1991. Phase transformation and spectral reflectance of solid sulfur:Can metastable allotropes exist on Io? Icarus,89,277-304.
    [373]Hapke B.2001. Space weathering from Mercury to the asteroid belt. J. Geophys. Res., 106,10,039-10,073.
    [374]Noble S K, Pieters C M.2003. Space weathering on Mercury:Implications for remote sensing (in Russian). Astron. Vestnik,37,34-39 (Engl. transl.,Sol. Syst. Res.,37,31-35.)
    [375]Noble S K, Pieters C M, Keller L M.2007. An experimental approach to understanding the optical effects of space weathering. Icarus,192,629-642.
    [376]Lucey P G, Noble S K.2008. Experimental test of a radiative transfer model of the optical effects of space weathering. Icarus,197,348-353.
    [377]Riner M A, Lucey P G, Desch S J, et al.2009. Nature of opaque components on Mercury:Insights into a mercurian magma ocean. Geophys. Res. Lett.,36, L02201, doi:10.1029/2008GL036128.
    [378]Riner M A, McCubbin F M, Lucey P G, et al.2010. Mercury surface composition: Integrating petrologic modeling and remote sensing data to place constraints on FeO abundance. Icarus,209,301-313.
    [379]Helbert J, Maturilli A, D'Amore M.2013. Visible and near-infrared reflectance spectra of thermally processed synthetic sulfides as a potential analog for the hollow forming materials on Mercury. Earth Planet. Sci. Lett.,369-370,233-238.
    [380]Hapke B.2012. Theory of Reflectance and Emittance Spectroscopy.2nd ed., Cambridge University Press, New York.
    [381]Veverka J, Helfenstein P, Hapke B, et al.1988. Photometry and polarimetry of Mercury, In:Mercury. Edited by F.Vilas, C. R. Chapman, and M. S. Matthews, pp.37-58, Univ. of Arizona Press, Tucson, Ariz.
    [382]Warell J.2004. Properties of the Hermean regolith:IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modeling. Icarus,167,271-286.
    [383]Murray B C, Belton M J, Danielson G E, et al.1974. Mercury's surface:Preliminary description and interpretation from Mariner 10 pictures. Science,185,73-76.
    [384]Robinson M S, Lucey P G. 1997. Recalibrated Mariner 10 color mosaics:Implications for Mercurian volcanism. Science,275,197-200.
    [385]Hapke B.1977. Interpretations of optical observations of Mercury and the Moon. Phys. Earth Planet. Inter.,15,264-274.
    [386]Fischer E M, Pieters C M.1994. Remote determination of exposure degree and iron concentration of lunar soil using VIS-NIR spectroscopic methods. Icarus,111,475-488.
    [387]Lucey P G, Blewett D T, Hawke B R.1998. Mapping the FeO and TiO2 content of the lunar surface with multispectral imaging. J. Geophys. Res.,103,3679-3699.
    [388]Warell J, Valegird P G. 2006. Albedo-color distribution on Mercury:A photometric study of the poorly known hemisphere. Astron. Astrophys.,460,625-633.
    [389]Strom R G, Sprague A L.2003. Exploring Mercury, Praxis,216 pp.
    [390]Keller M R, Ernst C M, Denevi B W, et al.2013. Time-dependent calibration of MESSENGER's wide-angle camera following a contamination event. Lunar Planet. Sci.,44, abstract 2489.
    [391]Schon S C, Head J W, Baker D M H, et al.2011. Eminescu impact structure:Insight into the transition from complex crater to peak-ring basin on Mercury. Planet. Space Sci.,59, 1949-1959
    [392]Kieffer H H, Christensen P R, Titus T N.2006. CO2 jets formed by sublimation beneath translucent slab ice in Mars'seasonal south polar ice cap. Nature,442,793-796, doi:10.1038/nature04945.
    [393]Thomas N, Hansen C J, Portyankina G, et al.2010. HiRISE observations of gas sublimation-driven activity in Mars'southern polar regions:II. Surficial deposits and their origins. Icarus,205,296-310.
    [394]Cavanaugh J F, Smith J C, Sun X, et al.2007. The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev.,131,451-479, doi:10.1007/s11214-007-9273-4.
    [395]Schultz P H, Singer J.1980. A comparison of secondary craters on the Moon, Mercury and Mars. Proc. Lunar Planet. Sci. Conf.11th,2243-2259.
    [396]Cintala M J, Head J W, Mutch T A.1976. Characteristic of martian craters as a function of diameter:comparison with the Moon and Mercury. Geophys. Res. Lett.3, 117-120.
    [397]Smith E I., Hartnell J A.1978. Crater size-shape profiles for the Moon and Mercury: terrace effects and interplanetary comparisons. Moon and Planets,19,479-511.
    [398]Head III J W.1976. The significance of substrate characteristics in determining morphology and morphometry of lunar craters. Proc. Lunar Sci. Conf.7th,2913-2929.
    [399]Cintala M J, Wood C A, Head J W.1977. The effects of target characteristics on fresh impact crater morphologic features:preliminary results for the Moon and Mercury. Proc. Lunar Sci. Conf.8th,3409-3425.
    [400]Malin M C, Dzurisin D.1978. Modification of fresh crater landforms:evidence from the Moon and Mercury. J. Geophys. Res.,83:233-243.
    [401]Gault D E, Quaide W L, Oberbeck V. R.1968. Impact cratering mechanics and structure. In:Shock Metamorphism of Natural Materials. Eds., B. M. French and N. M. Short, Baltimore, Mono Book Corporation, pp.87-99.
    [402]Schultz P H.1976. Moon Morphology. University of Texas Press, Austin, Texas, pp. 1-604.
    [403]Cintala M J.1992. Impact-induced thermal effects in the lunar and mercurian regoliths. J. Geophys. Res.97 (E1),947-973, doi:10.1029/91JE02207.
    [404]Pike R J.1980. Control of crater morphology by gravity and target type:Mars, Earth, Moon. Proc. Lunar Planet. Sci. Conf.11th,2159-2189.
    [405]Hermalyn B, Schultz P H.2010. Early-stage ejecta velocity distribution for vertical hypervelocity impacts into sand. Icarus 209,866-870.
    [406]Gault D E, Wedekind J A.1978. Experimental studies of oblique impact. Lunar Planet. Sci.9,374-376.
    [407]Schultz P H.1992. Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan. J. Geophys. Res.,97,16,183-16,248.
    [408]Schultz P H, Eberhardy C A, Ernst C M, et al.2007. The Deep Impact oblique impact cratering experiment. Icarus,190,295-333, doi:10.1016/j.icarus.2007.06.006
    [409]Schultz P H, Gault D E.1985. Clustered impacts:experiments and implications. J. Geophys. Res.,90,3701-3732.
    [410]Guest J E, O'Donnell W P.1977. Surface history of Mercury:a review. Vistas in Astronomy,20,273-300.
    [411]Scott D H.1977. Moon-Mercury:relative preservation states of secondary craters. Phys. Earth Planet. Int.,15,173-178.
    [412]Buckingham E.1914. On physically similar systems:Illustrations of the use of dimensional equations. Phys. Rev.4 (4),345-376.
    [413]Holsapple K A, Schmidt R M.1987. Point source solutions and coupling parameters in cratering mechanics. J. Geophys. Res.,92,6350-6376.
    [414]Croft S K.1985. Scaling laws of complex craters:proceedings of the 15th Lunar and Planetary Science Conference. J. Geophys. Res.,90, C828-C842.
    [415]Pike R J.1977. Size-dependence in the shape of fresh impact craters on the Moon. In: Impact and explosion cratering:planetary and terrestrial implications. Proceedings of the Symposium on Planetary Cratering Mechanics, Flagstaff, Arizona, pp.489-509.
    [416]Maxwell D E.1977. Simple Z model for cratering, ejection, and the overturned flap. In: Impact and Explosion Cratering:Planetary and Terrestrial Implications. Eds., Roddy, D.J., Pepin, R.O., Merrill, R.B. New York, Pergamon, pp.1003-1008.
    [417]Richardson J E, Melosh H J, Lisse C M, et al.2007. A ballistics analysis of the Deep Impact ejecta plume:determining Comet Tempel 1's gravity, mass, and density. Icarus 190, 357-390, doi:10.1016/j.icarus.2007.08.033.
    [418]Maxwell D, Seifert K.1974. Modeling of cratering, close-in displacements, and ejecta. Report DNA 3628F, Defense Nuclear Agency, Washington, DC.
    [419]Ostrach L R, Robinson M S, Denevi B W.2012. Distribution of impact melt on Mercury and the Moon. Lunar Planet Sci. Conf.43rd, Abstract 1113.
    [420]Minton D A, Malhotra R.2010. Dynamical erosion of the asteroid belt and implications for large impacts in the inner solar system. Icarus 207,744-757, doi:10.1016/j.icarus.2009.12.008.
    [421]Cintala M J, Grieve R A F.1998. Scaling impact-melt and crater dimensions: Implications for the lunar cratering record. Meteorit. Planet. Sci.33,889-912, doi: 10.1111/j.1945-5100.1998.tb01695.x.
    [422]Schaber G G, Boyce J M.,1976. Moon-Mercury:basins, secondary craters and early flux history. Conf. on:Comparisons of Mercury and the Moon LSI Contrib.262, p.28.
    [423]Gault D E, Greeley R.1978. Exploratory experiments of impact craters formed in viscous-liquid targets:analogs for martian rampart craters? Icarus 34,486-495, doi:10.1016/0019-1035(78)90040-4.
    [424]Greeley R, Fink J, Gault D E, et al.1980. Impact cratering in viscous targets: laboratory experiments. Proc. Lunar Planet. Sci. Conf.11th,2075-2097.
    [425]Thomsen J M, Austin M G, Schultz P H.1980. The development of the ejecta plume in a laboratory-scale impact cratering events. Lunar Planet. Sci. Conf.11th, Abstract 1148.
    [426]Thomsen J M, Austin M G, Ruhl S F, et al.1979. Calculational investigation of impact cratering dynamics:early time material motions. Proc. Lunar Planet. Sci. Conf.10th, pp. 2741-2756.
    [427]Greeley R, Fink J, Gault D E, et al.1982. Experimental simulation of impact cratering on icy satellites. In:Satellites of Jupiter. Ed. D. Morrison, Tucson:Univ. of Arizona Press, pp.340-378.
    [428]Stewart S T, O'Keefe J D, Ahrens T J.2001. The relationship between rampart crater morphologies and the amount of subsurface ice. Lunar Planet. Sci. Conf. XXXII, Abstract 2092.
    [429]Pierazzo Z, Melosh H J.1999. Hydrocode modeling of Chicxulub as an oblique impact event. Earth Planet. Sci. Lett.,165 (2),163-176.
    [430]Anderson J L B, Schultz P H, Heineck J T.2003. Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. J. Geophys. Res.108, 5094, doi:10.1029/2003JE002075.
    [431]Elbeshausen D, Wunnemann K, Collins G S.2007. Three-dimensional numerical modeling of oblique impact processes:scaling of cratering efficiency. Lunar Planet. Sci. 38th, abstract 1952.
    [432]Schultz P H, Mendell W.1978. Orbital infrared observations of lunar craters and possible implications for impact ejecta emplacement. Proc. Lunar Sci. Conf.,9,2857-1034.
    [433]Ghabezloo S.2013. Effect of Porosity on the Thermal Expansion Coefficient of Porous Materials, Poromechanics V. In:Proceedings of the Fifth Biot Conference on Poromechanics,1857-1866, doi:10.1061/9780784412992.220.
    [434]Lachenbruch A H.1961. Depth and spacing of tension cracks. J. Geophys. Res.,66, 4273-4292.
    [435]Bai T, Pollard D D, Hao H.2000. Explanation for fracture spacing in layered materials. Nature,403,753-756, doi:10.1038/35001550.
    [436]Bai T, Pollard D D.2000. Fracture spacing in layered rocks:a new explanation based on the stress transition. J. Struct. Geol.,22,43-57.
    [437]Stoffler D.1971. Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. J. Geophys. Res.,76,5541-5551.
    [438]O'Keefe J D, Ahrens T J.1975. Shock effects from a large impact on the Moon. Lunar Planet. Sci. Conf.,6,2831-2844.
    [439]Soliva R, Benedicto A.2005. Geometry, scaling relations and spacing of vertically restricted normal faults. J. Struct. Geol.,27,317-325, doi:10.1016/j.jsg.2004.08.010.
    [440]Soliva R, Benedicto A, Maerten L.2006. Spacing and linkage of confined normal faults:Importance of mechanical thickness. J. Geophys. Res., 111, B01402, doi:10.1029/2004JB003507.
    [441]Kahle A B, Gillespie A R, Abbott E A, et al.1988. Relative dating of Hawaiian lava flows using multispectral thermal infrared images:A new tool for geologic mapping of young volcanic terranes. J. Geophys. Res.,93 (15):239-251.
    [442]Crisp J, Kahle A B, Abbott E A.1990. Thermal infrared spectral character of Hawaiian basaltic glasses. J. Geophys. Res.,95 (21):657-669.
    [443]Lachenbruch A H.1962. Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Spec. Pap. Geol. Soc. Am.,70,69 pp.
    [444]Grieve R A F.1987. Terrestrial impact structures. Ann. Rev. Earth Planet. Sci.,15, 245-270.
    [445]Goehring L, Morris S W.2005. Order and disorder in columnar joints. Europhys. Lett., 69,739-745.
    [446]Jagla E A, Rojo A G. 2002. Sequential fragmentation:The origin of columnar quasi-hexagonal patterns. Phys. Rev. E,65,026203.
    [447]Gilman J.2009, Basalt columns:Large scale constitutional supercooling? J. Volcanol. Geotherm. Res.,184,347-350.
    [448]Guy B.2010. Discussion:Comments on "Basalt columns:Large scale constitutional supercooling? by John Gilman (JVGR,2009) and presentation of some new data [J. Volcanol. Geotherm. Res.184 (2009),347-350], J. Volcanol. Geotherm. Res.,194,69-73.
    [449]Lyle P.2000. The eruption environment of multi-tiered columnar basalt lava flows. J. Geological. Soci.,157,715-722.
    [450]Mizuguchi T A, Nishimoto S, Kitsunezaki Y, et al.2005. Directional crack propagation of granular water systems. Phys. Rev. E,71,056122.
    [451]Spry A H.1962. The origin of columnar jointing, particularly in basalt flows. J. Geol. Soc.Aust.,8,191-216.
    [452]Goehring L, Mahadevan L, Morris S W.2009. Nonequilibrium scale selection mechanism for columnar jointing. Proc. Natl. Acad. Sci. USA,106 (2),387-392.
    [453]Milazzo M P, Keszthelyi L P, Jaeger W L, et al.2009. Discovery of columnar jointing on Mars. Geology,37,171-174.
    [454]Milazzo M P, Weiss D K, Jackson B, et al.2012. Columnar kointing on Mars:Earth analog studies.43rd Lunar Planet. Sci. Conf., Abstract 2726.
    [455]Ryan A J, Christensen P R.2012. Coils and polygonal crust in the Athabasca Valles region, Mars, as evidence for a volcanic history. Science,336 (449),449-452, doi: 10.1126/science.1219437.
    [456]Toramaru A, Matsumoto T.2004. Columnar joint morphology and cooling rate:A starch-water mixture experiment. J. Geophys. Res.,109, B02205, doi:10.1029/2003JB002686.
    [457]Lore J, Aydin A, Goodson K.2001. A deterministic methodology for prediction of fracture distribution in basaltic multiflows. J. Geophys. Res.,106 (B4),6447-6459.
    [458]Robbins S J, Hynek B M.2012. A new global database of Mars impact craters≥1 km: 2. Global crater properties and regional variations of the simple to-complex transition diameter. Journal of Geophysical Research 117, E06001, http://dx.doi.org/10.1029/2011JE003967.
    [459]Milton D J, Barlow B C, Brett R, et al.1972. Gosses bluff impact structure, Australia. Science,175 (4027),1199-1207.
    [460]Allen C C.1975. Central peaks in lunar craters. The Moon,12,463-474.
    [461]Passey Q R, Shoemaker E M.1982. Craters and basins on Ganymede and Callisto: morphological indicators of crustal evolution. In:Morrison, D. (Ed.), Satellites of Jupiter. University of Arizona Press, Tucson, pp.379-434.
    [462]Croft S M.1983. A proposed origin for palimpsests and anomalous pit craters on Ganymede and Callisto. In:Proceedings of the Lunar Science Conference, vol.14; Journal of Geophysical Research, vol.88, pp. B71-B89.
    [463]Schenk P M.1993. Central pit and dome craters:exposing the interiors of Ganymede and Callisto. Journal of Geophysical Research,98,7475-7498.
    [464]Carr M H, Crumpler L S, Cutts J A, et al.1977. Martian impact craters and the emplacement of ejecta by surface flow. Journal of Geophysical Research,82,4055-4065.
    [465]Croft S M.1981. On the origin of pit craters. Lunar and Planetary Science XII, 196-198.
    [466]Senft L E, Stewart S T.2011. Modeling the morphological diversity of impact craters on icy satellites. Icarus,214,67-81.
    [467]Xiao Z, Zeng Z, Komatsu G.2013 A global inventory of central pit craters on the Moon:Distribution, morphology, and geometry. Icarus, under review.
    [468]Garner K M L, Barlow N G,2012. Distribution of rimmed, partially rimmed, and non-rimmed central floor pits on Mars.43rd Lunar and Plan. Sci. Conf., Abstract 1256.
    [469]Oberbeck V R, Morrison R H.1974. Laboratory simulation of the herringbone pattern associated with lunar secondary crater chains. Moon,9,415-455, http://dx.doi.org/10.1007/BF00562581.
    [470]Kargel J S.1989. First and second-order equatorial symmetry of Martian rampart crater ejecta morphologies. In:Proceedings of Fourth International Conference on Mars, Tucson, University of Arizona, pp.132-133.
    [471]Barlow N G.1994. Sinuosity of Martian rampart ejecta deposits. Journal of Geophysical Research,99,10927-10935,http://dx.doi.org/10.1029/94JE00636
    [472]Boyce, J., Barlow, N., Mougins-Mar, P., Stewart, S.,2010. Rampart craters on Ganymede:their implications forfluidized ejecta emplacement. Meteoritics & Planetary Science,45 (4),638-661.
    [473]Peel S E, Fassett C I.2013. Valleys in pit craters on Mars:characteristics, distribution, and formation mechanisms. Icarus,225,272-282.
    [474]Bray V J, Collins G S, Morgan J V, et al.2008. The effect of target properties on crater morphology:Comparison of central peak craters on the Moon and Ganymede. Meteorit. Planet. Sci.43 (12),1979-1992.
    [475]Solomon S C, McNutt Jr R L, Watters T R, et al.2008. Return to Mercury:A global perspective on MESSENGER's first Mercury flyby. Science,132,59-62, doi:10.1126/science.1159706.
    [476]Wood C A, Head J W, Cintala M J.1978. Interior morphology of fresh Martian craters: the effects of target characteristics. In:Merrill, R.B. (Ed.), Proceedings of the 9th Lunar and Planetary Science Conference, Houston, New York, Pergamon Press, pp.3691-3709.
    [477]Barlow N G 2005. A review of Martian impact crater ejecta structures and their implications for target properties. In:Kenkmann, T., Horz, F., Deutsch, A., (Eds.), Large Meteorite Impacts III, Geological Society of America Special Paper 384, Geological Society of America, Boulder, pp.433-442.
    [478]Novara M.2001. The BepiColombo Mercury surface element. Planetary and Space Science,49,1421-1435.
    [479]Yamakawa H, Ogawa H, Kasaba Y, et al.2004. Current status of the BepiColombo/MMO spacecraft design. Advances in Space Research,33 (12): 2133-2141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700