海蜇(Rhopilema esculenta)幼体发育、苗种培育及生长规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海蜇隶属腔肠动物门、钵水母纲、根口水母目、根口水母科、海蜇属,主要以浮游动物为食。海蜇发育经历多次变态过程,生活史分为有性世代和无性世代。螅状体是其无性生活史的重要阶段,受精卵发育至浮浪幼虫孵化,浮浪幼虫经变态发育为螅状体,同时螅状体生成的足囊又可以萌发形成新的螅状体[1]。横裂生殖是大多数钵水母特有的一种无性繁殖方式,螅状体经过横裂生殖产生碟状体,碟状体经过15天左右长出棒状附着器发育为幼蛰。影响海蜇幼体生长与发育的因素包括温度[2-6]、盐度[7-10]、光照[11-12]、营养[13-15]、pH[16]、溶解氧[17-18]等。2009年10月~2010年9月,在山东好当家水产研究所,实验从冬季海蜇螅状体保苗到第二年秋季海蜇收获,对海蜇四触手螅状体两种发生方式(受精卵发育和足囊萌发),浮游幼体形态特征及生长规律,海蜇苗种培育过程中适宜的温度、盐度和密度以及海蜇池塘养殖生长规律进行了研究,以期待为海蜇早期发育生物学研究及池塘养殖提供基础参考资料。
     一、海蜇四触手螅状体两种发生方式
     通过对海蜇胚胎发育和足囊萌发进行连续观察,发现海蜇四触手螅状体存在两种形成方式:第一种方式为受精卵(水温26±1℃)经6h发育到浮浪幼虫期,浮浪幼虫25h后经过杯状体阶段,变态发育成四触手螅状体,进入附着生活阶段;第二种方式为足囊在适宜条件下萌发,首先形成杯状体,继而发育成四触手螅状体,且接近螅状体母体的足囊萌发率较高。本文观察发现的四触手螅状体形成的两种方式中,均出现杯状体的新阶段,进一步完善了海蜇的生活史过程。
     二、海蜇浮游幼体不同阶段的特征
     本章通过实验观察描述了海蜇从碟状体发育至幼蛰的形态变化,首次观察到了消化腔残留通道口的愈合过程,并重新对海蜇浮游幼体各个阶段进行了划分和定义。初生碟状体器官尚未发育成熟,浮游及捕食能力较弱,在静水中绝大多数沉于水底,主要借助水流波动推动其浮游、摄食,消化能力也较弱,从中央口到顶部是一个畅通的开放管道,消化腔残留通道口尚未封闭,在顶部中央留有一圆形洞口。当顶部形成一层薄膜,消化腔通道口封闭,初步形成伞形构造,就称为稚蜇,其浮游能力增强,在水中能自由游动,摄食量增大,消化能力提高。当伞缘逐渐下包由草帽状变为半球状,口腕愈合,口腕外端长出棒状附着器,只是性腺尚未形成,其形态特征与成体水母基本一致,此时称之为幼蛰。
     三、海蜇浮游幼体摄食与生长规律
     本章实验依据苗种培育与生产实际采样,在水温20±1℃,盐度28~29,pH7.8~8.2条件下,初生碟状体(2~3mm)经过20天的培养,棒状附着器形成,发育成为幼蜇(15~20mm)。测定分析了人工培养的初生碟状体到幼蜇的摄食量和生长规律,2~20mm的海蜇幼体伞径日生长率呈指数增长,方程为y=2.7488e0.1018x,体重与伞径的关系式为y=6×10-5-0.5x~(3.5475),摄食量与伞径呈指数增长,方程为y=43.537x~(1.775)。
     四、海蜇苗种培育中适宜温度、盐度和密度的研究
     2010年5月5号~6月6号,根据生产车间育苗并同步取样,研究了不同温度、盐度和培育密度对海蜇幼体(碟状体、稚蜇、幼蛰)伞径平均日生长率的影响,同时与车间育苗池中幼体的生长进行对比。结果表明:(1)海蜇幼体的日生长率随温度变化而变化,温度低于24℃时,生长率随温度的升高而增大;温度高于24℃时,生长率随温度升高而减小,24℃时海蜇幼体生长最佳,日生长率为8.41%。(2)盐度低于20时,海蜇幼体生长率随盐度升高而增大;盐度高于20时,生长率随盐度升高而减小,盐度为20时日生长率最大,为9.01%。(3)在温度20±1℃、盐度28条件下,海蜇幼体生长率随养殖密度的增大,生长率递减。本实验认为海蜇幼体培育的适宜温度为21~24℃,盐度为16~20,密度为4000~8000个?L。
     五、海蜇池塘养殖生长规律
     2010年6月上旬~8月上旬,对山东荣成靖海湾海蜇池塘养殖的生长规律进行研究。结果表明,海蜇幼体放入池塘后生长迅速,从6月1号放苗到8月1号收获海蜇,伞径从2cm左右生长至30~40cm,甚至可以长至50cm。不同大小海蜇的体重与伞径呈指数增长,方程为y=0.176x~(2.8914)(R~2=0.9907)。海蜇养殖后期,出现了饵料不足、夜光虫大量繁殖、海月水母暴发等问题,均对池塘养殖中海蜇生长造成影响。
Rhopilema esculenta belong to Coelentera, scyphozoa, rhizostomeae and rhizostomatidae, and mainly feed on zooplankton. They go through several metamorphosis during its life span, which consist of an alternation between a sexual stage and an asexual stage. Scyphistoma are the important phase in the asexual life, fertilized eggs produce Planulae larvae and then develop scyphistoma, which also reproduce asexually by podocyst budding. Strobilation is a special asexual reproduction among the most scyphozoa animals, the new released ephyra could grow to juvenile jellyfish with clubbed subsidiary organ after 15 day’s culture. The factors which influence ephyra include temperature, salinity, light, nutrition, PH, DO and so on. From cultivating scyphistoma in winter in October 2009 to harvesting Rhopilema esculenta in autumn in September 2010, the two mechanisms of four tentacles scyphistoma, morphological characteristics of Rhopilema esculenta from ephyra to juvenile jellyfish, the effects of temperature, salinity and density on the average daily growth rate of juvenile jellyfish, and the growth characteristics of Rhopilema esculenta breeding in the pond were studied. Also the problems appeared in the process of breeding were discussed in Jinghai bay, Rong cheng, Shandong province.
     The results were as follows:
     1 Observation on Two Generation Modes of Four Tentacles Scyphistoma of Jellyfish
     By continuous observation of embryonic development and podocyst propagation?of? jellyfish,? Rhopilema esculenta,? two generation modes of scyphistoma were discovered. First, fertilized egg turned to scyphostima. This process needed about 6 h from fertilized egg to planulae, and then nearly 25 h from planulae, scyphostoma to stationary scyphistoma with four tentacles at the temperature of 26±1℃; Second, podocyst generated to scyphostima. The ratio of generation was higher with podocyst closed to scyphistoma. In this stage, podocyst first turned into scyphostoma, and then became scyphistoma with four tentacles. In this study, a new structure called scyphostoma was both found in the two scyphistoma generation modes. This discover improved the life cycle of jellyfish.
     2 Observation on morphological characteristic of Rhopilema esculenta
     The morphological characteristics of Rhopilema esculenta from ephyra to juvenile jellyfish were depicted, and the healing process of residual access mouth of gastrovascular cavity was observed for the first time, by which the development phases of jellyfish were redefined. When residual access mouth of gastrovascular cavity was not closed, there is a circular hole in the top, the phase was defined ephyra; when the residual access mouth of gastrovascular cavity was closed, a straticulate membrane was formed, the phase was defined jellyfish larva; when the umbrella edge became hemispheric, the oral healed, and the edge of the oral grew clubbed subsidiary organ, the phase was defined young jellyfish.
     3 Study on feeding and growth characteristics (diameter and weight)
     At the temperature of 20±1℃, salinity 28~29 and PH 7.8~8.2, ephyra(2~3mm)could grow to juvenile jellyfish (15~20mm) with clubbed subsidiary organ after 20 day’s culture. The food consumption and growth characteristics (diameter and weight) from newly liberated ephyra to juvenile jellyfish were analysed. It was found that the daily growth equation of juvenile jellyfish’s diameter(2~20mm)is y=2.7488e0.1018x, the relationship between weight and diameter, food consumption and diameter of juvenile jellyfish were y=6×10-5-0.5x~(3.5475), y= 43.537x~(1.775) respectively.
     4 Study on optimal temperature、salinity and density in larva breeding of Rhopilema esculenta
     From June5th to July 6th, 2010, the effects of temperature, salinity and density on the average daily growth rate of juvenile jellyfish were studied, and compared with the juveniles cultured in pond. The results showed: (1) the average daily growth rate of juvenile jellyfish varied with water temperature, it increased with the rise of temperature when temperature was below 24℃, and decreased with the rise of temperature when temperature was above 24℃. The optimal temperature for juvenile jellyfish was 24℃, and the average daily growth rate came to 8.41%. (2) The average daily growth rate increased when salinity was below 20, and decreased when salinity was above 20; the average daily growth rate came to maximum when salinity was 20, it came to 9.01%. (3) The average daily growth rate decreased with the rise of density when the temperature was 16~18℃, salinity was 28 .The study showed the optimal environment for juvenile jellyfish was temperature 21~24℃, salinity 16~20, density 4000~8000individuals ?L.
     5 Study on the growth characteristics of Rhopilema esculenta breeding in the pond
     From early June to August, 2010, the growth characteristics of Rhopilema esculenta breeding in the pond were studied in Rong cheng, Shandong province, and the problems appeared in the process of breeding were discussed. The experiment showed that the juveniles grew fast from June 1st to August 1st and its diameter could grow from 2cm to 30~40cm, even up to 50cm. The weight (wet weight) of different Rhopilema esculenta increased exponentially with the diameter, the equation was y=0.176x2.8914(R2=0.9907).Some problems such as shortage of baits, large propagation of Noctiluca scintillans and the breakout of Aurelia aurita emerged in the later period of breeding, which influenced the growth of Rhopilema esculenta.
引文
[1]丁耕芜,陈介康.海蜇的生活史[J].水产学报,1981,5(2):93~102
    [2]陈介康,丁耕芜.温度对海蜇横裂生殖的影响[J].动物学报,1983,29(3):195~206
    [3]黄鸣夏,王永顺,孙忠.温度和盐度对海蜇碟状体生长及发育的影响[J].浙江水产学报,1987,6(2):105~110
    [4]鲁男,蒋双,陈介康.温度和相对饵料丰度对海蜇水母体生长的影响[J].水产科学,1993,12(2):1~5
    [5]黄鸣夏,王永顺,周永乐.不同温度、盐度对海蜇胚胎发育的影响[J].海洋水产科技,1994,48(2):11~15
    [6]鲁男,蒋双,陈介康.温度和饵料丰度对海蜇水母体生长的影响[J].海洋与湖沼,1995,26(2):186~190
    [7]张鑫磊,成永旭,陈四清,等.温度对海蜇横裂生殖和早期生长的影响[J].上海水产大学学报,2006,15(2):182~185
    [8]蒋双,陈介康.温度、盐度和光照对海蜇足囊萌发的影响[J].水产科学,1997,12(9):1~4
    [9]王燕青,姜连新,董婧,等.温盐环境突变对海蜇幼体生存的影响[J].上海水产大学学报,2007,16(3):259~263
    [10]鲁男,刘春洋,郭平.盐度对海蜇各发育阶段幼体的影响[J].生态学报,1989,9(4):304~309
    [11]陈介康,刘春洋.光对海蜇浮浪幼虫变态率的影响[J].水产科学,1984,4:7~10
    [12]陈介康,丁耕芜,刘春洋.光对海蜇横裂生殖的影响[J].海洋与湖沼,1984,15(4):310~315
    [13]陈介康,丁耕芜.营养条件对海蜇横裂生殖的影响[J].水产学报,1985,9(4):321~329
    [14]郭平,刘春洋,鲁男.海蜇早期螅状幼体的饵料[J].水产科学,1987,6(3):10~13
    [15]李晓东,刘铁钢,张长新,等.几种生物饵料对海蜇幼体生长的影响[J].水产科学,2003,22(3):4~6
    [16]谷丽,郭敏,刘宏艳,等.PH、盐度和溶氧对海蜇幼蜇生长的影响[J].大连水产学院学报,2005,20(1):41~44
    [17]宋晶,李晓东,吴垠,等.不同光照、温度及不同规格海蜇耗氧率和排氨率的测定[J].水产科学,2010,29(3):147~151
    [18]陈炜,蒋双.海蜇螅状幼体和碟状幼体窒息点和耗氧量的初步测定[J].水产科学,1995,14(4):14~16
    [19]陈四清,张岩,王印庚,等.海蜇苗种培育技术的研究[J].海洋科学,2004,8(5):4~7
    [20]尚武,洪惠馨,张士美.中国动物志(第二十七卷):螅虫纲钵水母纲[M].北京:科学出版社,2002:30~34
    [21]郑重,李少箐,许振祖.海洋浮游生物学[M].北京:海洋出版社,1984:166~265
    [22]洪惠馨,张士美.中国沿海的食用水母类[J].厦门水产学院学报,1982,1(1):12~17
    [23] W ILLCOX S, MOLTSCHAN IWSKYJ N A, CRAWFORD C. Asexual reproduction in scyphistomae of Aurelia sp.: Effects of temperature and salinity in an experimental study [J].Journal of Experimental Marine Biology and Ecology, 2007, 353:107~114
    [24] Lucas C H. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment [J].Hydrobiologia, 2001, 451:229~246
    [25]董婧,王彬,刘春洋.白色霞水母各发育阶段的形态[J].水产学报,2006,30(6):761~766
    [26] Dong J, Liu C Y, Wang Y Q, Wang B. Laboratory observation on the life cycle of Cyanea nozakii (Semeostomida, Scyphozoa) . Acta Zoologica Sinica, 2006, 52 (2):389~395
    [27]丁峰元,程家骅.东海区沙海蜇的动态分布[J].中国水产科学,2007,14(1):83~89
    [28]程家骅,丁峰元,李圣法,等.东海区大型水母数量分布特征及其与温盐度的关系[J].生态学报,2005,25(3):440~445
    [29] GRAHAM W M, PAGES F, HAMNER W M. Aphysical context for gelatinous zooplankton aggregations: a review [J]. Hydrobiologia, 2001, 451:199~212
    [30] PARSONS T R, LALL ICM. Jellyfish population explosions: revisiting a hypothesis of possible causes [J].Mer, 2002, 40:118~121
    [31] UYE S, UETA Y. Recent increase of jellyfish populations and their nuisance to fisheries in the Inland Sea of Japan[J].Bulletin of the Japanese Society of Fisheries Oceanography, 2004, 68:9~19
    [32] Kawahara M, Uye S, Kohzoh O, Hitoshi I. Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East-Asian waters. Marine Ecology Progress Series, 2006, 307:161~173
    [33]丁峰元,严利平,李圣法,等.水母暴发的主要影响因素[J].海洋科学,2006,30(9):79~83
    [34] BRODEUR R D, SUGISAKI H, HUNT G L. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem [J]. Marine Ecology Progress Series, 2002, 233:89~104
    [35]仲霞铭,汤建华,刘培廷.霞水母暴发与海洋生态之关联性探讨[J].现代渔业分析,2004,19(3):15~19
    [36]丁峰元,程家骅.东海区夏、秋季大型水母分布区渔业资源特征分析[J].海洋渔业,2005,27(2):120~128
    [37]赵斌,张秀梅,陈四清.环境因子对海蜇早期幼体发育影响的生态学研究进展[J].海洋水产研究,2006,27(1):87~92
    [38]王真良.黄海区水母类的生态研究[J].黄渤海海洋,1996,14(1):41~50
    [39]洪惠馨.水母和海蜇[J].生物学通报,2002,37(2):13~16
    [40]郭平.营养条件对海蜇螅状体形成足囊及足囊萌发的影响[J].水产学报,1990,14(3):206~211
    [41] Black R E. Metabolism and ulreastructure of dormant podocysts of Chrysaora quinouecirrha (Scyphozoa). J. Exp. Zool, 1981, 218: 175~182
    [42]鲁男,蒋双,陈介康.温度、盐度和光照对海蜇足囊繁殖的影响[J].水产科学,1997,16(1):3~8
    [43]吴颖,李圣法,严利平,等.温度、盐度对海蜇无性生殖的影响[J].安徽农业科学,2009,37(24):114~118
    [44] Spangenberg D B. A study of strobilation in Aurelia aurita under controlled conditions. Journal of Experimental Zoology, 1965, 160:1~10
    [45] Spangenberg D B. Recent studies of strobilation in jellyfish. Oceanography and Marine Biology. an Annual Review, 1968, 6: 231~247
    [46] Calder D R. Laboratory observations on the life history of Rhopilema verrilli (Scyphozoa: Rhizostomae). Marine Biology, 1973, 21: 109~114
    [47] Calder D R. Life history of the cannonball jellyfish, Stomolophus meleagris L. Agassiz, (Scyphozoa, Rhizostomida). Biological Bulletin, 1982, 162: 149~162
    [48]孙振兴,张明青.海蜇的人工繁育与养殖技术[J].安徽农业科学,2006,34(3):493~494
    [49]陈介康.海月水母培育初报[J].水产科学,1986,5(1):37
    [50] Cargo. D. 1966. Notes on the biology of the sea nettle, Chrysaora quinquecirrha, in Chesapeade Bay. Chesapeade Sci.7:95~100
    [51]游奎,马彩华,王绍军,等.增氧与投饵对海蜇足囊繁殖的影响[J].中国水产科学,2010,17(6):1352~1357
    [52]陈介康,丁耕芜.海蜇横裂生殖的季节规律[J].水产学报,1984,8(1):55~68
    [53] Hermroth L, Grondah lF. On the biology of Aurelia aurita (L.) Major factors regulating the occurrence of ehyrae and young medusae in the Gullmar Fjord, western Sweden. Bullet in of Marine Science, 1985, 37(2):567~576
    [54] Loeb M J. The effect of light on strobilation in the Chesapeake Bay sea nettle Chrysaora quinquecirrha. Marine Biology, 1973, 20: 144~147
    [55] Custance D R N. Light as an inhibitor of strobilation in Aurelia aurita. Nature, 1964, 204:1219~1220
    [56] Russell, F. S. The medusae of the British Isles. Cambridge Univ.1970, 2:1~284
    [57] Custance D R N. Studies on strobilation in the Scyphozoa. J boil. Eduo, 1967, 1, 79~81(summary)
    [58] Spangenberg D .B. Indines induction of metamorphosis in Aurelia. J.Exp. Zool, 1967, 165:441~449
    [59]吴颖,李惠玉,李圣法,程家骅.大型水母的研究现状及展望[J].海洋渔业,2008,30(3):80~87
    [60]王绪峨,宋向军,马建新,等.海蜇幼体与对虾幼体相食关系的实验观察[J].动物学杂志,1995,30(6):30~33
    [61]陈四清,张岩,于东祥,等.海蜇的池塘养殖技术[J].渔业现代化,2004,12(5):10~11
    [62]王永顺,黄鸣夏,孙忠.海蜇的人工工厂化育苗[J].水产学报,1991,15(4):322~327
    [63]张洪芬.海蜇人工育苗及养殖技术[J].水产养殖,2006,27(2):21~23
    [64]陈介康,李生志.黄海北部近岸水域海蜇放流增殖的实验研究[J].海洋水产研究,1994,15:103~113
    [65]农业部渔业局.中国渔业统计年鉴(内部资料),2007
    [66]李玉刚.海蜇工厂化人工育苗技术[J].中国水产,2004,3:61~63
    [67]袁华.吕四海蜇工厂化人工育苗试验[J].水产科技情报,2008,35(3):113~115
    [68]李秋,邹胜利,李志刚.海蜇幼苗中间培育技术[J].齐鲁渔业,2010,27,(1):32~33
    [69]裴光复,李越.杂色蛤与海蜇混养技术[J].齐鲁渔业,2009,26,(3):30
    [70]张锡佳,谭福祎 ,康岩山,等.海蜇海参池塘生态混养技术研究[J].齐鲁渔业,2006,23,(6):44~45
    [71]任福海,刘吉明.海蜇池塘高产养殖技术[J].水产养殖,2009,8:18~19
    [72]郑升阳.池塘海蜇养殖技术[J].福建农业,2006,9:28
    [73]李培军,谭克非,叶昌臣.辽东湾海蜇生长的研究[J].水产学报,1988,12(3):243~250
    [74]王绪峨,姜福君.莱州湾海蜇资源消长原因及增殖措施[J].齐鲁渔业,1994,11(5):18~19
    [75]黄鸣夏.浙江近海海域海蜇的增殖放流[J].海洋水产研究,1995,11(15):94~102
    [76]卢振彬,陈利琛.闽江口海蜇渔业生态学研究[J].应用生态学报,1999,10(3):341~344
    [77] K. A. Pitt. Life history and settlement preferences of the edible jellyfish,Catostylus mosaicus (Scyphozoa: Rhizostomeae). Marine Biology, 2000, 136: 269~279
    [78] Littleford R A. The life cycle of Dactylometra quinquecirrha, L. Agassiz in the Chesapeake Bay. Biol. Bull, 1939, 77: 368~381.
    [79]刘春洋,王文波,董婧,等.黄斑海蜇的生活史及几种钵水母类螅状体形态特征的比较[J].渔业科学进展,2009,30(4):102~107
    [80] Mayer A G. Medusae of the World III: the Scyphomedusae [M].Carnegie Inst: Washington PubI, 1910, 109:619~630
    [81] Uchida, T. 1926. The anatomy and development of Rhizostome medusae, Mastigias Papua L. Agassiz with observation on the Phylogeny of Rhizostomae .J , Fac, Sci Imp.Uniz. Tokyo Sect.ⅳ. Zool 1:45~95
    [82]孙明,董婧,赵云,付志璐.沙蛰与海蜇晚期碟状体的形态学研究[J].渔业科学进展,2010,31(1):48~53
    [83]洪惠馨,张士美,王景池.海蜇[M].北京:科学出版社,1978,20~23
    [84] SCHNEIDER G, BEHRENDS G. Population dynamics and the trophic role of Aurelia aurlla medusae in the Kiel Bright and western Baltic [J].ICES J Mar Sci,1994 (51):359~367
    [85] MATANOSKI JC, HOOD RR, PURCELL JE. Characterizing the effect of prey on swimming and feeding efficiency of the scyphomedusa Chrysaora quinquecirrha [J].Mar.Bio1,2001 (139):191~200
    [86]毕远溥,刘春洋.海蜇池塘养殖技术的初步研究[J].水产科学,2004,23(5):23~25
    [87] Daan R., Impact of egg predation by Noctiluca miliaris on the summer development of copepod populations in the southernNorth Sea, Mar. Ecol. Progr. Ser. 1987, 37:9~17
    [88] Huang C, Qi Y., The abundance cycle and influence factors on red tide phenomena of Noctiluca scintillans (Dinophyceae) in Dapeng bay, the South China Sea, J. Plankton Res. 1997,19(3):303~318
    [89] Dela-Cruz J, Ajani P, Lee R, Pritchard T, Suthers I Temporal abundance patterns of the red tide dinoflagellate Noctiluca scintillans along the southeast coast of Australia. Mar EcolProg Ser. 2002, 236:75~88
    [90] Dela-Cruz J, Middleton JH, Suthers IM Population growth and transport of the red tide dinoflagellate, Noctiluca scintillans, in the coastal waters off Sydney Australia, using cell diameter as a tracer. Limnol Oceanogr. 2003.48:656~674
    [91]许文军.盐度、饵料密度及温度对夜光虫种群生长的影响[J].海洋生产科技,1994,47(1):49~53
    [92]张建春,孙先交,崔戈平.夜光虫大量繁殖对对虾育苗生产的危害[J].中国水产,1991,32(5):32~36
    [93] Arai M N.A. Functional Biology of Scyphozoa [M].London: Chapman&Hal1. 1997:316-318.
    [94] HIRASAKA K. Medusae of Tokyo Bay[J]. Japanese Journal of Zoology, 1915,27:164~166
    [95] SHIMOMURA T. On the unprecedented flourishing of Echizen Kurage, Stomolophus nomurai (Kishinouye), in the Tsushima Warm Current regions in autumn.[J].Bulletin of the Japan Sea Regional Fisheries Research laboratory,1959,7:85~107
    [96] MILL S C E. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions [J]. Hydrobiolgia, 2001, 45l: 55~68
    [97] OLSSON P, GRANELI E,CARLSSON P, et a1. Structuring of a postspring phytoplankton community by manipulation of trophic interactions [J].Journal of Experimental Marine Biology and Ecology, 1992,158: 249~266
    [98] SHUSHKINA E A, MUSAYEVA E I. The role of jellyfish in the energy system of Black Sea plankton communities [J].Oceanology, 1983, 23: 92~96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700