精细化水氮运筹对膜下滴灌棉花光合特性和冠层特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分和养分既是影响干旱区农业生产的主要胁迫因子,也是一对联因互补、互相作用的因子。本文选择在干旱区新疆库尔勒典型棉区,进行1年的田间试验,研究膜下滴灌棉花在施肥总量相同情况下,各生育阶段追肥数量不同的水肥运筹策略对棉花光合特性和冠层特性及产量的影响,明确光合和冠层特性指标与精细化水氮运筹变化的相关性,为选择适宜的生物学指标来反映精细化水氮运筹的有效性提供参考。主要结论有:
     (1)在施肥策略相同时,灌溉量为影响单株铃数和单铃重的限制因素。相对高灌溉量与追肥比例为11%、3%、27%、20%、6.67%、12.33%的策略交互作用,能极显著地增加棉花产量,达到7293.6kg·hm-2的高产水平。采用不同精细化施氮策略、不同灌溉量、施氮策略与灌溉量的交互作用均会对产量有明显的影响作用。
     (2)灌溉量相对充足时,棉花生育期追肥比例依次为11%、3%、27%、20%、6.67%、12.33%的策略能显著增加棉花全生育期的净光合速率,净光合速率在24.33-25.63μmol·m-2s-1的高值范围随生育进程呈增加变化趋势,并能发挥“以水促肥”的作用,显著增加棉花干物质积累量。不同施氮策略下,棉花生育期净光合速率与产量相关性达到显著正相关水平,花期、铃期的净光合速率与干物质积累量相关性达到显著水平。花期、铃期的净光合速率反映产量水平具有较高代表性。
     (3)灌溉量相对不足时,棉花生育期追肥比例依次为3.5%、10.5%、19.5%、27.5%、14.17%、4.83%的策略更易发挥“以肥调水”的作用,能显著提高叶片水分利用效率。不同施氮策略下,棉花蕾期、花期、铃期的叶片水分利用效率与产量相关性达到显著水平,铃期的相关系数最高。铃期的叶片水分利用效率反映产量水平具有较高的代表性。
     (4)灌溉量相对充足时,棉花生育期追肥比例依次为11%、3%、27%、20%、6.67%、12.33%的策略下,棉花叶面积指数在蕾期、花期表现出最高值,并对生育期的叶面积指数、散射辐射透过系数、直射辐射透过系数、消光系数的影响作用强于追肥比例依次为3.5%、10.5%、19.5%、27.5%、14.17%、4.83%的策略。灌溉量相对较高时,精细化施氮策略下产量随叶面积指数呈线性正相关关系,蕾期、花期的叶面积指数可以同步反映高产棉花产量的形成过程。
     (5)灌溉量相对充足时,不同施氮策略下棉花生育期叶面积指数与土壤剖面0-40cm范围内碱解氮、植株地上氮素积累量和相关性均达到显著正相关水平,选用叶面积指数反映土壤碱解氮含量水平和棉株地上部氮素累积水平具有较高的代表性。棉花生育期叶面积指数与施氮分配比例均达到极显著正相关水平。叶面指数反映施氮水平的代表性要高于净光合速率反映施氮水平的代表性。
     (6)灌溉量为4800m3·hm-2,各时期追肥比例依次为11%、3%、27%、20%、6.67%、12.33%的水氮运筹策略下,棉花铃期特征值为:净光合速率25.63μmol·m-2s-1,干物质积累量187.6g·株-1,叶片水分利用效率0.27,叶面积指数2.39,土壤剖面0-40cm范围内土壤碱解氮含量46.63mg·kg-1,棉株地上部植株氮素积累量194.49kg·hm-2,可以获得高产。
Both water and nutrient affect the main stress arid agricultural production, but also because of a couplet factor complementary, interact with each other factors. They have its own special role, to each other and doms, mutual restrict, affecting each other effect play. This article chooses in arid areas Kuerle typical of xinjiang,1 year, pectinophora field experiment, the film with drip irrigation in fertilization amount cotton same situation different growth stages according to the number of cotton fertilization logistics strategy photosynthetic characteristics and canopy characteristics and yield for improving the influence of film with drip irrigation, fertilization logistics technology, improve cotton water use efficiency to provide the reference. Draw the following conclusions:
     (1) In fertilization strategy that at the same time, water amount per the boll number and for influence the limiting factors of principal heavy. Relatively high water amount and growth period 2 times before after fertilization "strategy of light weight" the interaction can a significantly increase cotton output, achiev 7293.6 kg-hm-2 high level. Adopt different fertilizer strategy, different irrigation amount, fertilization strategies and irrigation amount of interaction both will have the effect of yield significantly.
     (2) Irrigation is plentiful, cotton relative amount according to the proportion 11%,3%,27%,20%, 12.33%,6.67% strategy, significantly increased the whole stages of cotton net photosynthetic rate, net photosynthetic rate in 24.33-25.63umol-m-2s-1 high value range with development process has increased change trend, and can play "to promote fat"role water, a significant increase in the dry matter accumulation quantity of cotton. Different nitrogen strategy, cotton growth period net photosynthetic rate and yield reached significant positive correlation correlation, flowering, during the level of the net photosynthetic rate and dry matter accumulation of correlation reach significant level. Flowering, the period of the net photosynthetic rate reflect the level of output with high representative.
     (3) Irrigation relative amount is insufficient, cotton growth order according to the proportion 3.5%, 10.5%,19.5%,27.5%,14.17%,4.83% strategy, are more likely to play "the role of water in fat, significant" improving leaf water use efficiency. Different nitrogen strategy, cotton bolls, bloom, the period of the blades of yield and water use efficiency, the bell significant correlation between the correlation coefficient is highest. The boll cotton leaf WUE value the level of output has the high representative.
     (4) Irrigation is plentiful, twice relative amount used when "former heavy according to the light" N strategy leaf area index in the cotton bolls, flowering show, and the high growth leaf area index, scattering radiation through coefficient, point-blank radiation through coefficient, the effect of extinction coefficient is better than "after the former light weight" N strategy. When the relative amount of irrigation water and nitrogen and refinement higher regulatory output leaf area index linearly with positive correlation, the bolls and flowering leaf area index can synchronize reflect high yield cotton yield formation process.
     (5) Water amount is plentiful, cotton growth relative leaf area index and soil profiles 0-40cm range alkali-hydro nitrogen, plant the ground n cumulant and correlation significant positive correlation level, leaf area index reflect available soil alkali-hydro nitrogen content level and cotton leaves the ground department nitrogen accumulation level. Cotton growth period net photosynthetic rate and nitrogen allocation proportion failed to meet significant positive correlation level, and leaf area index (LAI) and nitrogen allocation proportion reached very significant positive correlation level, hairy, index reflects the sensitivity of the level of nitrogen than net photosynthetic rate reflects the sensitivity of the level of nitrogen.
     (6) Water amount of 4800m3·hm-2 for each period, according to the proportion of 11%,3%,27%, 20%,12.33%,6.67%, water and nitrogen logistics strategy yielding cotton boll stage eigenvalue:net photosynthetic rate 25.63μmol·m-2s-1, dry matter accumulation quantity 187.60g·zhu-1, WUE value is 0.27,LAI value is 2.39,0-40cm soil range soil alkali-hydro nitrogen content 46.63 3mg·kg-1,cotton leaves of accumulated nitrogen 194.49kg·hm-2
引文
[1]冯绍元,黄冠华,王凤新.滴灌棉花水肥耦合效应的田间实验研究[J].中国农业大学学报,1998,3(6):59-62.
    [2]张鹏忠,王新江,托乎提.新疆棉花产业发展现状、存在问题、及对策建议[J].新疆农业科学,2008,45(2):174-176.
    [3]李雪源,郑巨云,艾先涛,等.中国棉业科技进步30年[J].中国棉花,2009,36(增刊):24-29.
    [4]赵聚宝,李克煌.主编.干旱与农业[M].北京:中国农业出版社.1998,25-40.
    [5]Barth C A, Lumling B, Sehmi M,et al. Soybean trypsin inhibitors reduce absorption of exogenous and increase loss of endogenous proteinin Iniature Pigs [J].Nutrition,1993,12(3):2195-2220.
    [6]管瑶,张忠学,王贵作,等.水肥耦合效应研究与新疆棉区可持续发展[J].水土保持研究,2004,13(4):226-229..
    [7]郭金强.棉花膜下滴灌水氮耦合机理的研究[D].乌鲁木齐:新疆石河子大学,2005,18-32
    [8]刘洪亮,曾胜河,施敏.棉花膜下滴灌施肥技术的研究[J].土壤肥料,2004,6(2):30-32.
    [9]马富裕,赵志鸿,朱焕清,等.兵团棉花膜下滴灌技术综述[J].新疆农垦科技,2001,4(2):38-39.
    [10]王庆,郭德发.大田膜下滴灌的优势及对棉花增产的作用[J].节水灌溉,2004,5(3):31-32.
    [11]帕尔哈提·吐尼亚孜.棉花膜下滴灌节水技术经济效益分析[J].农业科技,2008,10:224-225.
    [12]马富裕,李俊华,李明思.棉花膜下滴灌增产机理及主要配套技术研究[J].新疆农业大学学报,1999,22(1):63-68.
    [13]刘建国,吕新,王登伟.膜下滴灌对棉田生态环境及作物生长的影响[J].中国农学通报,2005,21(3):333-335.
    [14]郑昭佩,刘新作.水肥耦合与半干旱区农业可持续发展[J].农业现代化研究,2000,21(5):25-27.
    [15]穆兴民,徐学选,陈国良,等.水肥耦合效应与协同管理[M].北京:中国林业出版社.1999.
    [16]Li S X,Xiao L. The distribution and management of drylands in the Republic of China [J]. Advances in Soil Science,1992,18(3):147-302.
    [17]文宏达,刘玉柱,李晓丽,等.水肥耦合与旱地农业持续发展[J].土壤与环境,2002,11(3):315-318.
    [18]王同朝,魏国庆,吴克宁,等.水资源亏缺下水肥耦合对作物的影响[J].河南农业科学,1999,(10):10-11.
    [19]Barondes S H. Bifunctional P. Mperties of lectins:lectins rede 2 find [J]. Trends Biochem Sci,1988, 20(13):480-482.
    [20]胡顺军,田长彦,王方,等.膜下滴灌棉花水肥耦合效应研究初报[J].干旱区资源与环境,2005,2(19):192-195.
    [21]梁智,周博,马兴旺,等.滴灌条件下长绒棉水肥耦合效应分析[J].中国棉花,2004,31(8):6-7.
    [22]胡尚钦,杨晓,唐时嘉,等.紫色土施氮磷钾对棉花纤维品质的影响[J].山地研究,1996,14(5):41-44.
    [23]汪希成,汤莉,严以绥,等.膜下滴灌棉花生产的经济效益分析与评价[J].干旱地区农业研究,2004,22(2):112-117.
    [24]Oran P. Wheat are the world resources and constrains for dryland agriculture, In:proceedings of the international congress for dryland farming [D].South Austrails:Department of Agriculture,1980, 10(5):17-18.
    [25]龚江,王海江,谢海霞,等.膜下滴灌水氮耦合对棉花生长和产量的影响[J].灌溉排水学报,2008,27(06):51-55.
    [26]杨涛,马兴旺,刘骅,等.干旱区水肥耦合对棉花光合特性和产量的影响[J].新疆农业科学,2008,45(2):93-97.
    [27]Silber A, Xu G, Levkovitch I, et al. High fertigation-equency:The effects on up take of nutrients, water and plant growth [J].Plant and Soil,2003,25(3):467-477.
    [28]任红松,郑重,马富裕.滴灌条件下水肥互作对新疆棉花产量的影响[J].石河子大学学报,2003,6(3):179-181.
    [29]张立桢,潘学标,李亚兵等.棉花不同群体冠层特征的映像分析[J].棉花学报,1998,10(3):140-145.
    [30]王晓静,张炎,等.棉花氮素营养状况的诊断研究[J].植物营养与肥料学报,2006,12(5):656-661.
    [31]徐学选,穆兴民,陈国良,等.水肥耦合效应与协同管理[M].北京:中国林业出版社,1999.
    [32]张伟,吕新.棉花冠层对不同灌水量的反应及其产量形成研究[J].干旱区研究,2004,21(4):425-429
    [33]Michael S W, Peter W C, David W, et al. Above ground biomass accumulation and nitrogen fixation of broom growing with juvenile Pinus radiate on a dry land site[J]. Forest Ecology and Management, 2003,8(4):93-104.
    [34]郑昭佩,刘新作.水肥耦合与半干旱区农业可持续发展[J].农业现代化研究,2002,21(5):25-27.
    [35]Rego T J. Comparison of the effect of continuous and relieved water stress on nitrogen nutrition of grain sorghum[J].Aust.J.Agric.Res,1988,39(5):773-782.
    [36]Strong W M, Barry G. The availability of soil and fertilizer phosphorus to wheat and rape at different water regime [J].Aust.J.Soil Res.,1980,18(2):353-362.
    [37]Mengel K, Braunsch W, Von L C. The effect of soil moisture upon the availability of potassium and its influence on the growth young maize plants(Zea mays L.)[J].Soil Sci,1972,114(6):142-148.
    [38]Arber S. A diffusion and mass flow concept of soil nutrient availability [J]. Soil Sci,1962,9(3):34-39.
    [39]张怀志,朱艳,曹卫星,等.棉花氮肥和水分运筹的动态知识模型[J].应用生态学报,2004,15(5):777-781.
    [40]詹卫华,黄冠华,谢永华,等.喷灌条件下花生玉米间作物的水肥祸合效应[J].中国农业大学学报,1999,4(4):35-39.
    [41]张炎.优化氮肥管理对膜下滴灌海岛棉产量和品质的影响[J].西北农业学报,2006,15(4):122-125.
    [42]陈建平,顾双平,刘伟仲.氮肥与化控配合应用对棉花产量和品质的影响[J].棉花学,1993,5(2):49-54.
    [43]郑重,马富裕,幕自新,等.水肥因素对膜下滴灌棉花产量和棉株群体冠层结构的影响研究[J].干早地区农业研究,2001,19(2):42-47.
    [44]王平,陈新平,田长彦,等.不同水氮管理对棉花产量、品质及养分平衡的影响[J].中国农业科学,2005,38(4):761-769.
    [45]李生秀,高亚军,李世清,等.澄城低肥力田块小麦的水肥耦合效应[M]//旱地农田肥水关系原理与调控技术.中国农业科技出版杜,1995,221-224.
    [46]刘来华,李韵珠,黄元仿.冬小麦水氮有效利用的研究[J].中国农业大学学报,1996,1(5):67-73.
    [47]吕殿青,刘军,李瑛.旱地水肥交互效应与耦合模型研究[J].西北农业学报,1995,4(3):72-79.
    [48]Elia A, Santanaria P, Serio F. Nitrogen nutritoin, yield and auality of spinach [S].J.Sci. Food Agric. 1998,76(6):341-346.
    [49]Ferguson R B, Hergert G W, Schepers J S, et al.Site-specific nitrongen management of irrgated maize: Yield and siol residual nitrate effects [J].Soil Sci.Am.J,2002,66(6):544-553.
    [50]SamonteS O P B, Wilson L T, Medley J C, et al. Nitrogen utilization efficiency:Relationships with grain yield,grain protein,and yield-relates traits in rice. [J].Agron J,2006,98(3):168-176.
    [51]沈秀英,戴俊英,胡安畅,等.玉米群体冠层特征与截获量及产量关系的研究[J].作物学报,1993,19(3):246-252.
    [52]Randall C W, Vetsch J A, Huffman J R. Corn production on a subsurface drainde mollisol as affects by time of nitrogen application and nitrapyrin [J]. Agron.J,2003,95(3):1213-1219.
    [53]Fox R H,Kern J M,Piekielek W P. Nitrogen fertilizer source,and method and time of application effects on no-tillcorn yields and nitrogen uptake[J]Agron L.1986,78:741-746.
    [54]Randall G W, Iragavarapu T K, Bock B R. Nitrogen application method and timing for corn after soybean in a rigdgetillage system [J]. J.Prod.Agric.2007,109(9):300-307.
    [55]Schatf P C,Wiedbold W J,Lory J A. Corn yield response to nitrogen fertilizer photography for determining late-season nitrogen requirements in corn[J]. Agron, J.2002,97(3):1443-1451.
    [56]Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat [J]. Plant Physiol J. 2005,72(2):297-302.
    [57]Arora Y, Juo A S R. Leaching of fertilizer ions in a Kaolinitic Ultisol in the high rainfall tropics: Leaching of nitrate in filed plots under cropping and bare fallow [J]. Soil Soc.Am. J.1982, 46(3):1212-1218.
    [58]孙年喜,宗学凤,王三根,等.不同供氮水平对玉米光合特性的影响[J].西南农业大学学报,2005,27(3):389-392.
    [59]鱼欢,杨改河,王之杰.等.不同施氮量及基追比例对玉米冠层生理性状和产量的影响[J].植物营养 与肥料学报,2010,16(2):266-273.
    [60]万素梅,胡守林,翟云龙.膜下滴灌棉花土壤水分动态变化研究[J].水土保持研究,2007,14(1):90-91.
    [61]方新力.膜下水肥耦合以水调为核心的系统调控技术综述[J].安徽农学通,2008,14(13):61-63.
    [62]武云天,张航,徐明岗,等.陇东旱源地区冬小麦水肥效应耦合模拟研究[J].西北农业学报,1995,4(2):69-72.
    [63]鲍世旦.土壤农化分析[M].北京:中国农业出版社2000.
    [64]Haynes R. Principles of fertilizer use for trickle irrigated crops[J].Fertilizer Research,1985,6(1):235-255.
    [65]Papadopo U I. Nitrogen fertigation of trickle-irrigated potato[J].Fertilizer Research,1988,16:157-167.
    [66]Arregui L M, Lafarga A, et al.Evaluation of chlorophyll meters as tool for N fertilization in winten wheat under humid Mdeiterrancan conditions [J].Eur.J, Agron.2006,24(6):140-148.
    [67]Samonte S P B, Wilson L T, Medley J C, et al.Nitrogen utilization efficiency:Relationships with grain yield protein, and yield related traits in rice[J].Ajron J,2006,98(5):168-176.
    [68]张旺锋,王振林,余松烈等.氮肥对新疆棉花高产棉花群体光合性能和产量形成的影响[J].作物学报,2002,18(6):789-796.
    [69]张培通,徐立华,杨长琴.施氮量对科棉3号干物质积累及分配、产量和纤维品质的效应[J].棉花学报,2008,20(4):295-299.
    [70]Arthur W. Crop improvement through multidisciplinary approaches to different types of stress-law of maxi mar [J].Journal of plant Nutrition,1990,13(3&4):313-325.
    [71]Arthur W, Gram A W. Interactions encountered when supplying nitrogen and phosphorus fertilizer and a water-soluble polyacrylamide to siol [J].Journal of plant Nutrition,1990,13(3&4):343-347.
    [72]Arthur W. Interactions of two parameters in crop production and in general biology sequential addtivity synergism antagonism[J].Journal of plant Nutrition,1990,13(3&4):327-342.
    [73]Agbenin J. Phosphate-induced zinc retention in a tresemi-arid Soil [J].Eur:Soil Sci,1998,49:693-700.
    [74]Campell C A. Nitrate leaching as influenced by fertilization in the brown siol zone[J].Can J soil Sci,1993,73(5):387-397.
    [75]Goss M J. Nitrate leaching:modifying the loss from mineralized organic mater[J].Eur:soil Sci. 1998,49(10):649-659.
    [76]Phene C J,Hutmacher R B,Davis K R,etal. Water-fertilizer management of processing tomatoes [J].Acta Hort.1990,277(8):137-193.
    [77]Mohammad M J,Zuraiqi S,Quasmeh W,et al.Yield response and nitrogen utilization efficiency by drip-irrigated potato[J].Nutrient Cycling in Agroecosystems,1999,54(2):243-249.
    [78]宁志真,刘明,范君华,等.南疆膜下滴灌不同品种棉花干物质积累规律的研究[J].安徽农学通报, 2009,15(7):135-139.
    [79]Khan. Field evaluation ofwater and solute distribution of point source[J].Irrigation and Drainage Eng. 1996,122(4):221-227.
    [80]Ward. Analysis ofwater and solute transport away from a surface point source[J]. Soil Science Society Am.J 1995,59(5):669-706.
    [81]张秋英,刘晓冰,金剑,等.水肥耦合对玉米光合特性及产量的影响[J].玉米科学,2001,9(2):64-67.
    [82]Elia A, Santanaria P.Serio F. Nitrogen nutritoin, yield and auality of spinach [J].J.Sci. Food Agric. 1998,76:341-346.
    [83]Matson P A,Nayior R,Monasterio I O.Integration of environmental,agronomic,and economic aspects of fertilizer management[J].Sci,1998,280(3):112-115.
    [84]Singandhupe R B, Rao G N,Patil N G, et al. Fertigation studies an d irrigatian scheduling in drip irrigation system in tomato crop[J]. European Journal of Agronomy,2003,19(6):327-340.
    [85]Vyn T J,Janovicek K J,Milller M H, et al.Soil nitrate ang crop response to preceding small grain fertilization and cover crops[J].Agron.J, 1999,91(7):17-24.
    [86]党蕊娟,李世清,穆晓慧,等.施氮对半湿润农田冬小麦冠层叶片氮素含量和叶绿素相对值垂直分布的影响[J].中国生态农业学报,2009,17(1):54-59.
    [87]Zhou J B, Xi J G, Chen Z J, et al. Leaching andtransformation of nitrogen fertilizers in soilafter application of N with irrigation:A soil column method[J].Pedosphere,2006,16(2):245-252.
    [88]Husssain F,Bronson K F,Yadvinder S, et al. Use of chlorophyll meter suffciency indices for nitrogen management of irrigated rice in Asia[J].Agron. J,2000,92(6):875-879.
    [89]Varvel G E, Scheprs J S, Francis D D. Ability for inseason correction of nitrogen deficiency in com using chorophyll meters [J].Soil sci.Soc.Arn.J,1997,6(8):1233-1239.
    [90]杨涛,马兴旺,钟新才,等.新疆内陆干旱区不同灌水量对长绒棉光合特性的影响[J].中国农学通报,2006,23(8):198-202.
    [91]王斌,马兴旺,杨涛,等.干旱区水肥耦合对棉花植株养分吸收的影响[J].新疆农业科学,2008,45(S2):81-86.
    [92]杨涛,马兴旺,王斌,等.干旱区水肥耦合对棉花光合特性和产量的影响[J].新疆农业科学,2008,45(S2):93-98.
    [93]裴宇峰,韩晓增,祖伟,等.水氮耦合对大豆生长发育的影响Ⅰ.水氮耦合对大豆产量和品质的影响[J].大豆科学,2005,24:(2)106-111.
    [94]Sorte N V. Effect of waterlogging on soybeant critical growth stages [J].Journal of Soils and Crops, 1995,5(2):141-144.
    [95]伍维模,郑德明,董合林.等.南疆棉花干物质和氮磷钾养分积累的模拟分析[J].西北农业学报,2002,11(1):92-96.
    [96]邬飞波,许馥华,金球群.1999,利用叶绿索计对短季棉氮素营养诊断的初步研究[J].作物学报,25(4);483-488.
    [97]Westcott M,Wraith J.Correlation of leaf chlorophyll readings and stem nitrate concentrations in peppermint[J].Commum. Soil Sci. Plant Anal,1995,26(9,10)1481-1490.
    [98]Markua L,Katharina S,Hans S.Vertical leaf nitrogen distribution in relation to nitrogen status in grassland plants [J] Annals of Botany,2003,92(8):679-688.
    [99]谭勇,张炎,文启凯.等.氮磷和钾营养对新海16长绒棉产量和品质的影响[J].土壤肥料,2006,(2):34-36.
    [100]成灿土,邬飞波.氮素营养对短季棉干物质生产与分配及纤维品质的影响[J].浙江农业学报,1999,11:(1):5-9.
    [101]马富裕,郑重,赵志鸿,等.新疆北疆棉花高产群体因素分析及其栽培技术途径[J].棉花学报,2002,14(2):91-94.
    [102]姚银坤,张炎,胡伟,等.施磷对长绒棉干物质积累、分配比例和产量的影响[J].中国土壤与肥料,2008,(5):36-40.
    [103]Shibu J, Sara M,Craig L R. Growth,nutrition,photosynthesis and transpiration responses of long leaf pine seedlings to light,water and nitrogen[J].Forest Ecology and Management,2003,180(7):335-344.
    [104]Gayler S,Wange E,Priesack E,et al. Modeling biomass growth N uptake and phenological development of potato crop [J]. Geoderma,2002,10(5):367-383.
    [105]曹宏鑫,董玉红,王旭清,等.不同产量水平小麦最适叶面积指数动态模拟模型研究[J].麦类作物报,2006,26(3):128-131.
    [106]闫长生,肖世和,张秀英,等.冬小麦冠层内的光分布[J].华北农学报,2002,17(3):7-13.
    [107]李举华,林荣芳,刘兆丽,等.长期定位施肥对冬小麦叶面积指数及群体受光态势的影响[J].华北农学报,2008,23(3):209-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700