长江口平面二维非均匀全沙数学模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口海岸的泥沙问题涉及到人类开发河口海岸自然资源的活动,并且是陆海相互作用研究的重要组成内容之一,对它的研究具有重要的科学意义和应用价值。本文以长江口为例在前人工作的基础上,通过分析长江口水流、泥沙运动特性的基础上,建立平面二维的非均匀泥沙数学模型,并对长江口的泥沙输运过程和输运机理进行了研究。
     长江口海域开阔,浅滩宽浅,风浪的作用显著,在水动力模型和全沙数学模型中考虑了波浪的作用。鉴于长江口悬沙和底沙组成与分布的不均一性,为了较好地反映悬沙与底沙的物质交换,本文提出了平面二维非均匀泥沙数学模型,保证以不同组份泥沙在长江口广阔区域内输运的物质守恒性。在泥沙数学模型中较为合理的考虑了不同粒径组泥沙的输运、沉降、再悬浮和细颗粒泥沙的絮凝问题。在确定悬沙絮凝沉速时综合考虑了泥沙粒径、盐度、含沙量及水流紊动的影响。针对长江口复杂的岸线,将水动力学方程和全沙数学模型转化为适应复杂边界的自适应网格下模型。悬沙输运方程采用破开算子的方法求解,平流项采用Ultimate Quickest格式求解,即保证了数值格式的守恒性,又消除了数值耗散。以上措施提高了计算的精度。通过实测资料对数学模型计算的结果的检验,表明该模型能反应长江口复杂自然条件的泥沙运动规律。借助通量分解和数学模型的方法分析了感潮河段含沙量变化规律。
Sediment transport in estuarine and coastal is not only one of import problems when the human explore the natural, but also the one of major contents of Land and Sea Interactions in the Coastal Zone. So sediment research is interested for scientist and engineer. Based on the reviews of current research, an 2-D horizontal non-uniform sediment numerical model is established according to the character of hydrodynamic and sediment transport in Yangtze estuary.. The sediment transport process and mechanism is discussed.
    The Yangtze estuary is so wild, the mouth bars are long, the slope is gentle, so the wave action is importance. The wave effect is considered in hydrodynamic model and sediment model. A 2-D horizontal non-uniform sediment transport is established according to the different grain size in suspended sediment and bed load in Yangtze estuary, which could reflect the conservation during different sediment grain transport and exchange between suspended sediment and bed load. The fine sediment setting velocity due to flocculation is determined by sediment grain, salt, sediment concentration and flow turbulence. A boundary-fitted curvilinear coordinate system has been deployed to obtain a more accurate solution of SSC. The operator-splitting algorithm and the Ultimate Quickest scheme have been used to solve the sediment transport equation. The results calculated are in close agreement with field observation , which shows this model can predict sediment transport in Yangtze estuary. The reason induced SSC variety in t
    idal channel is discussed through the flux analysis and sediment model.
引文
[1] 张永战,朱大奎.海岸带—全球变化研究的关键区域.海洋通报,1997,16(3):69~80.
    [2] 陈吉余,胡辉,朱慧芳.21世纪长江三角洲经济区港口群建设的构想.华东师范大学学报长江口深水航道治理与港口建设专辑,1995:80~91.
    [3] 陈宗团,江武,徐立等.河口及近岸海域环境污染研究动态.海洋通报,1997,16(6):86~89.
    [4] Yu,G.H., Martin,J.M., Zhao,J.Y. Proceeding of the international symposium on Biogeochemicai Study of the Changjiang estuary and its adjacent coastal waters of East China Sea. Beijiang: China Ocean Press, 1990.
    [5] Mehta, A.J. On estuarine cohesive suspension behavior. Journal of Geophysical Research, 1989, 94(c10): 14,303~14,314.
    [6] Sternberg, R.W. Instrumentation for estuarine research. Journal of Geophysical Research. 1989, 94(c10).: 14,289~14,301.
    
    
    [7] Wolanski,E., Chappell,J., Ridd,P. and Vertessy, R. Fluidization of mud in estuaries. Journal of Geophysical Research, 1988, 93(c3): 2351~2361.
    [8] Wright,L.D., Wiseman,W.J., Yang,Z.S. etal Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe(Yellow River).Continental shelf Research, 1990, 10(1): 1~40.
    [9] Hanes,D.M. and Vincent, C.E. Detailed dynamics of nearshore suspended sediment, in Coastal Sediments'87 edited by N.C.Kraus. New York: American Society of Civil Engineers, 1987: 285~299.
    [10] Libicki. C., Bedford,K.W. and Lynch,J.F. The interpretation and evaluation of a 3-MHz acoustic backscatter device for measuring benthic boundary layer sediment dynamics. Journal of the acoustic of America, 1989, 85(4):1501~1511.
    [11] Eisma D. Suspended matter in the aquatic environment. Berlin Heidlberg: Springer-Verlag, 1993,45~51.
    [12] Bale,A.J. and Morris,A.W. In situ measurement of particle size in estuarine waters. Estuarine Coastal shelf Science, 1987,24: 253~263.
    [13] Van Leussen, W. and Cornelisse, J. M, The determination of the sizes and setting velocities of estuarine flocs by an underwater video system. Netherlands Journal of Sea Research, 1993,31(3): 231~241.
    [14] Bartz, R., Zaneveld,R.V. and McCave,I.N. Devices for in-situ measurement of particle settling velocity, in Deep Ocean Sediment Transport, edited by Nowell, AAA.R.M. & Hollister, C.D. New York: Elsevier, 1985: 381~395.
    [15] Johansen, C. and Larsen, T. Measurement of settling velocity of fine sediment using a recirculated settling column. Journal of coastal Research., 1998,14(1): 132~139
    [16] 王运辉,潮汐河口.武汉武汉水利电力学院,1991.
    [17] Stumpf, R.P and Pennock,J.R. Calibration ora general optical equation for remote sensing of suspended in a moderately turbid estuary. Journal of Geophysical Research. 1989,94(c10): 14,363~14,371.
    [18] Li,yan., Huang, Wei. and Fang, min. An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data. Continental shelf research, 1998,18: 487~500.
    [19] Krone,R.B. Flume studies of the transport of sediment in estuaries shoaling processes. Technical Report of Hydraulic Engineering Laboratory, University of California. 1962
    [20] Partheniades,E. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division. ASCE, Proceedings 91, 1965,105~139.
    
    
    [21] Migniot,C A study of physical propertation of various forms of very fine sediment and their behavior under hydrodynamic actions La Howille Blanche 1968: 591~621.
    [22] Maa, P.Y and Mehta, A.J. Soft mud response to water waves. Journal of Waterway,Port Coastal and Ocean Engineering.ASCE, 1990, 116.(5): 634~650.
    [23] Kranenburg, C. and Winterwerp,J.C. Erosion of fluid mud layers. Ⅱ: experiments and model validation. Journal of hydraulic engineering, 1997,123(6): 511~519.
    [24] Owen,M.W. The effect of turbulence on the settling velocities of silt flow. Proc 14th congress IAHR, 1974, vo14.d4
    [25] Malchevek,A 1996 numerical modeling of the dynamic, in three dimensional numerical modeling of cohesive sediment transport processes in estuarine environments. E Peltier etal eds. 34~45
    [26] Winterwerp,J.C. A simple model for turbulence induced flocculation of cohesive sediment .Journal of hydraulic research. IAHR. Malchevekol. 1998, 36(3): 309~326.
    [27] Uncles,R.J. and Stephens,J.A. Distribution of suspended at high water in a macrotidal estuary .Journal of Geophysical Research, 1989,94,c(10): 14,395~14,406.
    [28] Officer,C.B. Discussion of the turbidity maximum in partially mixing estuaries. Estuarine and coastal marine science, 1980,10: 239~246.
    [29] Mclaren ,P.A. An interpretation of trends in grain-size measurements. Journal of sedimentary Petrology, 1981,51(2) :611~624.
    [30] Mclaren,P.A. and Boeles,D The effects of sediment transport on grain-size distributions. Journal of sedimentary Petrology. 1985,55(4) :457~470.
    [31] Gao S. and Collins M. Net sediment transport patterns inferred from grain size trends, based upon definition of "transport vectors". Sedimentary Geology, 1992, 81: 47~60.
    [32] Gao S. and Collins M. Analysis of grain size trends ,for defining sediment transport pathways in marine environments. Journal of Coastal Research, 1994, 10(1): 70~78.
    [33] Gao S., Collins,M, Lanckneus,J., Moor, G.De and Van Lancker, V., Grain size trends associated with net sediment transport patterns :A example from the Belgian continental shelf. Marine Geology, 1994,121(3): 171~185.
    [34] 黄胜,卢启苗,河流动力学.北京:水利水电出版社,1993:1~4.
    [35] 罗肇森,辛文杰,马启南.河口整治研究的进展.水利水运科技情报,1993,(1):1~9.
    [36] Odd ,N.V.M. and Owen,M.W. A two-layer model of mud transport in the Thames Estuary. Proc Inst of Civil Engrs, London, U.K. supplement, Ⅸ, 1972: 175~205.
    [37] Mehta, A.J., Hayter, E.J., Parker. W.R. et al. Cohesive sediment transport part Ⅱ :Application. Journal of Hydraulic Engineering, 1989, 115.(8): 1094~1112.
    
    
    [38] O' Connor, B.A. and Tuxford, C. Modeling siltation at dock entrance .Proce. 3rd Int. Symp. On Dredging Tech. Bordeaux. France. 1980: 359~371.
    [39] Maskell,J.M. A mathematical model of mud transport in a shallow estuary with a large tidal range. Hydraulic Research. Report Ⅱ, 1984:267.
    [40] Sheng, Y.P. Modeling the effect of suspended sediment stratification on bottom exchange processes. Journal of Geophysical Research, 1989, 94(c10): 14,429~14,444.
    [41] Teisson,C. Cohesive suspended sediment transport: ability and limitations of numerical modeling. Journal of Hydraulic Research, 1991, 29: 755~769.
    [42] Wolannski, E., King, B. and Galloway, S. Dynamics of the turbidity Maximum in the Fly river Estuary, Papua New Guinea .Estuarine coastal and shelf science, 1995, 40: 321~337.
    [43] Lou,J and Ridd,P.V. Modeling of suspended sediment transport in coastal areas under waves and currents Estuarine coastal and shelf science, 1997, 45:1~16.
    [44] Mead,C.T. An investigation of the suitability of two-dimensional mathematical models for predicting sand deposition in dredged trenches across estuaries. Journal of Hydraulic Research, 1999, 37(4): 444~464.
    [45] Nicholson,J. and O'Connor B.A. Cohesive sediment transport model Journal of hydraulic engineering, 1986, 112(7): 621~639.
    [46] Cancino,L. and Neves,R. Hydrodynamic and sediment suspension modeling in estuarine systems: Part I: Description of the numerical models. Journal of Marine Systems, 1999, 22(2): 105~116.
    [47] Brenon, I and Le Hir, P Modeling the turbidity maximum in the Seine Estuary(France):Identification of formation processes. Estuarine coastal and shelf science, 1999, 40:321~337.
    [48] McAnaily,W.H., Letter, J.W. and Thomas,W.A. Application of Columbia River hybird modeling system. Journal of Hydraulic research. ASCE,. 1984, 110(3): 300~311.
    [49] Dyer, K.R. Sediment processes in estuaries: future research requirements. Journal of Geophysical Research, 1989, 94(c10): 14,327~14,339.
    [50] Torman,E.A. Cohesive sediment transport modeling: European perspective In Coastal and estuary fine sediment processes WH Mcanally A.J. Mehta eds Elsevier Science, 2001: 1~18.
    [51] 窦国仁.平原冲积河流及潮汐河口的河床动态.水利学报,1964,(2):1~13.
    [52] 王尚毅.泥质冲积河流及河口泥沙问题的一种数学模型解.天津大学学报,1978(2).
    [53] 林秉南,黄菊卿,李新春.钱塘江河口潮流输沙数学模型.泥沙研究,(2)16~29.
    [54] 叶锦培,何焯霞,周志德,珠江河口潮流输沙数学模型.人民珠江,1986,(6):7~15.
    [55] 蒋建华,苏纪兰.甬江建闸前后冲淤特性的初步数值模拟.海洋学报,1995,17(1):122~130.
    
    
    [56] 李东风,李泽刚,张青玉.清水沟北汊流路入海泥沙对东营港影响的数值分析,黄渤海.海洋,1998,16(1):1~6.
    [57] 张世奇.二维动边界潮汐输沙及河床变形计算,泥沙研究.1988,(4):55~63.
    [58] 张世奇.黄河口输沙及冲淤变形计算研究.水利学报,1990,(1):23~33.
    [59] 张世奇.黄河口及三角洲冲淤演变计算原理及方法.泥沙研究,1997,(2):23~26.
    [60] 曹祖德,王桂芬.波浪掀沙潮流输沙的数学模型.海洋学报,1993,15(1):107~118.
    [61] 辛文杰.潮流波浪综合作用下河口二维悬沙数学模型.海洋工程,1997,15(2):30~47.
    [62] 樊社军,虞志英,金缪.淤泥质岸滩侵蚀堆积动力机制及剖面模式-以连云港地区淤泥质海岸为例Ⅰ波浪和潮流.海洋学报,1997,19(3):66~76.
    [63] 樊社军,虞志英,金缪.淤泥质岸滩侵蚀堆积动力机制及剖面模式-以连云港地区淤泥质海岸为例Ⅱ泥沙运动和岸滩剖面演变模式.海洋学报,1997,19(3):77~85.
    [64] 贺松林,丁平兴,孔亚珍等.湛江湾沿岸工程冲淤影响的预测分析Ⅰ动力地貌分析.海洋学报,1997,19(1):55~63.
    [65] 丁平兴,贺松林,张国安等.湛江湾沿岸工程冲淤影响的预测分析Ⅱ冲淤的数模计算.海洋学报,1997,19(1):64~72.
    [66] Dong, L.X., Wolanski,E. and li, Y. Field and modeling studies of fine sediment dynamics in the extremely turbid Jiaojiang river estuary ,China. Journal of Coastal Research, 1997, 13(4): 995~1003.
    [67] Guan,W.B., Wolanski,E. and Dong,.L.X. Cohesive sediment transport in the Jiaojiang River Estuary ,China Estuarine Coastal and shelf science, 1998, 46: 861~871.
    [68] 陆永军,袁美琦.潮汐河口二维动床紊流模型.水科学进展,1998,9(2):151~158.
    [69] 马福喜,李文新.河口水流、波浪、潮流、泥沙、河床变形的二维数学模型.水利学报,1999,(5):39~43.
    [70] 曹文洪,何少苓,方春明.黄河河口海岸二维非恒定水流泥沙数学模型.水利学报,2001,(1):42~48.
    [71] 许卫忆,苏纪兰.杭州湾二维潮波计算及底质分布的动力成因.海洋与湖沼,1986,17(6):493~503.
    [72] 董礼先,苏纪兰,王康墡.黄渤海潮流场极其与沉积物搬运的关系.海洋学报,1989,11(1):102~114.
    [73] 朱玉荣.古长江河口湾充填潮流作用机制的初步探讨。海洋学报,1999,21(3):73~82.
    [74] 朱玉荣.潮流场对渤海黄海东海陆架底质分布的控制作用.海洋地质与第四纪地质,2001,21(2):7~13.
    [75] 陈国祥,陈界仁,沙捞·巴里.三维泥沙数学模型的研究进展.水利水电科技进展,1998,18(1):13~18.
    
    
    [76] 丁平兴,史峰岩,孔亚珍.波一流共同作用下的三维悬沙扩散方程.科学通报,1999,44(12):1339~1342.
    [77] 江文胜,孙文心.渤海悬浮颗粒物的三维输运模式Ⅰ模式。海洋与湖沼,2001,31(6):682~688.
    [78] 江文胜,孙文心.渤海悬浮颗粒物的三维输运模式Ⅱ模拟结果海洋与湖沼,2001,32(1):94~100.
    [79] 李蓓,唐士芳.河口海区开挖航道后三维潮流盐度泥沙数值模拟.水道港口,2000,(4):36~41.
    [80] 陈吉余,沈焕庭,恽才兴等著.长江口动力过程和地貌演变.上海:上海科学技术出版社,1988:1~5.
    [81] 陈吉余,恽才兴,徐海根等.两千年来长江河口发育的模式.海洋学报,1979,1(1):103~111.
    [82] 陈吉余,徐海根.长江河口南支河道的河槽演变.华东师范大学学报,1981,2:93~107.
    [83] 陈吉余,潘定安,苏法祟等。长江口北港河糟演变分析.陈吉余等编著长江河口动力过程和地貌演变.上海:上海科学技术出版社.1988:390~403.
    [84] 贺松林.长江河口下段分汊口的组构模式.海洋学报,2000,22(1):84~92.
    [85] 王谷谦,周海,季岚.长江口河床演变规律及北槽12.5m深水航道治理工程.水运工程,1999,(10):52~56.
    [86] 程和琴,宋波,薛元忠等.长江口粗粉砂和极细沙输移特性研究-幕式再悬浮和底形运动.泥沙研究,2000,(1):20~27.
    [87] Shi,Z., Ren, L.F., Chen,J.Y., and Zhang, S.Y. Acoustic imaging of cohesive sediment resuspension and re-entrainment in the Changjiang Estuary, East China Sea. Geo- Marine Letters, 1997, 17: 162~168.
    [88] Shi,Z., Ren,L.F. and Hamilton,L,J. Acoustic profiling of fine suspension concentration in the Changjiang Estuary. Estuaries. 1999, 23(3): 648~656.
    [89] Hamilton, L.J., Shi,Z. and Zhang, S.Y. Acoustic backscatter measurements of6tuarine suspended cohesive sediment concentration profiles. Journal of Coastal Research., 1998, 14(4): 1213~1224.
    [90] 恽才兴,蔡孟裔,王宝全。利用卫星相片分析长江入海悬浮泥沙扩散问题.海洋与湖沼,1981,12(5):391~401.
    [91] 陈鸣,李士鸿 刘小靖,长江口悬浮泥沙遥感信息处理和分析.水利学报,1991,(5):47~51.
    [92] 胡嘉敏.长江河口表层水体悬沙分布与最大浑浊带遥感分析,河口最大浑浊带论文集.华东师范大学河口海岸研究所.1981:67~77.
    
    
    [93] 益建芳,梅安新.长江河口最大浑浊带的遥感动态分析,河口最大浑浊带论文集,华东师范大学河口海岸研究所.1993:96~104.
    [94] 何青,恽才兴,时伟荣.长江口表层水体悬沙浓度场遥感分析.自然科学进展,1998,9(2):160~164.
    [95] 赵长海,恽才兴,郑新江等.利用气象卫星资料分析长江口通海航道泥沙分布.国土资源遥感,1999,(1):15~19.
    [96] 沈涣庭,贺松林,潘定安等.长江河口最大浑浊带研究.地理学报,1992,47(5):472~479.
    [97] 时伟荣.长江口浑浊带含沙量的潮流变化及其成因分析.地理学报,1993,48(5):412~419.
    [98] 时伟荣,李九发.长江河口南北槽输沙机制及浑浊带发育分析.海洋通报.1993,12(4):69~76.
    [99] 沈健,沈焕庭,潘定安等.长江河口最大混浊带水沙输运机制分析.地理学报,1992,50:411~419.
    [100] 贺松林,孙介民.长江口最大浑浊带的悬沙输移特征.海洋与湖沼,1996,27(1):60~65.
    [101] 潘定安,沈涣庭,茅志昌.长江口浑浊带的形成机理与特点.海洋学报,1997,21(4):62~69.
    [102] 李九发,何青,张琛.长江河口拦门沙河床淤积和泥沙再悬浮过程.海洋与湖沼,2000,31(1):101~109.
    [103] 时钟,陈伟民.长江口北槽最大浑浊带泥沙过程.泥沙研究,2000,(1):28~39.
    [104] 顾伟浩,姚金元,袁金林等.长江口铜沙老航槽自然回淤的初步分析,海洋科学,1984,(5):10~13.
    [105] 顾伟浩.台风对长江口北槽航槽挖槽段回淤影响的初步分析.水运工程,1986,(9):32~50.
    [106] 关许为,顾伟浩.一九九0年寒潮对长江口北槽回淤影响的分析.泥沙研究,1992,(1):55~60
    [107] 钟修成,任苹.长江口拦门沙航道(北槽)回淤分析.河海大学学报,1988 16(6):50~57.
    [108] 张栋梁,姚金元,江口北槽挖槽段泥沙淤积特性研究.泥沙研究,1993,(3):66~78.
    [109] 俞赐美.长江口北槽航道淤积达到灰色预测.海洋工程,1992,10(4):78~85.
    [110] 黄卫凯.长江河口拦门沙变化的经验特征函数模型.海洋学报,1993,15(2):48~56.
    [111] 黄卫凯,陈吉余.长江河口拦门沙地形变化的统计预报.海洋与湖沼,1995,26(4):343~349.
    
    
    [112] 朱慧芳,周纪芗.长江河口航道拦门沙冲淤变化数学模拟和预测.海洋与湖沼,1993,24(3):294~303.
    [113] 韩乃斌等.长江口泥沙絮凝试验报告.南京水利科学研究所报告.1974.
    [114] 黄健维.粘性泥沙在静水中沉降特性的试验研究.泥沙研究,1981,(2):30~41.
    [115] 彭润泽,蒋如琴,黄永健等.长江口泥沙絮凝沉速试验研究.北京:水利水电科学研究院.1987.
    [116] 严镜海.潮汐水流中细颗粒泥沙絮凝沉降的初步探讨.泥沙研究,1988,(4):10~22.
    [117] 阮文杰.细颗粒泥沙动水絮凝的机理分析.海洋科学,1991,(5):46~49.
    [118] 阮文杰.长江口天然水流中细颗粒泥沙的絮凝作用.海洋科学,1991.(6):39~43.
    [119] 关许为,陈英祖.长江口泥沙絮凝的现场显微观测.泥沙研究,1992,(3):54~59.
    [120] 李炎,王亚琴,林以安,运用分粒级的泥沙垂线分布分析长江口泥沙絮凝沉降特征.海洋工程,1994,12(1):71~78.
    [121] 关许为,陈英祖.长江口泥沙絮凝静水沉降动力学模式的试验.海洋工程,1995,13(1):46~50.
    [122] 蒋国俊,张志忠.长江口阳离子浓度与细颗粒泥沙絮凝沉积.海洋学报,1995,17(1):76~82.
    [123] 关许为,陈英祖,杜心慧.长江口絮凝机理的试验研究.水利学报,1996,(6):70~74.
    [124] 林以安,李炎,唐仁友.长江口絮凝聚沉特征与颗粒表面理化因素作用—Ⅰ悬浮颗粒絮凝沉降特征.泥沙研究,1997,(1):42~47.
    [125] 林以安,李炎,唐仁友.长江口絮凝聚沉特征与颗粒表面理化因素作用—Ⅱ颗粒表面性质对聚沉的作用.泥沙研究,1997,(4):76~84.
    [126] 时钟,周洪强.江口北槽口外悬沙浓度垂线分布的数学模拟.海洋工程,2000,18(3):57~62.
    [127] 徐建益,陶学为,方良田等.长江口南支非均匀沙垂向分层的数学模型.泥沙研究,1995,(2):74~79.
    [128] 黄永健.长江口挖槽自然回淤的计算.泥沙研究,1997,(2):69~73.
    [129] 周济福,王涛,李家春等.径流与潮流对长江口泥沙输运的影响.水动力学研究与进展.1999,14A(1):90~400.
    [130] 盛升国,施厚庆,于福生等.长江口北槽航道抛泥区泥沙扩教的试验研究.泥沙研究,1986,(3),37~45.
    [131] 赵棣华,谭仁忠,谭维炎.长江口南支河段悬移质含沙量计算模型.泥沙研究,1990,(2):54~62.
    [132] 徐建益,袁建中.长江河口局部区域内泥沙冲淤计算方法及应用.水利学报,1991,(12):63~69.
    
    
    [133] 刘卓,郭冬建,朱江等.长江口自适应网格的构造与水流和泥沙冲淤的数学模拟的初步研究.海洋学报,1999,21(4):96~105.
    [134] 窦希萍,李禔来,窦国仁.长江口全沙数学模型.水利水运科学研究.1999,(2):136~145.
    [135] Hu,K.L., Ding,EX. and Cao,Z.,Y. 2-D numerical simulation of sediment transport under waves and currents in Yangtze estuary, Asian and Pacific Coastal Engineering Dalian, China. 2001: 808~817.
    [136] 华东师范大学河口海岸国家重点实验室,长江口南港冲淤灾害预测模型研究报告.2001
    [137] 周华君.长江口最大浑浊带特性研究和三维水流泥沙数值模拟.河海大学博士论文.1993.
    [138] 匡翠萍.长江口拦门沙冲淤及悬沙沉降规律研究和水流盐度泥沙数学模型.南京水利科学研究院.博士论文.1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700