非均质河岸河道摆动的三维数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲积河道的自然演变过程中,不仅有垂向上的河床冲淤变化,在平面上也有显著的横向摆动特征。河道横向摆动不仅给防洪、航运、取水等工程带来严重影响,它同时也是蜿蜒河道河型演变研究中的一大难点。因此,研究非均质河岸河道平面摆动的过程机理及其三维数值模拟方法具有重要的理论和实际意义。
     论文以长江中游荆江典型河段河道摆动的三维模拟为应用目标,对河道摆动的三维数值模拟动力学方法进行了研究。其中河岸崩塌是冲积河流平面变形的重要体现形式,论文基于河岸崩塌力学机理,推导建立了考虑相邻土体影响的粘性河岸及二元结构河岸坍塌力学模式,弥补了已有模式仅考虑断面二维力学因子的不足;建立了全三维水沙数学模型,并基于非正交网格提出局部网格可动技术处理由崩岸引起的河道摆动过程,将河岸崩塌力学模式与三维水沙模型有效结合,构建了河道摆动的三维数值模型。模型不仅能模拟出河道沿垂向的冲淤变化,而且还能模拟出由非均质河岸崩塌引起的河道横向摆动过程;模型可反映河岸变形对水沙输移计算的影响,亦能反映坍塌粘性土体对河床的掩护作用,为复杂河道平面河势变化的研究提供了一有效技术手段。
     本数值模型首先应用于模拟室内概化河槽的平面河势演变过程,并探讨了不同水沙条件下,河道演变的复杂响应过程。之后将模型用于模拟长江中游荆江典型河段的河道摆动过程,与实测结果符合良好;以此为基础,初步模拟分析了三峡水库运用后水沙条件变化对荆江不同河段平面河势演变的影响,结果表明非均质河岸抗冲性的差异对河道的河势演变过程存在显著影响。
     基于河道平面变形幅度一致的原则,提出了等效造槽流量计算方法,成功运用于下荆江石首河段的摆动模拟过程中;此外还探讨了考虑河岸坍塌的二、三维水沙数值模型按计算域进行嵌套的长河段模拟方法,并模拟了上荆江沙市-新厂河段的平面河势演变过程。计算结果表明两种方法均可较大地提高模型计算效率,这对促进河道摆动三维模拟方法的发展及应用具有重要意义。
The morphological changes in alluvial rivers include both longitudinal bed deformation and lateral migration, which result in a series of engineering, environmental and socio-economic problems in terms of flood defense and navigation. In particular, lateral migration of alluvial channels is also one of the most important problems in the study of channel pattern changes. Prediction of channel lateral migration based on mechanism of composite bank failure therefore has both theoretical and engineering significance.
     In order to simulate lateral migration in the Jingjiang section of the middle Yangtze River, a three-dimensional (3-D) dynamic numerical method of meander migration is developed in this dissertation. Bank erosion is an important and general form of lateral migration in alluvial rivers. A method for simulating the erosion of composite banks is established based on the mechanism of bank failure. Both cohesive and non-cohesive bank material in the different layers are considered. The bank erosion module also includes other factors affecting the rate of bank erosion, such as the longitudinal length of failed bank, the thickness of each layer in the double-layer structure. A 3-D mathematical model is then developed using a 3-D flow and sediment transport module and the bank erosion module. In this study, a locally-adaptive grid system based on non-orthogonal grids is proposed and applied to calculate lateral migration of river channel due to bank erosion. This 3-D model is able to calculate both the vertical bed deformation and the lateral migration of alluvial channels, and the effects of bank failure are integrated into calculations of flow and sediment transport in this model. The erosion-resisting effect of cohesive material from the top layer of failed bank is also considered. The above features made this model a powerful tool for the study of morphological changes in alluvial channels.
     The 3-D model is first applied to simulate the complex response of laboratory channels to changes in flow and sediment conditions. Secondly, meander migration in typical river bends on the middle Yangtze River is calculated by this 3-D model, with good agreements with observations. Different responses to changes in flow and sediment inlet conditions caused by the filling of the Three Gorges Reservoir are numerically simulated for different sections of the Jinajiang River, according to differences in bank compositions. The calculated results imply that the erodbility of river banks play an important role in channel planform changes.
     Additionally, in order to improve the calculation efficiency in modeling morphological changes, a method is proposed to evaluate the equivalent dominant discharge, defined as a constant discharge that can create the same amount of bank erosion in an alluvial channel as that created by natural runoff processes during the same period of time. A method to integrate 2-D model and 3-D model is also established to calculate long river sections. Simulation results of fluvial processes in the Jingjiang section of the middle Yangtze River demonstrate that the calculation efficiency can be improved significantly, and the 3-D morphological model can be applied to simulate natural river problems with an acceptable computation time by the improved methods.
引文
Abad J D, Garcia M H. 2004. Conceptual and mathematical model for evolution of meandering rivers in naturalization processes.// Gerald S ,Donald F H ,David K S. Critical Transitions in Water and Environmental Resources Management : Proceeding of World Water Congress. Salt Lake City, Utah.
    Abad J D, Garcia M H. 2006.Hydrodynamics in Kinoshita-generated meandering bends: importance for river-planform evolution. // Parker, García M H. River, Coastal and Estuarine Morphodynamics: RCEM 2005. London: Taylor & Francis Group, 761-771.
    Aksoy H, Chen C J.1992.Numerical solution of Navier-Stokes equation with nonstggered grids using finite analytic method.Numer Hear Transfer, Part B, 21:287-305.
    Armfield SW. 1991.Finite difference solutions of the Navier-Stokes equations on staggered and non-staggered grids. Comput Fluids, 201-117.
    ASCE Task Committee on Hydraulics, Bank Mechanics, and Modeling of River Width Adjustment.1998a. River Width Adjustment. I: Processes and mechanisms. J. Hydraul. Eng., 124(9), 881-902.
    ASCE Task Committee on Hydraulics, Bank Mechanics, and Modeling of River Width Adjustment. 1998b.River Width Adjustment. II: Modeling. J. Hydraul. Eng., 124(9), 903-917.
    Beck S M. 1988.Computer-simulated deformation of meandering river patterns[PhD thesis]. Minnesota: University of Minnesota.
    Blanckaert K, Graf W H. 2001.Mean flow and turbulence in open channel bend. J. of Hydraulic Engineering, ASCE , 127(10):835-847.
    Cebeci T, Bradshaw P. 1977.Momentum Transfer in Boundary Layers. New York: Hemisphere Publishing Corporation, 231-232.
    Celik I, Rodi W. 1988. Modeling suspended sediment transport in non-equilibrium situations. J. Hydr. Engrg., ASCE, 114(10), 1157-1191.
    Chang H H.1998.FLUVIAL-12 Mathematical Model for Erodible Channels, San Diego, California.
    Chang Y C. 1971. Lateral mixing in meandering channels [Ph. D Dissertation], Iowa :The University of Iowa.
    Chang-lae Jang, Shimizu Y. 2007.Vegetation effects on the morphological behavior of alluvial channels. Journal of Hydraulic Research, 45(6):763-772.
    Chang-lae Jang, Shimizu Y. 2005. Numerical simulation of relatively wide, shallow channels with erodible banks. Journal of Hydraulic Engineering, 131(7):565-575.
    Chen D, Duan J G. 2004.Simulation of meandering channel evolution with an analytical model.// Gerald S ,Donald F H ,David K S. Critical Transitions in Water and Environmental Resources Management : Proceeding of World Water Congress. Salt Lake City, Utah.
    Chen R E. 1986.Modeling of estuary hydrodynamics-A mixture of art and science. Proceedings of the 3rd International Symposium on River Sedimentation. The University of Mississippi.
    Choi SK, Nam HY,cho M. 1994.Use of staggered and nonstaggered grid arrangement for incompressible flow calculation on nonstaggered grids. Numer Heat Transfer,Part B, 25:193-204.
    Coulthard T J, Vandeeiel M J. 2006.A cellular model of river meandering. Earth Surface Processes and Landforms, 31(1):123–132.
    Czernuszenko W, Rylov A A. 2000. A generalisation of Prandtl’s model for 3D open channel flows, J. of Hydraulic Research, 38( 2):133-139.
    Darby S E, Thorne C R. 1996a.Numerical simulation of widenting and bed deformation of straight sand bed riverⅠ:Model development. J. Hydr Engrg, ASCE, 122 (4) : 184 -193.
    Darby S E, Thorne C R. 1996b.Development and testing of riverbank- stability analysis. J Hydr Engrg ASCE , 122(4) : 443– 454.
    Darby S E, Alabyan A M, Wiel V M J.2002. Numerical simulation of bank erosion and channel migration in meandering rivers. Water Resources Research, 38(9):1-21. Demuren A O, Rodi W. 1986.Calculation of flow and pollutant dispersion in meandering channels. Journal of Fluid Mechanics, 172: 63-92.
    Demuren A O. 1991.Development of a mathematical model for sediment transport in meandering rivers. Rep. No. 693, Institute for Hydromechanics, The University of Karlsruhe, Karlsruhe, Germany.
    Demuren A O. 1993.A numerical model for flow in meandering channels with natural bed topography. Water Resources Research, 29(4):1269-1277.
    Dey S. 2001.Experimental study on incipient motion of sediment particles on generalized sloping fluvial beds. International Journal of Sediment Research, 16(3):391–398.
    Dong Chen, Jennifer G Duan. 2008.Case Study: Two-Dimensional Model Simulation of Channel Migration Processes in West Jordan River, Utah. Journal of Hydraulic Engineering, 134(3):315-327.
    Dou X P, Jones J S, Young G K, et al. 1998. Using a 3-D model to predict local scour. Proceedings of the lnternational Water Resources Engineering Conference. S. R. Abt et al (Ed.). ASCE, USA, 198-203.
    Duan G, Jia Y, Wang Sam S Y. 1999. Simulation of meandering channel migration processes with the enhanced CCHE2D. 28th IAHR Congress, Delft, The Netherlands, 376–385.
    Duan G, Julien P Y. 2005.Numerical simulation of the inception of channel meandering. Earth Surface Processes and Landforms, 30(9):1093–1110.
    Duan G, Wang Sam S Y, Jia Y. 2001.The applications of the enhanced CCHE2D model to study the alluvial channel migration process. Journal of Hydraulic Research, 39(5):1-12.
    Duan G. 1998. Simulation of alluvial channel migration processes with a two-dimensional numerical model[PhD thesis]. Mississippi: University of Mississippi.
    Eaton B C, Church M, Davies T R H. 2006.A conceptual model for meander initiation in bedload-dominated streams. Earth Surface Processes and Landforms, 31(7) :875–891.
    Fang H W, Wang G Q. 2000. Three-dimensional mathematical model of suspended sediment transport. Jounal of Hydraulic Engineering, ASCE, 126 (8): 578-592.
    Feldman A D. 1981.Hec Models for Water Resources System Simulation Theory and Experience. The Hydraulic Engineering Center, Davis, California.
    Fernette R, Dhatt G, Tanguy J M. 1992. A three-dimensional finite element sediment transport model. Proceedings of the 5th International Symposium on River Sedimentation. The University of Karlsruhe, 365-374.
    Fischer Antze, Stoesser T, Bates P, et al. 2001. 3D numerical modeling of open-channel flow with submerged vegetation, J. of Hydraulic Reserach,39(3):303-310.
    Friedkin J F. 1945. A laboratory study of the meandering of alluvial rivers. Mississippi: US Army Engineer Waterways Experiment Station, Vicksburg.
    Fukuoka Shoji.1996.赵渭军译.自然堤岸冲蚀过程的机理.水利水电快报, 2: 29-33.
    Galappatti R. 1983. A depth integrated model for suspended transport. Report No,83-7,
    Communications on hydraulics, Delft University of Technology, Dept. of Civil Eng. Hasegawa K. 1981. Bank-erosion discharge based on a non-equilibrium theory. Proc. JSCE, Tokyo, 316, 37–50 (in Japanese).
    Hayter E J, Bergs M A, Gu R C, et al. 1995.National exposure research laboratory office of research and development U. S. environmental protection agency.
    Holtz K P. 1991.Numerical simulation of recirculating flow at groynes. C.A. Brebbia, D. Ouazar, and D. Ben Sari. Computer methods in water resources, Springwe Verlag, New York, Inc., New York, N.K., 463-477.
    Horlow F H, Welch J E. 1965.Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids ,8 :2182~2189.
    Jia Y, Scott S, Xu Y, Huang S, et al. 2005.Three-dimensional numerical simulation and analysis of flows around a submerged weir in a channel bendway. J. Hydraul. Eng.,131(8), 682–693.
    Johannesson H, Parker G. 1989.Linear theory of river meanders, River meandering.Water Resource Monograph, 12:181-213.
    Lancaster S T, Bras R L. 2002.A simple model of river meandering and its comparison to natural channels. Hydrological Processes, 16(1):1–26.
    Langendoen E J, Simon A. 2008. Modeling the evolution of incised streams. II: Streambank erosion. J. Hydraul. Eng., 134(7):905–915.
    Launder B E, Spalding D B. 1974.The numerical computation of turbulent flows. Comp. Methods Appl. Mech. Eng, 3:269-289. Leopold L B, Wolman M G, Miller J P. 1964. Fluvial Processes in Geomorphology .W.M. Freeman Co.
    Leschziner M A, Rodi W.1979. Calculation of strongly curved open channel flow. Journal of Hydraulic Diversion. ASCE, 105(HY10): 1297-1314.
    Lin B L, Falconer A R. 1996. Numerical modeling of three-dimensional suspended sediment for estuarine and coastal waters. Journal of Hydraulic Research, 34(4): 435-456
    McAnally W H, Leter J W, Tomas W A. 1986.Two and 3-D modeling systems for sedimentation. Proceedings of the 3rd International Symposium on River Sedimentation. The University of Mississippi.
    Meselhf E A, Sotiropoulos F. 2000. Three-dimensional numerical model for open channels with free surface variation. J. of Hydraulic Research, 38(2):115一121. MIKE 21. 1999.Handbook of Mike 21-A modeling system for rivers and channels, Version 2. 7. Danish: Danish Hydraulic Institute.
    Mosselman E.1998. Morphological modelling of rivers with erodible banks. Hydrological Processes, 12(8):1357-1370.
    Muneta N, Shimizu Y. 1994. Numerical analysis model with spur-dike considering the vertical flow velocity distribution. Proc., JSCE, 497, 31–39.
    Nagata N, Hosoda T, Muramoto Y. 2000. Numerical analysis of river channel processes with bank erosion. Journal of Hydraulic Engineering, 126(4):243-252.
    Nagata N, Takashi Hosoda, Tatsuaki Nakato, et al. 2005. Three-Dimensional numerical model for flow and bed deformation around river hydraulic structures. J. of Hydraulic Eng., 131(12):1074-1087.
    Odgaard A J. 1989a. River meander model.Ⅰ:Development.Journal of Hydraulic Engineering, 115(11):1433-1450.
    Odgaard A J. 1989b. River meander model.Ⅱ:Application.Journal of Hydraulic Engineering, 115(11):1451-1464.
    Olsen N R B, Kjelesvig H M. 1998.Three-dimensional numerical flow modeling for maximum local scour-depth. Journal of Hydraulic Research, 36(4): 579-597.
    Olsen N R B, Skoglund M.1994. Three-dimensional numerical modeling of water and sediment flow in sand strap. Journal of Hydraulic Research, 32(6): 833-844.
    Olsen N R B. 2003.3D CFD modeling of a self-forming meandering channel. Journal of Hydraulic Engineering, 129(5):366-372.
    Osman A M, Thorne C R. 1988.Riverbank stability analysis, I: Theory. Journal of Hydraulic Engineering, 114(2):134-150.
    Parker G. 1998. River meanders in a tray. Nature, 395:111-112.
    Patankar S V, Spalding D B. 1972.A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer, 17:1787-1806.
    Phillips B C, Sutherland A J. 1989.Spatial lag effects in bed load sediment transport. Journal of hydraulic research, 27(1):115-133.
    Prinos P. 1993. Compound open flow with suspended sediments. Advance in Hydro-Science and Engineering. Part B, USA, The University of Mississippi, 1:1206-1214
    Rahuel J L, Holly FM, Chollet J P, et.al. 1989.Modeling of riverbed evolution for bed load sedimkent mixtures. Journal of hydraulic engineering, 115(11):1521-1542.
    Rastogi A K, Rodi W. 1978.Predictions of heat and mass transfer in open channels, Journal of Hydraulics diversion. ASCE, 104(HY3)397-420.
    Rhie C M, Chow W L. 1983. Numerical study of the turbulent flow past an airfoil with trailing edge separation. ,A IAA J ,21 :1525~1532.
    Richardson W R. 2002.Simplified model for assessing meander bend migration rate. Journal of Hydraulic Engineering, 128(12):1094-1097.
    Roger A, Kuhnle, Yafei Jia, Carlos V, et al. 2008.Measured and Simulated Flow near a Submerged Spur Dike, J. Hydraul. Eng.,134(7), 916–924.
    Ruther N, Olsen N R B. 2003. CFD modeling of meandering river evolution. 30st IAHR Congress, Thessaloniki, Greece.
    Ruther N, Olsen N R B. 2005a. Advances in 3D modeling of free-forming meander formation from initially straight alluvial channels.31st IAHR Congress, Seoul, Korea, 1465-1472.
    Ruther N, Olsen N R B. 2005b.Three-Dimensional modeling of sediment transport in a narrow 90°channel bend. Journal of Hydraulic Engineering, 131(10):917-920.
    Ruther N, Olsen N R B. 2007.Modelling free-forming meander evolution in a laboratory channel using three-dimensional computational fluid dynamics. Geomorphology, 89:308-319.
    Sanjiv K Sinha, Fotis Sotiropoulos, Odgaard A J. 1998. Three-dimensional numerical model for flow through natural rivers, J. of Hydraulic Engineering, 124(1):13-24. Schumm SA, HR Khan.1972. Experimental study of channel patterns, Geol.Soc.Am.Bull, 83, 1755-1770.
    Shankar N J, Chan E S, Zhang Q Y.2001. Three dimensional simulation for an open channel flow with a constrictions, J. of Hydraulic Research, 39(2):187-201.
    Shimizu Y, Yamaguchi H, Itakura T. 1990.Three-dimensional computation of flow and bed deformation. Journal of Hydraulic Engineering, ASCE, 116(9): 1090-1108
    Smith E. 1998. Modeling high sinuosity meanders in a small flume, Geomophology, 25, 19-30.
    Spasojevic M, Holly F M. 1990.2D bed evolution in natural water courses new simulation approach. Journal of Waterway, Port, Coastal and Ocean Engineering. ASCE, 116 (4): 425-443.
    Stone H L. 1968.Iterative solution of implicit approximations of multi-dimensional partial differential equations. SIAM J Numerical Analysis, 5: 530-558.
    Struiksma N. 1985.Prediction of 2-D bed topography in rivers. Journal of Hydraulic Engineering, 111:1169-1182.
    Tao Sun, Meakin P, J?ssang T. 2001a.A computer model for meandering rivers with multiple bed load sediment sizes: 1. theory. Water Resources Research, 37(8):2227-2241
    Tao Sun, Meakin P, J?ssang T. 2001b. A computer model for meandering rivers with multiple bed load sediment sizes: 2. computer simulations. Water Resources Research, 37(8):2243-2258.
    Thorne C R, Hey R D, Newson M D. 1997. Applied fluvial geomorphology for river engineering and management. John Wiley & Sons, New York.
    Thorne C R, Tovey N K. 1981.Stability of composite river banks. Earth Surface Process and Landforms,6: 469-484.US Army, Engineer Research and Development Center Waterways Experiment Station Coastal and Hydraulics Laboratory. 2000. Users Guide to SED2D WES Version 4. 5.
    van Rijn L C. 1981.Entrainment of fine sediment particles; development of concentration profiles in a steady, uniform flow without initial sediment load. Rep.No. M1531, Part II, Delft Hydraulic Laboratory, Delft, The Netherlands.
    van Rijn L C. 1984a.sediment transport, Part I: Bed load transport. J. of Hydraulic Engineering, ASCE, 110(10):1431-1456.
    van Rijn L C. 1984b.Sediment Transport, part II: Suspended Load Transport. Journal of Hydraulic Engineering , ASCE , 110(11):1613-1641.
    van Rijn L C. 1984c.Sediment Transport, Part III: Bed forms and Alluvial Roughness. Journal of hydraulic engineering,ASCE,110(12):1733-1754.
    van Rijn L C. 1990.Field verification of 2-D and 3-D suspended sediment models. Journal of Hydraulic Engineering, ASCE, 116(10): 1270-1288.
    van Rijn L C. 1993.Principles of sediment transport in rivers, Estuaries and coastal seas. AQUA Publications, Amsterdam, The Netherlands.
    van Rijn L C. 1987. Mathematical modeling of morphological Processes in the case of suspended sediment transport. Delft Hydraulic Communication No. 382, Delft. The Netherlands.
    Wang S Y, Adeff S E. 1986.Three-dimensional modeling of river sedimentation processes. Proceedings of the 3rd International Symposium on River Sedimentation. The University of Mississippi.
    Wang S Y, Jia Y. 1997.CCHE2D: A two-dimensional hydrodynamic and sediment transport model for unsteady open channel flow over loose bed. The Center for Computational Hydroscience and Engineering, University of Mississippi.
    Wang S Y, Jia Y. 1995. Computational modeling and hydroscience research. Advances in Hydro-Science and Engineering, Proceedings of the 2nd International Conference on Hydro-Science and Engineering. Tsinghua University Press, 2147-2157.
    Wang S Y.1997. Numerical Prediction of Three-dimensional Mixing in a Compound Open Channel, J. of Hydraulic Research, 35 (5): 619-642.
    Wang Z B, Ribberink J S. 1986.The validity of a depth-integrated model for suspended sediment transport. Journal of Hydraulic Research, 24 (1): 53-63.
    Wildhagen J, Ruether N, Olsen N R B, et al.2005. Three dimensional modeling of sediment transport in a sharply curved menadering channel.31st IAHR Congress, Seoul, Korea, 1659-1664.
    Wilson C A M E, Boxall J B, Guymer I, et al. 2003.Validation of a three-dimensional numerical code in the simulation of pseudo-meandering flows J. Hydraul. Eng.,129(10), 758–768.
    Wolman M G, Miller J P.1960.Magnitude and Frequency of Forces in Geomorphic Processes.Journal of Geology,68:54-74.
    Wu W M, Rodi W, Wenka T. 2000.3D numerical model for suspended sediment transport in channels. Journal of Hydraulic Engineering, ASCE, 126(1): 4-15.
    Yang C T, Huang J C, Greimann. 2004. B. P. User’s Manual for GSTAR-1D (Generalized Sediment Transport model for Alluvial Rivers– One Dimension), U. S. Bureau of Reclamation Technical Service Center, Denver, Colorado.
    Ye Jian, McCorquodale J A. 1998.Simulation of Curved Open Channel Flows by 3D Hydrodynamic Model, J. of Hydraulic Engineering, 124(7): 687-698.
    Yen C L. 1970.Bed topography effect on flow in a meander. J. of the Hydraulics Division. ASCE, 96(1):57-86.
    Yu B, Kawaguchi Y, Tao W Q, et al. 2002.Checkerboard pressure predictions due to the under relaxation factor and time step size on a non-staggered grid. N umer H eat T ransf er, P art B , 41 (1) : 85 94.
    Zhang Mingliang, Shen Yongming, Wu Xiuguang. 2005.3D Numerical Simulation of Overbank Flow in Non-Orthogonal Curvilinear Coordinates. China Ocean Engineering,3:395-407.
    Zhang X F, Yu M H. 2001.Numerical simulation of bed deformation in dike burst, Journal of Hydrodynamics, Ser. B, 13(4): 60-64.
    Zhou Jianjun, Lin B.1998. 1-D mathematical model for suspended sediment with lateral integration. Journal of hydraulic engineering, 124(7):712-717.
    白玉川,杨建民,黄本胜. 2003.二维水沙数学模型在复杂河道治理中的应用.水利学报, 9:25-30.
    白玉川. 1998.海岸三维潮流数学模型的研究及应用.海洋学报, 20(6):87-100.
    曹文洪,何少苓,方春明. 2001.黄河河口海岸二维非恒定水流泥沙数学模型.水利学报, 1:42 - 48.
    曹志先. 1991.水沙两相流立面二维数学模型及数值方法研究[博士学位论文].武汉:武汉水利电力学院.
    曹志先. 1997.泥沙数学模型近底边界条件I:平衡输沙.水利学报, 1:11-19.
    长江水利委员会水文局. 2008. 2007年度三峡水库进出库水沙特性.
    陈虹,李大鸣. 1999.三维潮流泥沙运动的一种数值模拟.天津大学学报, 32 (5) :573 -
    陈界仁,沙捞·巴里,陈国祥. 2000.二维水库水流泥沙数值模拟.河海大学学报, 28 (5) :11 - 15.
    陈立,张俊勇,谢葆玲. 2003.河流再造床过程中河型变化的实验研究.水利学报, 7:42-46.
    陈小莉,马吉明. 2007.桥台局部冲刷坑内水流运动的三维数值模拟.水动力学研究与进展A辑, 22(6):689-695.
    陈绪坚,韩其为,方春明. 2007.黄河下游造床流量的变化及其对河槽的影响.水利学报, 38(1):15-22.
    陈燕飞,潘林勇,王延贵. 2004.洪水位变化对河岸崩塌影响机理的研究.中国农村水利水电, 11:93-95.
    陈祖军,韦鹤平,陈美发. 2004.长江口水域三维水动力数值模拟研究.海洋预报, 21(3):37-44.
    陈祖煜,孙玉生. 2000.长江堤防崩岸机理和工程措施探讨.中国水利, 2:28-29.
    程年生,李昌华. 1991.有边坡丁坝回流试验研究.水利水运科学研究,2:123-132.
    崔占峰,张小峰冯小香. 2008.丁坝冲刷的三维紊流模拟研究.水动力学研究与进展A 辑, 23(1):33-41.
    崔占峰,张小峰. 2006.三维紊流模型在丁坝中的应用.武汉大学学报(工学版) , 39 (1) :15-20.
    丁道扬,吴时强. 1994.三维过坝水流数值模拟.水利水运科学研究,3:185-196.
    丁平兴,孔亚珍,朱首贤,等. 2001.波-流共同作用下的三维悬沙输运数学模型.自然科学进展,11 (2) :147 - 152.
    董文军,李世森,白玉川. 1999.三维潮流和潮流输沙问题的一种混合数值模拟及其应用.海洋学报, 21 (2) :108 -114.
    董文军. 1996.永定新河二维输沙有限元数值模拟.泥沙研究,4 :86 - 93.
    董壮,龚政,韩青. 2007.改进σ坐标下的三维水流传质数学模型.水科学进展, 18(5):717-723.
    窦国仁. 1963.潮汐水流中的悬沙运动及冲淤计算.水利学报.4:13-24.
    窦国仁. 1978.丁坝回流及其相似律的研究.水利水电科技情报,3:1-23.
    窦希萍,罗肇森. 1992.波浪潮流共同作用下的二维泥沙数学模型.水利水运科学研究, 4 :331 - 336.
    范北林,黄煜龄,董耀华. 1993.河道平面二维泥沙数学模型研究与验证.长江科学院院报, 10 (2) :27 - 33.
    方春明,韩其为. 1997.异重流潜入条件分析及立面二维数值模拟.泥沙研究, 4.
    方春明. 2003.考虑弯道环流影响的平面二维水流泥沙数学模型.中国水利水电科学研究院学报,1(3) :26- 29.
    方红卫,王光谦. 2000a.平面二维全沙泥沙输移数学模型及其应用.应用基础与工程科学学报, 8(2):165-178.
    方红卫,王光谦. 2000b.一维全沙泥沙输移数学模型及其应用.应用基础与工程科学学报, 2:154 - 164.
    冯建云. 1994.弯道河段桥台岸线坍塌的治理.铁道建筑, 2:16-18.
    冯小香,张小峰,李建兵,等. 2008.水库坝前冲刷漏斗形态三维水沙数学模型研究.水动力学研究与进展A辑, 23(1):15-23.
    冯小香,张小峰,韦直林,等. 2008.冲刷漏斗纵剖面形态数值模拟技术研究.水科学进展,1.
    郭庆超,韩其为,何明民.1996.二维潮流及泥沙数学模型.泥沙研究,1 :48 - 55.
    韩其为,何明民.1987.水库淤积与河床演变的(一维)数学模型.泥沙研究, 3:14-29.
    韩其为. 2004.黄河下游输沙及冲淤的若干规律.泥沙研究, 3:1-13.
    韩玉芳,陈志昌.2004.丁坝回流长度的变化.水利水运工程学报3:33-36.
    何国建,赵慧明,方红卫. 2008.潮汐影响下电厂温排水运动的三维数值模拟.水力发电学报, 27(3):125-131.
    何国建. 2007.三维水沙及水质数学模型的研究与应用[博士学位论文].北京:清华大学.
    何明民,韩其为. 1990.挟沙能力级配及有效床沙级配的确定.水利学报,3:1-12.
    洪笑天,马绍嘉,郭庆伍. 1987.弯曲河流形成条件的实验研究.地理科学, 7(1):35-43.
    胡德超. 2009.三维水沙运动及河床变形数学模型研究[博士学位论文].北京:清华大学.
    胡慧武,马永军,邵学军,等.2001.控制和减小丁坝下游回流尺度的试验研究.水利水运工程学报, 2:37-41.
    华祖林.2000.拟合曲线坐标下弯曲河段水流三维数学模型.水利学报, 1:1-8.
    槐文信,陈文学,童汉毅,等. 2003.漫滩恒定明渠水流的三维数值模拟.水科学进展, 1:15-19.
    黄本胜,白玉川,万艳春. 2002.河岸崩塌机理的理论模式及其计算.水利学报,9 :49-54,60.
    黄国鲜,周建军,陈界仁.2006.复杂边界下同位网格和交错网格水流模型收敛性.清华大学学报(自然科学版), 46(6):785-788.
    黄国鲜.2006.弯曲和分叉河道水沙输运及其演变的三维数值模拟研究[博士学位论文].北京:清华大学.
    黄金池,万兆惠. 1999.黄河下游河床平面变形模拟研究.水利学报, 2:13-18.
    黄莉,范北林,姚仕明,等.2008.荆江监利河段横断面调整规律研究.人民长江, 3:21-23.
    吉祖稳,胡春宏,阎颐,等. 1994.多沙河流造床流量研究.水科学进展, 5(3):229-234.
    假冬冬,邵学军,王虹,等. 2009.考虑河岸变形的三维水沙数值模拟研究.水科学进展,20(3):311-317.
    假冬冬,邵学军,王虹,等. 2010.三峡工程运用初期石首河弯河势演变三维数值模拟.水科学进展,21(1):43-49.
    假冬冬,邵学军,周刚,等. 2008.弯道三维水沙数值模拟中推移质输移方向的选取. 水动力学研究与进展A辑, 23(5):546-553.
    假冬冬,邵学军,周刚. 2007.弯曲河道横向摆动过程数值模拟研究进展.水利水电科技进展, 2007, 27(4):90-95.
    假冬冬,邵学军,周刚. 2008.大系数法与壁函数结合在丁坝绕流三维数值模拟中的应用.水利水运工程学报, 115:36-41.
    假冬冬,王博,周刚,等. 2008.边墩纵向宽度对回流长度的影响研究.水科学进展, 19(6):814-820.
    江春波,许协庆. 1991.各向异性湍浮力流的三维有限元计算.水利学报, 7:8-18.
    江恩惠,曹永涛,张林忠,等. 2006.黄河下游游荡性河段河势演变规律及机理研究,北京:中国水利水电出版社.
    金德生. 1986.边界条件对曲流发育影响的过程响应模型试验研究.地理研究, 9 :12 - 21.
    赖锡军,曲卓杰,周杰,等. 2006.非结构网格上的三维浅水流动数值模型.水科学进展, 17(5):693-699.
    乐培九,李旺生,杨细根. 1999.丁坝回流长度.水道港口, 2:3-9.
    李大鸣,付庆军,林毅,等. 2008.河道三维错层的水流泥沙数学模型.天津大学学报, 7.
    李东风,张红武,许雨新,等. 1999.黄河下游平面二维水沙运动模拟的有限元方法. 泥沙研究,4 :59 - 63.
    李芳君,陈士荫. 1994.疏浚引起泥沙扩散的三维数值模拟.泥沙研究, 4:68 - 75.
    李国斌,韩信,傅津先. 2001.非淹没丁坝下游回流长度及最大回流宽度研究.泥沙研究, 3:68-73.
    李琳琳,余锡平. 2009.连续弯道内水流运动的特点.水运工程,11:138-142.
    李孟国,时钟,秦崇仁. 2003.伶仃洋三维潮流输沙的数值模拟.水利学报,4 :51 - 57.
    李孟国. 1996.伶仃洋三维流场数值模拟.水动力学研究与进展A辑, 11(3):342-351.
    李瑞杰,孙效功. 1999.潮流作用下河口悬沙运动二维数学模型.海洋湖沼通报,3 :10 - 15.
    李义天,高凯春. 1996.三峡枢纽下游宜昌至沙市河段河床冲刷的数值模拟研究.泥沙研究, 2:3-8.
    李义天. 1987.冲淤平衡状态下床沙质级配初探.泥沙研究, 1:82-87.
    李义天. 1989.河道平面二维泥沙数学模型研究.水利学报, 2:9-14
    梁志勇,尹学良.1991.冲积河流河床横向变形的初步数学模拟,泥沙研究, 4:76-81.
    林斌良. 1994.矩形明渠三维紊流的数值模拟.水利学报,3.
    林秉南,韩曾萃,孙宏斌,等. 1988.潮汐水流泥沙输移与河床变形的二维数学模型. 泥沙研究, 2 :1 - 8.
    刘桦,何友声. 2000.河口三维流动数学模型研究进展.海洋工程, 18(2): 87-93.
    刘金贵,李瑞杰,张义丰. 2009.非结构网格FVM模型及崖门水道三维模拟研究.水动力学研究与进展A辑, 24(1):49-55.
    卢金友,姚仕明,黎礼刚,等.2007.石首河段整治研究,长江中游藕池口水道综合治理学术研讨会交流材料, 7-21.
    芦绮玲,郑邦民,赵明登,等. 2007.水库坝前冲刷漏斗的三维数值模拟水动力学研究与进展A辑, 22(2):254-259.
    芦田和男. 1980.水库淤积预报.第一届河流泥沙国际学术讨论会论文集,北京:光华出版社.
    陆永军,窦国仁,韩龙喜,等. 2004.三维紊流悬沙数学模型及应用.中国科学E辑技术科学, 34(3):311-328 陆永军,刘建民. 1998.荆江重点浅滩整治的二维动床数学模型研究.泥沙研究, 1:37-51.
    陆永军. 1998.航槽三维流动的紊流模型.应用基础与工程科学学报,6 (1):61-69.
    马福喜,李文新. 1999.河口水流、波浪、潮流、泥沙、河床变形二维数学模型.水利学报, 5 :39 - 43.
    马福喜,王金瑞. 1996.三维水流数值模拟.水利学报, 8:39-44.
    马永军,陈稚聪,丁翔. 2003.控制和减小丁坝下游回流影响的试验.清华大学学报(自然科学版), 43(8):45-49.
    倪晋仁. 1989.不同边界条件下河型成因的试验研究[博士学位论文].北京:清华大学.
    钮新强,谭培伦. 2006.三峡工程生态调度的若干探讨,中国水利, 14:21-24.
    彭静.丁坝水流及冲刷—可视化与三维数值模拟.郑州:黄河水利出版社, 2004
    彭杨,李义天,槐文信.2000.异重流潜入运动的剖面二维数值模拟.泥沙研究, 6:25-30
    钱宁,张仁,周志德.1987.河床演变学.北京:科学出版社.
    邱晨霞,汪德爟,许协庆. 1997.应用k -ε模型模拟三维分层流.水利学报, 7:7-12.
    曲文谦,闫立艳,张小峰,等. 2009.长江中游监利河段崩岸数值模拟.武汉大学学报(工学版), 42(2):158-162.
    邵学军,王兴奎.2005.河流动力学概论.北京:清华大学出版社.
    沈永明,刘诚.2008.弯曲河床中底沙运动和河床变形的三维k-ε-kp两相湍流模型.中国科学E辑技术科学, 7.
    施少华,林承坤,杨桂山.2003.长江中下游河道与岸线演变特点.长江流域资源与环境, 11(1):69-73.
    施勇,胡四一. 2002.无结构网格上平面二维水沙模拟的有限体积法.水科学进展, 4.
    史英标.1997.潮汐河口平面二维悬沙输移及河床变形的数值模拟.河口与海岸工程, 1 :9 - 21.
    宋志尧,薛鸿超,严以新,等. 1998.潮汐动力场准三维值模拟,海洋工程,16(3):54-61.
    孙东坡,彭文启,刘培斌. 1999.河流交叉工程平面二维水沙数值模拟.水利学报, 2 :62 - 66.
    谈广鸣,赵连军,韦直林,等. 2005.海河口平面二维潮流水沙数学模型研究.水动力学研究与进展A辑, 20(5):545-550.
    谭培伦,汪红英. 2004.三峡工程对改善长江口咸潮入侵情势的分析.中国三峡建设, 5.
    唐日长.1964.蜿蜒性河段成因的初步分析和造床试验研究.人民长江,2 :13 - 21.
    唐日长.1990.葛洲坝工程丛书-泥沙研究.北京:水利水电出版社.
    唐学林,陈稚聪,陆永军,等. 2007.小浪底河段浑水流动的三维数值模拟.清华大学学报(自然科学版), 09.
    陶建峰,张长宽. 2008.河口海岸三维双σ坐标斜压水流数值模型研究.海洋工程, 26(1):71-76.
    陶文铨. 2000.计算传热学的近代进展.北京:科学出版社.
    陶文铨. 2001.数值传热学(第2版).西安:西安交通大学出版社.
    王博.2008.连续弯道水流及床面变形的试验研究[硕士学位论文].北京:清华大学.
    王崇浩,韦永康. 2006.三维水动力泥沙输移模型及其在珠江口的应用.中国水利水电科学研究院学报,4(4) :9 - 15.
    王福军.2004.计算流体动力学分析-CFD软件原理及应用.北京:清华大学出版社.
    王尚毅,顾元棪. 1987.二维泥沙数学模型的理论基础及其应用.海洋学报, 9 (1) :104 - 114.
    王新宏.2000.冲积河道纵向冲淤和横向变形数值模拟研究及应用[博士学位论文],陕西: 西安理工大学.
    王延贵,匡尚富. 2007.河岸临界崩塌高度的研究.水利学报, 10:1158-1165.
    王延贵,匡尚富,黄永健. 2003.洪水期岸滩崩塌有关问题的研究.中国水利水电科学研究院学报, 1(2):90-97.
    王志力. 2006.基于Godunov和Semi-Lagrangian法的二、三维浅水方程的非结构化网格离散研究[博士学位论文],大连:大连理工大学.
    韦直林,谢鉴衡,傅国岩,等. 1997.黄河下游河床变形长期预测数学模型的研究.武汉水利电力大学学报, 30(6):1-5.
    韦直林,赵良奎,付小平. 1997.黄河泥沙数学模型的研究,武汉水利电力大学学报, 30(5):21-25.
    吴挺峰,罗潋葱,崔广柏,等. 2009.河流型水库垂向二维水沙数学模型.水科学进展, 02.
    夏军强,王光谦,吴保生.2005.游荡型河流演变及其数值模拟.北京:中国水利水电出版社.
    夏军强,王光谦. 2000.剖面二维悬移质泥沙输移方程的分步解法.长江科学院院报, 17(2):14-17
    夏军强,王光谦. 2002.考虑河岸冲刷的弯曲河道水流及河床变形的数值模拟.水利学报, 6:60-66.
    夏军强,吴保生,王艳平,等.2007.黄河下游游荡段滩岸土体组成及力学特性分析,科学通报, 52(23):2806-2812.
    夏云峰. 2002.感潮河道三维水流泥沙数值模型研究与应用[博士学位论文].南京:河海大学.
    谢作涛,张小峰,袁晶,等. 2005.一般曲线坐标系平面二维水沙数学模型研究与应用. 泥沙研究, 6:58-64.
    谢作涛. 2006.长江口未来盐水入侵初步研究[博士学位论文],武汉:武汉大学.
    辛文杰. 1997.潮流、波浪综合作用下河口二维悬沙数学模型.海洋工程,15 (1) :30 - 47.
    徐峰俊,刘俊勇. 2003.伶仃洋海区二维不平衡非均匀输沙数学模型.水利学报, 7 :16 - 29.
    许炯心. 1989.南运河弯曲河型的成因.地理与地理信息科学,5(2 ):54-59.
    闫立艳,张小峰,段光磊,等.2009.移动坐标下考虑弯道横向输沙及河岸变形的平面二维数学模型.中国农村水利水电, 1:11-14.
    杨国录.1993.河流数学模型.北京:海洋出版社.
    杨美卿,陈亦平. 1988.卵石夹沙河床长期清水冲刷的数学模型.泥沙研究, 1:45-54.
    姚仕明,王兴奎,张超,等. 2007.两坝间河段通航水流条件三维数值模拟.水科学进展, 18(3):374-378.
    姚仕明,张超,王兴奎. 2005.二维同位与交错网格水流数值模拟比较.泥沙研究,3:67-71
    要威,李义天,许多,等.2009.游荡型河段水沙数学模型研究.人民长江, 40(5):45-48.
    尹学良. 1965.弯曲性河流形成原因及造床试验初步研究.地理学报, 31(4):287-303.
    尹则高,拾兵,姜成堃,等.2008.引水工程复杂水流的二、三维嵌套数值模拟.中国海洋大学学报(自然科学版), 38(04):671-674.
    余明辉,吴腾,杨国录. 2006.剖面二维水沙数学模型及其初步应用,水力发电学报, 4.
    余明辉,杨国录. 2000.平面二维非均匀沙数值模拟方法.水利学报, 5 :65 - 69.
    余文畴,卢金友.2005.长江河道演变与治理.北京:中国水利水电出版社.
    余文畴,卢金友.2008.长江河道崩岸与护岸.北京:中国水利水电出版社.
    余文畴,岳红艳.2008.长江中下游崩岸机理中的水流泥沙运动条件.人民长江, 39(3)64-66.
    余文畴.2008.长江中下游河道崩岸机理中的河床边界条件.长江科学院院报. 25(1):8-11.
    郁伟族. 1987.用k-ε紊流模型及有限元法解二维异重流方程.河海大学学报, 2.
    张红武,黄远东,赵连军,等. 2002.黄河下游非恒定输沙数学模型Ⅰ模型方程与数值方法.水科学进展, 13(3):265-270.
    张红武,钟德钰,张俊华,等. 2009.黄河游荡型河段河势变化数学模型.人民黄河, 31(1):20-22.
    张华庆,金生. 2004.回流区水流运动三维数值模拟.水道港口,25(2):64-68.
    张华庆,陆永军. 1993.河道平面二维泥沙数学模型.水道港口,2 :36 - 43.
    张杰,李永红. 2002.平面二维河床冲淤计算有限体积法.长江科学院院报, 19 (5) :17 - 20.
    张俊勇,陈立,何娟,等. 2004.流量过程对河型影响的试验研究.水电能源科学, 22(3): 61-64.
    张俊勇. 2006.河流再造床河型变化过程与结果的初步研究[博士学位论文].武汉:武汉大学.
    张细兵,董耀华,殷瑞兰. 2002.河道平面二维水沙数学模型的有限元法.泥沙研究, 6 :60 - 65.
    张小峰,谢葆玲,许全喜. 2005.三峡水库蓄水初期泥沙淤积预测模型研究.中国水力发电工程学会水文泥沙专业委员会第六届学术讨论会论文集.
    张幸农,蒋传丰,陈长英,等. 2008.江河崩岸的类型与特征.水利水电科技进展, 28(5):66-70.
    张耀新,吴卫民. 1999.剖面二维非恒定悬移质泥沙扩散方程的数值方法.泥沙研究, 2:40-45.
    赵明登,李义天. 2002.二维泥沙数学模型及工程应用问题探讨.泥沙研究, 1 :66 - 70.
    赵士清. 1986.浑水异重流的数值模拟.科学通报, 22.
    赵寿刚,王笑冰,杨小平,等. 2005.黄河下游沉积黏土层的土力学特性分析.岩土工程界,8(10):31—32.
    郑金海,王义刚. 2002.黄浦江航道改善方案的三维水流数学模型计算.水运工程,1:34-37.
    郑金海. 2003.贴体正交曲线坐标系下水流泥沙数学模型的构建与应用.海洋通报, 22 (1) :1 - 8.
    中国水利委员会. 1992.泥沙手册.北京:中国环境科学出版社.
    中华人民共和国水利部编. 2006.中国河流泥沙公报2005.北京:中国水利水电出版社.
    中华人民共和国水利部编.2007.中国河流泥沙公报2006.北京:中国水利水电出版社.
    钟德钰,张红武. 2004.考虑环流横向输沙及河岸变形的平面二维扩展数学模型.水利学报, 7:14-20.
    周发毅,陈壁宏. 1997.取水口附近水流泥沙运动的三维数值模拟.水利学报,12 :30 - 37.
    周华君. 1992.长江口最大浑浊带特性研究和三维水流泥沙数值模拟[博士学位论文],南京:河海大学.
    周建军,林秉南,王连祥. 1993.平面二维泥沙数学模型研究及应用.水利学报,11 :10-19.
    周建军,林秉南. 2006.水流泥沙数学模型研究//王光谦,胡春宏.泥沙研究进展.北京:中国水利水电出版社, 249-250.
    周思平,张书农. 1989.用HH-SIMPLE方法求解明渠中三维浅水底孔泄流问题.河海大学学报, 17 ( 3 ):31-39.
    朱斌. 1992.三维贴体坐标中不可压缩粘性流动的一种数值分析方法及其在水轮机尾水管中的应用[博士学位论文].北京:清华大学.
    诸裕良,严以新,茅丽华. 1998.大江河口三维非线性斜压水流盐度数学模型,水利水运科学研究, 2:129-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700