尿素施用量对不同大豆品种产量和品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素对大豆生长起着非常重要的作用,由于大豆根瘤菌可以固氮,在大豆生产中是否需要施用氮肥还存在争议。为此,于2006和2007年采用12个不同来源的大豆品种为试材,并按来源分成三组,分别为俄亥俄当代品种、辽宁当代品种和辽宁老品种,采用苗期追施尿素(0,100,200 kg/hm~2)处理,通过对生理生化、农艺性状、产量和品质等相关指标的测定,探讨了氮素对不同来源大豆品种的影响机理。旨在为大豆高产、优质、高效生产提供理论依据。主要研究结果如下:
     1.氮素对不同来源大豆品种光合性状的影响
     当尿素施用量为100kg/hm~2时,与不施肥相比,俄亥俄当代品种结荚期叶绿素总量提高。当尿素施用量为200kg/hm~2时,与不施肥相比,三组品种开花期叶绿素总量均显著提高,辽宁当代品种与辽宁老品种结荚期叶绿素总量显著提高。
     与不施肥相比,随着施氮量的增加,俄亥俄当代品种开花期叶面积指数有逐渐增加的趋势,辽宁当代品种开花期与结荚期叶面积指数逐渐提高。当尿素施用量为100kg/hm~2时,与不施肥相比,俄亥俄当代品种和辽宁老品种结荚期叶面积指数显著提高。当尿素施用量为200kg/hm~2时,与不施肥相比,辽宁老品种开花期叶面积指数显著提高。与不施肥相比,施氮处理提高会增加大豆品种鼓粒期的叶面积指数。
     当尿素施用量为100kg/hm~2时,与不施肥相比,俄亥俄当代品种和辽宁当代品种开花期与结荚期叶片净光合速率增加;随着施氮量的增加,辽宁老品种开花期叶片净光合速率逐渐增加。与不施肥相比,氮肥处理增加了俄亥俄当代品种和辽宁当代品种鼓粒期叶片净光合速率。
     2.氮素对不同来源大豆品种生化指标的影响
     施氮处理对不同来源大豆品种叶片谷氨酰胺合成酶活性影响不同,不同生育时期对氮肥的反应也有所差别。施氮处理会降低辽宁当代品种和辽宁老品种开花期叶片谷氨酰胺合成酶活性。当尿素施用量为100kg/hm~2时,俄亥俄当代品种结荚期与鼓粒期叶片的谷氨酰胺合成酶活性会增加,辽宁当代品种鼓粒期叶片的谷氨酰胺合成酶活性也会增加。随着施氮量的增加,辽宁老品种结荚期与鼓粒期叶片谷氨酰胺合成酶活性呈下降趋势;辽宁当代品种结荚期叶片谷氨酰胺合成酶活性也会下降。
     随着施氮量的增加,三组大豆品种开花期叶片的硝态氮含量均呈增加趋势。和不施肥相比,施氮处理会使大豆品种开花期、结荚期及鼓粒期叶片氨态氮含量增加。
     当尿素施用量为100kg/hm~2时,与不施肥相比,会使开花期俄亥俄当代品种与辽宁老品种叶片超氧化物歧化酶的活性提高,也会使辽宁当代品种与辽宁老品种结荚期叶片超氧化物歧化酶的活性提高,但会使辽宁当代品种鼓粒期叶片超氧化物歧化酶的活性下降。随着施氮量的增加,辽宁当代品种开花期叶片超氧化物歧化酶活性有增加趋势;俄亥俄当代品种结荚期叶片超氧化物歧化酶活性也会逐渐增强。但是,氮肥处理会造成俄亥俄当代品种与辽宁老品种鼓粒期叶片超氧化物歧化酶的活性下降。
     随着施氮量的增加,不同大豆品种开花期叶片过氧化物酶活性会不断增加;俄亥俄当代品种与辽宁老品种结荚期叶片过氧化物酶活性也会逐渐增强。但是,氮肥处理会使俄亥俄当代品种与辽宁老品种鼓粒期叶片过氧化物酶的活性下降。
     随着施氮量的增加,不同大豆品种开花期叶片过氧化氢酶活性逐渐提高;俄亥俄当代品种与辽宁当代品种结荚期叶片过氧化氢酶活性也逐渐提高。和不施肥相比,100kg/hm~2尿素施用处理使辽宁老品种结荚期叶片过氧化氢酶的活性增强,同时,也会使三组不同来源大豆品种鼓粒期叶片过氧化氢酶的活性得到提高。
     当尿素施用量为200kg/hm~2时,和不施肥相比,俄亥俄当代品种和辽宁当代品种开花期叶片可溶性糖含量显著提高。随着施氮量的增加,辽宁老品种开花期叶片可溶性糖含量逐渐增加。
     随着施氮量增加,俄亥俄当代品种开花期叶片淀粉含量有降低趋势,而辽宁老品种与之相反,开花期淀粉含量有增加趋势。当尿素施用量为200kg/hm~2时,和不施肥相比,辽宁当代品种开花期叶片淀粉含量显著提高。施氮处理会降低三组不同来源大豆品种结荚期叶片的淀粉含量。
     氮肥处理能明显增加三组不同来源大豆品种开花期与结荚期叶片转化酶的活性。氮肥处理也会增加不同大豆品种开花期、结荚期与鼓粒期叶片可溶性蛋白质的含量。
     3.氮素对不同来源大豆品种农艺性状、产量和品质的影响
     追施氮肥会使大豆品种的株高、分枝数和单株荚数增加。当尿素施用量为100kg/hm~2时,和不施肥相比,三组不同来源大豆品种的主茎节数增加,俄亥俄当代品种与辽宁当代品种结荚高度则会降低。氮肥处理能提高俄亥俄当代品种与辽宁当代品种的粒茎比。
     当尿素施用量为200kg/hm~2时,和不施肥相比,俄亥俄当代品种与辽宁老品种产量分别增加10.61%和1.63%;当尿素施用量为100kg/hm~2时,和不施肥相比,辽宁当代品种产量会增加10.47%。
     随着施氮量增加,三组不同来源大豆品种籽粒的蛋白质含量有增加趋势。而氮肥处理会降低俄亥俄当代品种籽粒的脂肪含量。当尿素施用量为100kg/hm~2时,和不施肥相比,辽宁当代品种与辽宁老品种籽粒脂肪含量分别提高0.35%和1.10%。氮肥处理会使三组不同来源大豆品种籽粒蛋白质与脂肪总量增加。
     三组大豆品种相比较,俄亥俄当代品种耐肥性最好,辽宁当代品种次之,辽宁老品种较差,说明经过数十年的品种改良,俄亥俄当代品种改良效果优于辽宁当代品种,俄亥俄当代品种抗性、适应性较好。因此,可以在品种选育过程中借鉴国外的育种经验,加速我国大豆品种改良进程,提高耐肥性及品种适应性,进而提高我国大豆产量。
Nitrogen is very important for soybean growth.It is controversy whether additional nitrogen fertilizer needed or not in soybean production as soybean rhizobium can fix nitrogen. This experiment was carried out by using twelve soybean cultivars from different regions in 2006 and 2007.And the cultivars were divided into three groups:current Ohio cultivar, current Liaoning cultivar and old Liaoning cultivar.Urea fertilizer(0,100,200 kg/hm~2) was topdressed at soybean seedling stage.The physiology and biochemistry of leaf, agronomic characteristics,yield and quality were measuredfor the effect of nitrogen on soybeans from different regions.It can provide academic theories for higher yield,better quality,and more efficiency production of soybeans.The results were as follows:
     1.The effect of nitrogen on photosynthetic traits for soybean cultivars from different regions
     Compared with the no fertilizer treatment,total content of chlorophyll of current Ohio cultivar at podding stage was improved when 100kg/hm~2 urea was fertilizered,Total content of chlorophyll of three groups soybean cultivar at blooming stage was significant improved when 100kg/hm~2 urea was fertilizered.Total content of chlorophyll of current Liaoning cultivar and old Liaoning cultivar was significant rised at podding stage.
     The LAI of current Ohio cultivar at blooming stage increased as the level of nitrogen fertilizer ascending.The LAI increased with the level of nitrogen fertilizer ascending for current Liaoning cultivar at blooming and podding stages.The LAI was significant improved for current Ohio cultivar and old Liaoning cultivar at podding stage when 100kg/hm~2 urea was fertilizered.The LAI was significant rised for old Liaoning cultivar at blooming stage when 200kg/hm~2 urea was fertilizered.The LAI of soybean cultivar will improve with the level of nitrogen fertilizer ascending.
     The leaf net photosynthesis rate was improved in the treatment of 100kg/hm~2 urea for current Ohio cultivar and current Liaoning cultivar at blooming and podding stages.The leaf net photosynthesis rate of old Liaoning cultivarincreased with the level of nitrogen fertilizer ascending at blooming stage.The leaf net photosynthesis rate was improved in the treatment of nitrogen fertilizer for current Ohio cultivar and current Liaoning cultivar at grain filling stage.
     2.The effect of nitrogen on physio-biochemical characters for soybean cultivars from different regions
     The effect was different for nitrogen treatment on glutamine synthetase activity for soybean cultivars from different regions.There was some different reaction for nitrogen at different growth stages.The glutamine synthetase activity will be reduced for current Liaoning cultivar and old Liaoning cultivar at blooming stage.The glutamine synthetase activity will be arised at podding stage and grain filling stage in the treatment of 100kg/hm~2 nitrogen fertilizer.The glutamine synthetase activity wil be improved at grain filling stage in the treatment of 100kg/hm~2 nitrogen fertilizer.The glutamine synthetase activity of old Liaoning cultivar lower and lower with the nitrogen level ascending at podding stage and grain filling stage.The glutamine synthetase activity of current Liaoning cultivar will be reduced with the nitrogen level ascending at podding stage.
     The nitrate content of leaves was increased with the level of nitrogen fertilizer ascending for three groups soybean cultivar at blooming stage.The ammonium content of leaves was raised in the treatment of nitrogen fertilizer for three groups soybean cultivar at blooming, podding and grain filling stages.
     The SOD activity was added in the treatment of 100kg/hm~2 nitrogen fertilizer for current Ohio cultivar and old Liaoning cultivar at blooming stage.The SOD activity increased in the treatment of 100kg/hm~2 nitrogen fertilizer for current Liaoning cultivar and old Liaoning cultivar at podding stage.The SOD activity was reduced in the treatment of 100kg/hm~2 nitrogen fertilizer for current Liaoning cultivar at grain filling stage.The SOD activity of current Liaoning cultivar increased with the level of nitrogen fertilizer at blooming stage.The SOD activity of current Ohio cultivar increased with the level of nitrogen fertilizer ascending at podding stage.But the SOD activity of current Ohio cultivar and old Liaoning cultivar decreased in the treatment of nitrogen fertilizer at grain filling stage.
     The POD activity of soybean cultivar increased with the level of nitrogen fertilizer ascending at blooming stage.The POD activity of current Ohio cultivar and old Liaoning cultivar improved with the level of nitrogen fertilizer ascending at podding stage.But the POD activity of current Ohio cultivar and old Liaoning cultivar decreasedin the treatment of nitrogen fertilizer at grain filling stage.
     The CAT activity of soybean cultivar increased with the level of nitrogen fertilizer ascending at blooming stage.The CAT activity of current Ohio cultivar and old Liaoning cultivar increased with the level of nitrogen fertilizer ascending at podding stage.The CAT activity of old Liaoning cultivar improved in the treatment of 100kg/hm2 urea fertilizer than 0kg/hm~2 urea fertilizer at podding stage.At the same time,the CAT activity of three groups soybean cultivar rised at grain filting stage.
     The soluble sugar content in leaves of current Ohio cultivar and current Liaoning cultivar significantly rised in the tteatment of 200kg/hm~2 urea fertilizer than 0kg/hm~2 urea fertilizer at blooming stage.The soluble sugar content in leaves of old Liaoning cultivar improved with the level of nitrogen fertilizer adding at blooming stage.
     The starch content in leaves of current Ohio cultivar decreased with the level of nitrogen fertilizer adding at blooming stage.But it is inverse for old Liaoning cultivar.The starch content in leaves of old Liaoning cultivar improved with the level of nitrogen fertilizer adding at blooming stage.The starch content in leaves of current Liaoning cultivar significantly rised in the treatment of 200kg/hm~2 urea fertilizer than 0kg/hm~2 urea fertilizer at blooming stage. The starch content in leaves of three group soybean cultivars from different regions decreased in the treatment of nitrogen fertilizer at podding stage.
     The invertase activity in leaves of three groups soybean cultivar from different regions significantly improved in the treatment of nitrogen fertilizer at blooming stage and podding stage.The soluble protein content in leaves of soybean cultivar improved in the treatment of nitrogen fertilizer at blooming,podding and grain filling stage.
     3.The effect of nitrogen on agronomic characteristics,yield and quality for different regions soybean
     The plant height,branches and the pods per plant of soybean cultivar improved in the treatment of nitrogen.The nodes of main stem for three groups soybean cultivars rised in the treatment of 100kg/hm~2 nitrogen fertilizer.The height of lowest pod of current Ohio cultivar and current Ohio cultivar reduced in the treatment of 100kg/hm~2 nitrogen fertilizer.The ratio of seed and stem for current Ohio cultivar and current Ohio cultivar improved in the treatment of nitrogen fertilizer.
     The yield increased by 10.61%and 1.63%for current Ohio cultivar and old Liaoning cultivar in the treatment of 200kg/hm~2 nitrogen fertilizer respectively.The yield increased by 10.47%for current Liaoning cultivar in the treatment of 100kg/hm~2 nitrogen fertilizer.
     The seed protein content of three groups soybean cultivars imcreased with the level of nitrogen fertilizer ascending.But the seed oil content of current Ohio cultivar decreased in the treatment of nitrogen fertilizer.The increase of seed oil content of was 0.35%and 1.10%for current Liaoning cultivar and old Liaoning cultivar in the treatment of 100kg/hm~2 nitrogen fertilizer respectively.The total content of protein and oil increased in the treatment of nitrogen fertilizer for three group soybean cultivars.
     Compared the endure reaction on fertilizer in three groups soybean cultivars,current Ohio cultivar was the best,followed by current Liaoning cultivar,old Liaoning cultivar was poor.This indicated that after decades of genetic improvement,current Ohio cultivar was better than current Liaoning cultivar,and resistant and adaptability of current Ohio cultivar is better than current Liaoning cultivar.Therefore,it can be use experience of other countries in the breeding process for reference,accelerating the process of improvement on our country's soybean cultivars,improving fertilizer tolerability and adaptation,thereby enhance the yield of our country's soybean.
引文
1.安战士.1987.土壤质量评级指数和障碍因子综合评价初探.土壤通报,(5):195-199.
    2.白宝璋等主编.1996.植物生理学.北京:中国农业科技出版社,84-85.
    3.才艳等.2007.氮肥施用量对大豆生长动态及干物质积累的影响.黑龙江八一农垦大学学报,19(2):13-16.
    4.曹翠玲,李生秀.1999.氮素对植物某些生理生化过程影响的研究进展.西北农业大学学报,27(4):96-101.
    5.曹翠玲,李生秀.2003a.供氨水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响.植物学通报,20(3):319-324.
    6.曹翠玲等.2003b.氮素形态对小麦生长中后期保护酶等生理特性的影响.土壤通报,34(4):295-298.
    7.曹恭,梁鸣早.2002.氮-平衡栽培体系中植物必需的大量元素.土壤肥料,(4):加1-加3.
    8.曹志洪.1998.科学施肥与我国粮食安全保障.土壤,(2):57-63.
    9.常耀中.1981.大豆高产栽培叶面积问题.中国农业科学,(1):22-26.
    10.陈昌斌等.1999.组成型nifA对大豆根瘤菌(Rhizobium fredii)HN01lux结瘤固氮效率的促进作用.科学通报,44(5):529-533.
    11.陈刚才等.2001.土壤氮素及其环境效应.地质地球化学,29(1):63-67.
    12.陈惠萍,徐朗莱.2005.Ca~(2+)/CaM在壳聚糖调控不结球白菜离体叶片氨同化关键酶活性中的作用.南京农业大学学报,28(1):34-38.
    13.陈家宙,丘华昌.1996.5种旱地土壤的供氮特点及其与土壤性质的关系.华中农业大学学报,15(3):237-242.
    14.陈雯莉等.1996.用叶绿素含量评价快生型大豆根瘤菌的共生有效性.华中农业大学学报,15(1):46-51.
    15.陈煜等.2004.不同氮源对大豆硝酸还原酶和谷氨酰胺合成酶活性及蛋白质含量的影响.大豆科学,23(2):143-146.
    16.程素贞,罗孝荣.1990.大豆对钼与氮、磷、钾的吸收分配动态及相互关系的初步研究.大豆科学,9(3):241-246.
    17.崔玉亭.2000.化肥与生态环境保护.北京:化学工业出版社,5-10.
    18.达娃.2003.不同氮素水平对干旱胁迫下玉米幼苗的水分状况及光合特性的影响.西藏科技,(12):9-13.
    19.戴建军等.1999a.钴肥对大豆根瘤固氮及产量影响的初报.东北农业大学学报,30(2):128-131.
    20.戴建军,程岩.1999b.应用~(15)N示踪技术对不同品种大豆的三种氮源吸收利用的研究.东北农业大 学学报,30(3):225-229.
    21.戴建军,程岩.2000a.黑龙江省南部黑土施氮对大豆氮肥利用率的影响.东北农业大学学报,31(2):125-128.
    22.戴建军,程岩.2000b.黑龙江省南部黑土不同施氮水平对大豆产量的影响.东北农业大学学报,31(3):225-228.
    23.戴廷波等.2005.不同施氮水平和基追比对小麦籽粒品质形成的调控.作物学报,31(2):248-253.
    24.邓如福.1989.铬对大豆氮代谢及生长影响的研究.西南农业大学学报,11(3):292-294.
    25.邓如福.1990.钼、钨、铬对大豆根瘤固氮和植株硝酸还原酶活性的影响(简报).植物生理学通讯,1:37-39.
    26.丁洪等.1994.不同熟期大豆品种吸收和利用氮肥的差异.中国油料,16(2):7-10.
    27.丁洪,李生秀.1998.磷素营养与大豆生长和共生固氮的关系.西北农业大学学报,26(5):67-70.
    28.董广辉等.2003.外源硒对大豆产量、植株氮磷含量及土壤酶活性的影响.应用生态学报,14(5):776-780.
    29.董钻.1979.叶绿素含量及比叶重与大豆单株生物产量的相关性.沈阳农学院学报,(2):7-9.
    30.董钻,谢甫绨.1996.大豆氮磷钾吸收动态及模式的研究.作物学报,22(1):89-95.
    31.窦新田等.1992.不同熟期和结英习性大豆品种的固氮活性差异及其遗传变异.中国油料,(1):27-29.
    32.杜建军等.1998.不同肥水条件对旱地土壤供氮能力的影响.西北农业大学学报,26(6):1-5.
    33.杜天庆,苗果园.2006.氮肥施用量对生土地大豆生物性状和产量的影响.山西农业科学,34(3):53-55.
    34.傅会芳.1996.旱地土壤氮素矿化的动力学研究.中国科学院研究生院学报,13(2):178-182.
    35.甘银波,本佳婉.1996.不同氮肥管理对毛豆共生固氮及产量的影响.中国油料,18(1):34-37.
    36.高辉远等.1992.大豆光合日变化的不同类型及其影响因素.大豆科学,11(3):219-225.
    37.高忠等.1995.植物叶片中RUBP羧化酶/加氧酶及光反应机构衰老机理的研究进展.南京农业大学字报,18(2):26-33.
    38.关义新等.2000.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响.植物营养与肥料学报,6(2):152-158.
    39.郭金华等.2003.低能氮离子注入对大豆幼苗膜质过氧化的影响.辐射研究与辐射工艺学报,21(4):243-246.
    40.韩晓增.1997.重迎茬大豆植株氮磷钾含量与积累特征的研究.农业现代化研究,18(6):371-374.
    41.何建国等.1999.不同氮肥管理对大豆生长及产量的影响.大豆通报,(1):11.
    42.何萍等.1998.氮肥用量对春玉米叶片衰老的影响及其机理研究.中国农业科学,31(3):66-71.
    43.何同康.1983.土壤(土地)资源评价的主要方法及其特点比较.土壤学进展,11(6):1-12.
    44.何仲佩主编.1993.农作物化学控制实验指导.北京:北京农业大学出版社,23-26.
    45.贺竟赦,侯忠.1988.施肥对不同玉米品质的影响.陕西农业科学,(1):8-11.
    46.侯必新等.2006.棉叶片光合特性与氮肥调节效应.棉花学报,18(3):184-185.
    47.胡承霖等.1992.小麦籽粒蛋白质含量动态变化特性及其与产量的关系.南京农业大学学报,15(1):115-119.
    48.胡蕾等.2003.锰对大豆膜脂过氧化及POD和CAT活性的影响研究.金华职业技术学院学报,(1):29-32.
    49.胡明祥等.1990.不同生态区域环境对中国大豆品质的影响.大豆科学,9(1):39-49.
    50.黄国弟.2005.植物氮磷钾营养的土壤化学原理及应用.广西热带农业,4:20-22.
    51.黄绍文等.2004.氮、磷和钾营养对优质玉米子粒产量和营养品质的影响.植物营养与肥料学报,10(3):225-230.
    52.黄正来等.2005.花期追施氮肥对菜用大豆AC10生理指标及产量影响的研究.激光生物学报,14(3):193-196.
    53.贾振华,李华.1988.小麦产量与品质同步形成的研究 Ⅰ.追氮时期对产量与蛋白质同步形成的影响.北京农业科学,(3):15-18.
    54.贾振华等.1988.施肥对小麦产量和品质形成的影响.北京农学院学报,3(2):136-138.
    55.江木兰等.2003.大豆-根瘤菌的固氮作用.中国油料作物学报,25(1):50-53,58.
    56.姜存松等.1987.滨海盐渍型高产水稻土培肥的土壤氮素矿化势研究.盐碱地利用,(2):10-13.
    57.姜东等.施氮水平对高产小麦蔗糖含量和光合产物分配及子粒淀粉积累的影响.中国农业科学,2002,35(2):157-162.
    58.姜照伟等.2005.不同氮肥施用量对再生稻若干生理特性的影响.福建农业学报,20(3):168-171.
    59.金继运,何萍.1999.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响.中国农业科学,32(4):55-62.
    60.金剑等.1998.氮素积累、分配与大豆产量的关系.大豆通报,(6):25.
    61.李常健等.2001.高等植物谷氨酰胺合成酶研究进展.生物学杂志,18(4):1-3.
    62.李大勇等.2007.新老大豆品种叶片光合特性的比较.中国油料作物学报,29(3):281-285.
    63.李国桢.1986.大豆品质育种综述.黑龙江农业科学,(3):29-33.
    64.李建奇等.2004.氮肥对不同玉米品种产量和品质的影响研究.耕作与栽培,(2):22-24.
    65.李六林等.1999.新红星苹果不同枝类叶片中叶绿素含量的变化.果树科学,16(1):78-80.
    66.李仁岗等.1982.冬小麦对土壤氮和肥料氮的吸收及氮素平衡的研究.土壤通报,3(4):12-22.
    67.李生秀等.1990.几种测定方法在反映土壤供氮能力方面的效果.土壤,22(4):194-197.
    68.李生秀等.1993.旱地土壤的合理施肥:Ⅰ 旱地土壤的起始矿质氮与玉米对氮肥的反应.干旱地区农业研究,11(增刊):35-39.
    69.李香真,曲秋皓.2002.蒙古高原草原土壤微生物量碳氮特征.土壤学报,139(1):97-104.
    70.李晓鸣.1994.黑土接种VA菌根真菌对大豆植株吸磷及固氮的影响.土壤肥料,(3):43-45.
    71.李新民.1990.大豆群体结构的研究.大豆科学,9(3):185-190.
    72.李新民等.1999.大豆寄主固氮遗传育种研究进展.大豆科学,13(2):160-163.
    73.李友军等.1997.拔节期重施氮肥对小麦群体质量和产量的影响.麦类作物,17(5):41-45.
    74.李玉颖.1993.钾对大豆产量和品质影响.土壤肥料,(2):24-26.
    75.廖中建,黎理.2007.土壤氮素矿化研究进展.湖南农业科学,(1):56-59.
    76.刘春红,敖奎.2003.不同培肥途径对土壤中氮含量的影响.北方园艺,(2):56-57.
    77.刘德立等.1993.超氧化物歧化酶(SOD)与植物抗逆性的关系.华中师范大学学报(自然科学版),27(1):83-85.
    78.刘芳.1994.小麦吸收肥料氮和土壤氮的探讨.核农学报,15(2):81-84.
    79.刘莉等.1998.不同化合态氮浓度对大豆根瘤菌结瘤和固氮作用的影响.中国农业科学,31(4):87-89.
    80.刘丽君等.2005.氮肥对大豆结瘤及叶片氮素积累的影响.东北农业大学学报,36(2):133-137.
    81.刘鹏,杨玉爱.1999.钼硼对大豆氮代谢的影响.植物营养与肥料学报,5(4):347-351.
    82.刘鹏,杨玉爱.2000a.铝、硼对大豆膜脂过氧化及体内保护系统的影响.植物学报,42(5):461-466.
    83.刘鹏,杨玉爱.2000b.钼硼对大豆氮磷钾吸收及产量的影响.中国油料作物学报,22(3):57-60,65.
    84.刘小兰,李世清.1998.土壤中的氮素与环境.干旱地区农业研究,16(4):36-43.
    85.刘晓冰等.2001.不同大豆基因型氮素积累运转研究简报.大豆科学,20(4):298-301.
    86.刘莹.2000.不同年代小麦品种旗叶光合性能及SOD活性的比较研究.邯郸农业高等专科学校学报,17(4):20-21,31.
    87.鲁如坤.1989.我国土壤氮、磷、钾的基本状况.土壤学报,26(3):280-286.
    88.吕伟仙等.2004.植物中硝态氮、氨态氮、总氮测定方法的比较研究.光谱学与光谱分析,24(2):204-206.
    89.罗玉.2004.植物中的糖代谢及其相关酶.文山师范高等专科学校学报.17(2):155-159.
    90.马均等.2005.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究.中国农业科学,38(2):290-296.
    91.门中华,李生秀.2005.CO2浓度对冬小麦氮代谢的影响.中国农业科学,38(2):320-326.
    92.莫虹等.1991.长效尿素对大豆的增产效应.大豆科学,10(4):335-338.
    93.幕晓菇等.1990.大豆氮锌营养研究.土壤通报,21(10):30-32,40.
    94.穆兴民,樊小林.1999,土壤氮素矿化的生态模型研究.应用生态学报,10(1):114-118.
    95.倪丽等.2004.氮肥施用对高产大豆根系、干物质积累及产量的影响.新疆农业大学学报,27(2):36-39.
    96.潘庆民等.1998.追氮时期对超高产冬小麦旗叶和根系哀老的影响.作物学报,24(6):924-929.
    97.潘万清等.1992.大豆叶面积变化对田间微气象条件及产量的影响.大豆科学,(2):83-87.
    98.潘晓华,王永锐.1997.两系杂交稻始穗期追施氮钾肥提高叶片光合功能的作用.江西农业大学学报,19(3):1-5.
    99.裴宇峰等.2005.水氮耦合对大豆生长发育的影响 Ⅰ.水氮耦合对大豆产量和品质的影响.大豆科学,24(2):106-111.
    100.邱忠祥等.1990.锰肥对大豆氮代谢的影响.沈阳农业大学学报,21(2):105-109.
    101.曲文章等.1999.氮素水平对甜菜光合效率的影响.中国甜菜糖业,(4):1-4.
    102.任书杰等.2006.栽培模式、施氮和品种对冬小麦冠层结构和产量的影响.生态学杂志,25(12):1449-1454.
    103.沈润平,王中孚,郭进耀,等.氮磷钾营养对春大豆产量品质效应的研究.江西农业大学学报,1998,20(1):51-55.
    104.史宏志等.1999.不同氮量与氮源下烤烟淀粉酶和转化酶活性动态变化.中国烟草科学,(3):5-8.
    105.史占忠.1989.大豆植株全氮磷钾含量变化分析.大豆科学,8(4):369-374.
    106.宋桂云等.2005.施氮量对不同穗型水稻品种生理特性的影响.内蒙古民族大学学报(自然科学版),20(2):164-167.
    107.宋海星等.2005.不同节位玉米叶片硝态氮含量及硝酸还原酶活性.陕西农业科学,(3):72-74.
    108.宋艳波.2003.不同品种枣树SOD、POD、PPO活性与矿质元素含量的相关性研究:[硕士学位论文].山西太谷:山西农业大学.
    109.孙贵荒等.2003.大豆叶面积指数消长与产量关系的研究.辽宁农业科学,(4):13-14.
    110.孙国荣等.2000.Na2CO3胁迫对星星草幼苗游离氨基酸含量的影响.植物研究,20(1):69-72.
    111.孙年喜等.2005.不同供氮水平对玉米光合特性的影响.西南农业大学学报,27(3):389-392,396.
    112.孙淑荣等.1998.吉林省黑土区不同大豆品种固氮力的调查研究.吉林农业科学,(4):80-83.
    113.孙太靖等.2004.大豆植株氮素积累与转运动态的研究.东北农业大学学报,35(5):517-521.
    114.孙学成等.2002.施用钼肥对冬小麦游离氨基酸、可溶性蛋白质和糖含量的影响.华中农业大学学报,21(1):40-43.
    115.孙羽等.2004.硫素营养对大豆氮素积累及品质的影响.东北农业大学学报,35(4):389-394.
    116.汤继华等.2005.缺氮条件下玉米自交系叶绿素含量与光合效率的变化.华北农学报,20(5):10-12.
    117.汤树德等.1995,保护性施氮对大豆生育和产量的影响.黑龙江八一农垦大学学报,8(2):15-24.
    118.唐湘如.2000.施氮对饲用杂交稻产量和蛋白质含量的影响及其机理研究.杂交水稻,15(2):34-37.
    119.田翠玲等.2005.基于植被指数与叶面积指数的水稻生长状况监测.江苏农业科学,(6):13-15.
    120.田茂洁.2004a.土壤氮素矿化模型研究进展.四川环境,23(4):37-42.
    121.田茂洁.2004b.土壤氮素矿化影响因子研究进展.西华师范大学学报(自然科学版),25(3):298-303.
    122.汪晓丽等.2003.不同水稻基因型苗期NO_3~-吸收动力学特征及其受吸收液中NH_4~+的影响.中国农业科学,36(11):1306-1311.
    123.汪自强等.1997.不同供钾水平下春大豆的氮积累和利用.中国农业科学,30(5):20-25.
    124.王丹英,汪自强.2001.播期、密度、氮肥用量对菜用大豆产量和品质的效应.浙江大学学报(农业与生命科学版),27(1):69-72.
    125.王芳,刘忠锋.2004a.氮磷钾肥对大豆产量、品质的影响.种子世界,(11):33.
    126.王芳等.2004b.镁对大豆游离脯氨酸、可溶性糖和可溶性蛋白质含量的影响.河南农业科学,(6):35-38.
    127.王光华等.2003.不同氮肥对大豆根圈土壤酶活性和氮营养分布的影响.大豆科学,22(3):213-217.
    128.王光华等.2004.不同茬口大豆根圈土壤pH值和氮营养分布的变化.中国油料作物学报,26(1):55-59.
    129.王国勋.1979.大豆品种生态研究.大豆品种蛋白质、脂肪含量的地理生态分布,中国油料,(1):46-50.
    130.王宏燕等.2002.生物种衣剂对大豆发芽和苗期生长、光合作用及酶活性的影响.东北农业大学学报.33(2):111-115.
    131.王家玉.1989.钙素对大豆初期生长、根瘤形成以及固氮能力的影响.土壤学进展,17(2):32-34.
    132.王建华,刘鸿先.1989.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,(1):1-7.
    133.王立刚等.2004a.大豆氮素积累、分配与转移规律的研究.作物杂志,(5):20-22.
    134.王立刚等.2004b.大豆对氮素吸收规律的研究.中国农学通报,20(6):162-165.
    135.王巧兰等.2006.植物氮素营养遗传研究进展.湖北农业科学,45(5):668-673.
    136.王群瑛等.1992.氮、磷、钾亏缺对玉米植株性状、叶片结构与生理特性的影响.华北农学报,7(1):94-99.
    137.王文平.1998.植物样品中游离氨基酸总量测定方法的改进.北京农学院学报,13(3):9-13.
    138.王夏晖等.2002.不同施肥方式下土壤氮素的运移特征研究.土壤通报,33(3):202-206.
    139.王晓慧等.2006.3 种进化类型大豆叶片的某些生理特性比较.植物生理学通讯,42(2),191-194.
    140.王艳等.1997.锌、锰、钼微量元素营养对大豆产量品质的影响.山西农业大学学报,17(2):116-119.
    141.王艳杰等.2005.土壤氮素矿化研究进展.中国农学通报,21(10):203-208.
    142.王毅勇等.1999.三江平原大豆田氮循环模拟研究.地理科学,19(6):555-558.
    143.王月福等.2002.氮素营养水平对冬小麦氮代谢关键酶活性变化和子粒蛋白质含量的影响.作物学报,28(6):743-748.
    144.王月福等.2003.不同施肥水平对不同品种小麦籽粒蛋白质和地上器官游离氨基酸含量的影响.西北植物学报,23(3):417-421.
    145.位东斌等.1990.中后期追氮对小麦叶片氮含量及籽粒产量、蛋白质含量的影响.河南职技师院学报,18(4):97-101.
    146.吴静等.1997.缺硼、不同光强及外源葡萄糖对大豆根瘤固氮活性的影响.植物营养与肥料学报,3(2):147-152.
    147.吴魁斌,沈国清.1998.对大豆氮素利用率及体内分配规律的研究.现代化农业,(12):9-10.
    148.吴明才.1990.大豆缺素病诊断研究.湖北农业科学,(7):13-16.
    149.吴绍奎等.1980.玉米栽培生理.上海:上海科学技术出版社,173-213.
    150.徐根娣等.2003.锰浸种对大豆幼苗膜脂过氧化和体内保护系统的影响.浙江师范大学学报(自然科学版).26(3):278-282.
    151.徐玲玫等.1994.吉林辽宁两省不同大豆品种自然固氮能力调查.大豆科学,13(1):38-47.
    152.徐巧珍等.1994.春夏秋大豆共生固氮活性的综合等级指数评价.中国油料,16(3):38-40.
    153.徐巧珍等.1997.不同类型大豆种质资源共生固氮特性的鉴定与评价.大豆科学,16(3):210-217.
    154.徐巧珍等.2000.大豆种质资源共生固氮特性评价及遗传初步研究.中国油料作物学报,22(1):19-23.
    155.徐阳春等.2002.长期免耕与施用有机肥对土壤微生物生物量碳氮磷的影响.土壤学报.139(1):89-96.
    156.许广领.1997.麦秸还田配施氮肥对增加土壤有机质和提高夏大豆产量的效应.江苏农业科学,(1):49-51
    157.许仁良等.2005.施氮量对水稻不同品种类型稻米品质的影响.扬州大学学报(农业与生命科学版),26(1):66-84.
    158.杨路华等.2003.土壤氮素矿化研究进展.土壤通报,34(6):569-571.
    159.杨晴等.2002.不同施氮量对小麦旗叶衰老特性和产量性状的影响.河北农业大学学报,25(4):20-24.
    160.杨卫韵等.2005.锰对大豆光合特性的影响.种子,24(12):80-81.
    161.杨小红等.2004.草地生态系统土壤氮转化过程研究进展.中国草地,26(2):54-62.
    162.叶优良等.2001.土壤供氮能力指标研究.土壤通报,32(6):273-277.
    163.曾韶西等.1991.低温光照下与黄瓜子叶片叶绿素降低有关的酶促反应.植物生理学报,(17):177-182.
    164.张保军等.2000.不同基因型小麦籽粒蛋白质组分的施氮量调节.西北农业大学学报,28(6):61-64.
    165.张承万等.1990.大豆施用氮、磷化肥与钼、镁配合肥的效果.土壤肥料,(2):34-36.
    166.张春伦等.1998.缓释尿素肥效及氮素利用率研究.土壤肥料,(6):17.
    167.张国盛,张仁陟.2002.水分亏缺下氮磷营养对小麦幼苗保护酶活力的影响.甘肃农业大学学报,37(3):285-289.
    168.张宏纪等.2001.不同形态氮素对甜菜谷氨酰胺合成酶的影响.黑龙江农业科学,(6):7-10.
    169.张金波,宋长春.2004.土壤氮素转化研究进展.吉林农业科学,29(1):38-43.
    170.张立新,李生秀.2007.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响.作物学报,33(3):482-490.
    171.张妙玲等.1984.用回归分析法确定土地质量因子的评价指数.江苏农业科学,(2):38-41.
    172.张明才等.2004.植物生长调节剂SHK-6对大豆叶片氮素代谢的调控效应.大豆科学,23(1):15-20.
    173.张明方,李志凌.2002.高等植物中与蔗糖代谢相关的酶.植物生理学通讯,38(3):289-295.
    174.张明生等.2003.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究.中国农业科学,36(1):13-16.
    175.张强等.2004.小麦氮素营养研究进展.甘肃农业科技,(7):41-44
    176.张瑞玲,秦芳.1997.浅述氮、磷化肥对土壤和环境的污染.甘肃科技,13(6):5-6.
    177.张石宝等.2002.不同季节播种玉米的氮肥生产力和利用率.云南植物研究,24(1):109-114.
    178.张水旺等.1996.氮锌配施及锌肥不同用量对夏大豆产量品质的影响.土壤肥料,(3):37-39.
    179.张宪政.1992.作物生理研究法.北京:农业出版社.
    180.张效朴等.2000.吉林黑土地上肥料用量对玉米产量及肥料利用率的影响.玉米科学,8(2):70-74.
    181.张兴昌.1993.土壤肥力及土壤供氮性能评价与分析.西北大学学报,23(6):571-577.
    182.张亚丽等.2004.不同氮素营养对水稻的生理效应.南京农业大学学报,27(2):130-135.
    183.张炎等.2004.农田土壤氮素损失与环境污染.新疆农业科学,41(1):57-60.
    184.赵力汉等.1993.施氮对大豆生长发育的影响.吉林农业大学学报,15(1):12-16.
    185.赵平等.1998.植物氮素营养的生理生态学研究.生态科学,17(2):37-42.
    186.赵世杰等主编.2002.植物生理学实验指导.北京:中国农业科学技术出版社.
    187.周冀衡等.2001.干旱条件下氮肥形态对烤烟叶片内源保护酶活性的影响.中国烟草科学,22(2):5-8.
    188.周伟,李继云.1993.施钼对大豆与间作玉米增加氮素及产量的效果.生态农业研究,1(1):77-82.
    189.周祖英.1982.水稻的保护反应及其在缺素诊断上的应用.土壤通报,(2):44-46.
    190.朱保葛等.2000.大豆叶片净光合速率、转化酶活性与籽粒产量的关系.大豆科学,19(4):346-350.
    191.朱长甫等.1992.大豆种子蛋白质含量与固氮酶活性和硝酸还原酶活性的关系.中国油料,(2):45-47.
    192.朱长甫等.1996.中国同一纬度不同进化类型大豆固氮特性的研究.吉林农业科学,(3):86-89.
    193.朱广廉等.1990.植物生理学实验.北京:北京大学出版社,229-232.
    194.朱兆良.1986.我国土壤氮素研究工作的现状与展望:土壤氮素的矿化和供应.北京:科学出版社,4-27.
    195.朱兆良.1987.中国土壤(第二版).北京:科学出版社,464-480.
    196.朱兆良,文启孝主编.1992.中国土壤氮素.南京:江苏科学技术出版社,27-34.
    197.邹宝方,何增耀.1993.钒对大豆结瘤和固氮的影响.农业环境保护,12(5):198-200,203.
    198.邹琦.2000.植物生理实验指导.北京:中国农业出版社.
    199.Alling et al.1976.Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat.Plant Physiology,3(6):721-730.
    200.Anthony et al.1990.Studies of the Uptake of Nitrate in Barley Ⅱ.Energetics.Plant Physiology,93(4):1585-1589.
    201.Ashley and Boerma.1989.Canopy photosynthesis and its association with seed yield in advanced generations of a soybean cross.Crop Sci,29:1042-1045.
    202.Babu et al.1985.Relationship between leaf photosynthetic rate and yield in blackgram[Vigna mungo(L.)Hepper]genotypes.Photosynthetica,19(2):159-163.
    203.Bangrawe et al.1988.Effect of plant density,and level and proportion of nitrogen on growth,yield and yield components of winter maize(Zea mays).Indian Journal of Agricultural Sciences,58(11):854-856.
    204.Blachmer and Schepers.1994b.Techniques for monitoring crop nitrogen status in corn.Communications in Soil Science and Plant Analysis,25:1791-1800.
    205.Blackmer et al.1994a.Light reflectance compared with other nitrogen stress measurements in Corn leaves.Agronomy Journal, 86: 934-938.
    206.Bremner.1965.0rganic forms of nitrogen:Methods of Soil Analysis.Madison,Wisconsin USA: Am Soc of A gron Inc, 1148-1178.
    207.Carnol et al.2002.Elevated atmospheric CO_2 in open top chambers increases net nitrification and potential denitrification.Global Change Biology, 8(6):590-598.
    208.Crawford and Glass.Molecular and physiological aspects of nitrate uptake in plants.Trends in Plant Science, 1998,3(10):389-395
    209.Evans.1989.Photosynthesis and nitrogen relationships in leaves of C3 plants.Oecologia, 78(1):9-19.
    210.Evans.1983.Nitrogen and photosynthesis in the flag leaf of wheat.Plant Physiology, 72: 297- 302.
    211.Galloway et al.1995.Nitrogen fixation: Anthropogenic enhancement-environmental response.Global Biogeochemical Cycles, 9(2): 235-252.
    212.Gazzarrini et al.1999.Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into arabidopsis roots.The Plant Cell, 11:937-948
    213.Goldbach.1997.Critical review on current hypotheses concerning the role of boron in higher plants: suggest ions for further research and method logical requirements.Journal of Trace and Microprobe Techniques, 15(1): 51-91.
    214.Gonzalez et al.2000.Glutamine synthetase from mesophyll and bundle sheath maize cells:isoenzyme complements and different sensitivities to phosphino thricin.Plant Cell Reports,19(11): 1127-1134.
    215.Hanway and Weber.1971.N, P, and K percentages in soybean plant parts.Agron J, 63:286-290.216.Hayati et al.1995 .Carbon and nitrogen supply during seed filling and leaf senescence in soybean.Crop Sci.35:1063-1069.
    217.Hirata et al.1983.Photoinhibition of photosynthesis in soybean leaves I.Effects of different intensities and durations of light irradiation of light response curve of photosynthesis.Crop Science, 52(3):314-318.
    218.Jordan and Weller.1996.Human contributions to terrestrial nitrogen flux.BioScience, 46(9): 655-664.
    219.Koc et al.2003.Photosynthesis and productivity of old and modern durum wheats in a mediterranean environment.Crop Sci, 43: 2089-2098.
    220.Kronzucher et al.1996.Kinetics of NH_4~+ influx in spruce.Plant Physiology, 110(3):773-779.
    221.Lam et al .1996.The molecular-genetics of nitrogen assimilation into aminoacids in higher plants.Annu Rev Plant Physiol Plant Mol Biol, 47: 569-593.
    222.Lawlor.2002.Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems.J Exp Bot, 53:773-787
    223.Liu et al.2000.Rapid effects of nitrogen form on leaf morphogenesis in tobacco.Journal of Experimental Botany 51(343) :227-237.
    224.Markus, R.2002.C and net N mineralisation in a coniferous forest soil: the contribution of the temporal variability of microbial biomass C and N.Soil Biology and Biochemistry,(34): 841 -849.
    225.Miah et al.1998.Nutrient distribution across wheat rhizosphere with oxamide and ammonium sulfate as N source .Soil Sci Plant Nutr, 44(4): 579-587.
    226.Minchin et al.1980.Carbon metabolism, nitrogen assimilation , and seed yield of cowpea (Vignaun guiculata L.Walp.) grown in an adverse temperature regime.J .Exp.Bot, 31(5): 1327-1347.
    227.Mirza et al.1990.Non-destructive chlorophyll assay for screening of strains of Bradyrhizobium japonicum.Soil Biol Biochem.22 (2):203-207.
    228.Mooney et al.1987.Exchange of materials between terrestrial ecosystems and the atmosphere.Science, 238: 926-932.
    229.Morrison et al.1999.Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada.Agronomy Journal, 91: 685-689.
    230.Navarro et al.1985.Nitrogen partitioning and dry matter allocation in soybeans with different seed protein concentration.Crop Sci.25 :451-455.
    231.Ohtake and Yamada.1997.Regulation of accumulation of beta-subunit of beta-conglycinin in soybean seeds by nitrogen.Soil Science and Plant Nutrition (Japan),43(1): 247-253.
    232.Osaki.1995.Comparison of productivity between tropical and temperate maize : I.Leaf senescence and productivity in relation to nitrogen nutrition.Soil science and plant nutrition, 41(3):439-450.
    233.Osaki.1995.Comparison of productivity between tropical and temperate maize.Ⅱ.Parameters determining the productivity in relation to the amount of nitrogen absorbed.Soil Science and Plant Nutritional (3):451-460.
    234.Peak et al.1997.Nutritional control of the soybean seed storage protein.Crop Science,37(2): 498-503.
    235.Samuelson and Larsson.1993.Nitrate regulation of zeatin riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium.Plant Science, 93(1), 77-84.
    236.Schepers et al.1992.Comparisons of Corn leaf nitrogen concentration and chlorophyll meter readings.Communications in Soil Science and Plant Analysis, 23(17): 2173-2187.
    237.Schrader et al.1968.Some characteristics of nitrate reductase from higher plants.Plant Physiology,43:930-940.
    238.Sinclair and Wit.1975.Photosynthate and nitrogen requirements for seed production by various crops.Science, 189:565-567.
    239.Sohlenkamp et al.2002.Characterization of arabidopsis atamt2, a high-affinity ammonium transporter of the plasma membrane.Plant Physiology, 130( 12): 1788-1796.
    240.Spaeth and Sinclair.1983.Variation in nitrogen accumulation and distribution among soybean cultivars.Field Crops Res,l:l-12.
    241.Stevenson.1982.Organic forms of soil nitrogen.Madison, Wisconsin USA: Am Soc of A gron Inc, 67-122.
    242.Sutkhet et al.2000.Regulation of seed protein concentration in soybean by supra-optimal nitrogen supply.Crop Sci.40:1277-1284.
    243.Takei et al.2001.Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator.Plant Cell Physiol.42(1): 85-93.
    244.Takei et al.2002.Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin Journal of Experimental Botany.53(370): 971-977.
    245.Tanaka et al.Comparison of fertilizer nitrogen efficiency among field crops.Soil Sci.Plant Nutr., 1984, 30(2): 199-208.
    246.Thomas et al.1995.Evaluation of soil and plant nitrogen tests for maize on manured soils of the atlantic coastal plain.Agron J, 87:213-222.
    247.Thomas et al.2000.Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves localization , relative proportion and their role in ammonium assimilation or nitrogen transport.Panta, 211: 800-806.
    248.Tomas et al .1989.Membrane-mediated putrescine transport and its role in stress- induced phytooxicity.Plant Physio 1.86:338-340.
    249.Tsai et al.1978.Relationship of the kernel sink for N to maize productivity.Crop Science, 18,399-404.
    250.Ullrich.1992.Transport of nitrate and ammonium through plant membranes, In Nitrogen Metabolisms in Plants (Mengel, Pilbeam), Oxford University Press: Oxford, Great Britain, 121-137.
    251.Vasilas et al.1995.Relationship of nitrogen utilization patterns with soybean yield and seed - fill period .Crop Sci.35 :809-813.
    252.Verma.1993.Control of plant gene expression.Boca Raton:CRC Press ,443-458.
    253.Vidmar et al.2000.Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley.Plant Physiology, 123(1): 307 - 318.
    254.Vitousek et al.1997.Human alteration of the global nitrogen cycle : sources and consequences.Ecol.Appl, 7(3): 737-750
    255.Voss et al.1970.Relationship between grain yield and leaf N, P, and K concentrations for corn (zea mays 1.) and the factors that influence this relationship.Agron J, 62: 726-728
    256.Wang et al.1993.Ammonium uptake by rice roots.Ⅱ .kinetics of 13NH4+ influx across the plasmalemma.Plant Physiol, 103(4):1259-1267.
    257.Wells et al.1982.Cultivar differences in canopy apparent photosynthesis and their relationship to seed yield in soybean.Crop Sci, 22: 886-890.
    258.Yang et al.2003.Using leaf color charts to estimate leaf nitrogen status of rice.Agronomy Journal, 95: 212-217.
    259.Youssef and Chino.1989.Root induced changes in the rhizosphere of plants I.pH changes in relation to bulk soil.Soil Sci Plant Nutr, 35(3): 461-468.
    260.Zeiher et al.1982.Cultivar differences in N redistribution in soybeans.Agronomy Journal.74 : 375 -379.
    261.Zhu et al.2002.Relationship between ecophysiological features and grain yield in different soybean varieties.Acta Botanica Sinica, 44(6): 725-730.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700