天然高分子基混凝土减水剂合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在材料过程工程学理论框架内,从可再生资源利用、环境保护等角度出发,选择可再生的天然高分子为主要原材料,通过化学合成制备新型混凝土减水剂/高效减水剂,系统的研究基于天然高分子的混凝土减水剂的合成条件与应用性能。
     根据分子设计理论,首先采用棉纤维素为原材料,制备水溶性丁基磺酸纤维素醚(SBC),探讨了反应物配比、反应温度、反应时间等因素对产物分子结构的影响。作为对比,探讨了硫酸酯化羟乙基纤维素(SHEC)、微波辐射方法制备淀粉顺丁烯二酸半酯(SMHE)的合成条件及作为减水剂应用的性能。采用傅立叶变换红外光谱、核磁共振光谱、扫描电镜、电感耦合等离子体发射光谱、凝胶渗透色谱等现代分析手段表征了分子结构。为研究减水剂性能,测定了水泥颗粒吸附减水剂后ζ—电位,水泥颗粒对减水剂的吸附特性,减水剂在水泥颗粒表面的吸附层厚度,减水剂对水泥水化的影响以及产物对水泥水化物形貌的影响。
     减水剂合成的研究结果表明:氢氧化钠与脱水葡萄糖单元及醚化试剂(1,4—丁基磺酸内酯)摩尔比为NaOH:AGU:BS=2.5:1:1.7,最佳反应温度为75℃,醚化反应时间为4.5h。得到的SBC特性粘度为35.3ml/g(粘均分子量约29,000g/mol),丁基磺酸基团取代度达到0.38,1%掺量下水泥净浆流动度可达182mm。分次加碱的方法可将产物的取代度从0.38提高到0.67,数均分子量为6177g/mol,1%掺量净浆流动度270mm以上。在试验范围内,SBC的取代度越高、分子量越低,越有利于减水分散作用的发挥;取代度越小缓凝现象越严重,取代度适中的减水剂不会影响水泥/混凝土水化后期强度的发展,而且表现出良好的流动度保持性,水泥颗粒表面ζ—电位(绝对值)随SBC掺量的提高而明显提高,且在120min内变化较小。因此,不同取代度的SBC可以用作缓凝减水剂、减水剂和高效减水剂。合成的SMHE取代度达0.49,数均分子量为7286g/mol;SHEC取代度达0.49,数均分子量为1978g/mol;二者均可提高水泥净浆流动度,但掺量过高缓凝现象严重,均可用作缓凝减水剂。水泥对SBC的吸附符合Langmuir型等温吸附,其极限吸附量在4.66mg/g~5.49mg/g范围;对SNF(商品萘系高效减水剂)和SMHE的吸附同样符合Langmuir型等温吸附,前者极限吸附量为11.23mg/g,后者的极限吸附量是9.73mg/g。SNF、SBC和SMHE的吸附层厚度分别是0.82nm、3.72nm和6.82nm,SBC约是SNF的4倍,SMHE约是SNF的8.3倍。吸附减水剂后,Ca2p结合能发生不同程度位移,表明SNF、SBC、SMHE等三种减水剂在水泥颗粒上均发生化学吸附。
     为解释SBC减水作用机理,采用经验公式计算水泥悬浮体系中水泥颗粒受力情况。计算结果表明,水泥颗粒表面吸附SBC形成3.72nm的吸附层后,消弱了水泥颗粒间的范德华引力,在水泥颗粒靠近到吸附层可以相互压缩时,产生的空间位阻作用力远大于静电斥力和范德华引力,对水泥颗粒的分散起主导作用;而吸附层未相互压缩时,水泥颗粒的分散主要依赖于静电斥力作用。因此,SBC减水分散作用是空间位阻作用和静电斥力协同作用的结果。
     水泥浆中高效减水剂掺量与水泥絮凝颗粒分形维数间有关,当高效减水剂掺加到一定量时,水泥絮凝颗粒分形维数D_f突变,该突变对应的减水剂掺量与净浆流动度法测定的高效减水剂饱和掺量吻合良好,因此将D_f突变对应的减水剂掺量视为饱和掺量,从而建立了以分形维数确定高效减水剂饱和掺量的新方法,该方法与Marsh筒及净浆流动度法相比具有方便、快捷、节约试验材料等优点。
     在水泥絮凝理论的基础上,研究了掺加减水剂前后水泥净浆絮凝体积的变化规律,提出减水因子概念,它涵盖了减水剂、水泥和混凝土的特性。不同减水剂的减水因子在0~1范围内,且趋于某定值。研究结果表明,不论哪种减水剂,减水因子越大则减水剂的减水分散效果越明显,减水因子与水泥水化以及减水剂与水泥的相容性有一定关系。在相同工作性条件下,混凝土用水量随而减水因子的增大而减小,并且基于减水因子计算的用水量与实际试配用水量非常接近。可见,减水因子对混凝土配合比设计有指导作用,完善了混凝土配合比相关理论。
     SBC减水率与其分子结构有关,1%掺量下砂浆减水率为11.2%~16.5%,混凝土减水率为9%~19%;掺加SBC8的水泥砂浆抗折强度与抗压强度提高明显。掺加SBC8的混凝土和易性良好,泌水率比小,保水性能优于SNF。为测试SBC8实际应用性能,配制了C40混凝土,其各龄期强度提高明显,干缩率在混凝土性能范围内。说明SBC具有实际应用价值。
Within the framework of the theory of Materials Process Engineering, kinds of novel concrete water reducers based on natural polymers were synthesized in present paper from the view of renewable materials and environmental protection. The optium conditions of these products and their properties were investigated systemically.
     According molecular design theory, cotton cellulose was hydrolysis to get Leveling-Off Degree of Polymerization (LODP) cellulose. After basification with 30% Sodium Hydroxide (NaOH), the LODP cellulose was suspended in Isopropanol aqueous solvent and reacted with 1,4-butanesultone(BS) under certain temperature. Finally, water soluble Sulfobutylated Cellulose ether (SBC) was synthesized. The factors which affected the properties of SBC, such as reactant ratio, reaction temperature, and reaction time, were discussed. Hydroxylethylcellulose sulfate was synthesized via Hydroxylethylcellulose (HEC) and-Chlorosulfonic Acid (CSA).In order to investigate the properties of starch derivatives, starch maleate half ester (SMHE) was obtained by microwave radiation. The molecular structure of these products were characterized with modern analysis methods, such as FT-IR, Nuclear Magnetic Resonance (NMR), Scanning Electronic Microscopy (SEM), Inductively-Coupled Plasma Spectrometer (ICP), and Gel Permeation Chromatography (GPC). The performances of SBC, SMHE and SHEC in cement suspension were investigated. The zeta—potential of cement particles adsorbed water reducers, the adsorbed amount of water reducers and the thickness adsorbed layer of water reducers on cement particles were determined. The hydration properties and the apparent pattern of hydrate were analyzed, also.
     The optimum conditions for SBC were obtained as followed: n(NaOH):n(AGU):n(BS) is 2.5:1:1.7, reaction temperature is 75℃, and reaction time is 4.5hr. The product had intrinsic viscosity of 35.3ml/g (Viscosity Average Molecular Weight, M_ηwas about 29,000g/mol), the Degree of Substitution (DS) of sulfobutyl group was 0.38, the fluidity of cement paste with 1% of the product reached 182mm. The DS was improved from 0.38 to 0.67 by the method of fractional basification; the number average molecular weight was 6177g/mol. And the fluidity with 1% SBC also improved, reached to 270mm. The DS of SMHE was 0.49, and M_ηwas 7286g/mol; the DS of SHEC was 0.49, and Mn was 1978g/mol. SMHE and SHE also could improve fluidity of cement paste in appropriate dosage with set retarding. In the present experiment, the higher the DS was, and the lower the M_ηwas, the better the fluidity of cement
     paste with SBC was. The zeta-potential of cement particles with SBC could be improved from +8.9mV to -31mV, and the value changed little in 120min. SBC also could improve the retainable fluidity of cement paste. Langmiur-type adsorption occurred during the process of adsorption of SBC, SMHE and SNF on cement particles. The maximum adsorption capacities of SBCs were from 4.66mg/g to 5.49mg/g, and that of SNF and SMHE was 11.23mg/g and 9.73mg/g, respectively. The adsorbed layer of SNF on cement particles was 0.82nm, that of SBC and SMHE was 3.72nm and 6.82nm, respectively, the former was about 4.5 times of that of SNF, and the latter was about 8.3 times of that of SNF. The results of XPS spectrum of Ca2p indicated that chemical adsorption occurred when SNF, SBC and SMHE was adsorbed on cement particles.
     In order to discuss the mechanism of SBC, the empirical formulas were applied to calculate the forces between cement particles in cement suspension system. The results indicated that the Van der Waals force was weaken for the formation of 3.72nm SBC layer on cement particles, thus when the adsorbed layers compressed each other, the steric force became stronger than electronic repulsive force and Van der Waals attractive force, and steric force was dominant force under this situation. While the adsorbed layer didn't contact each other, the electronic static repulsive force could make cement particles dispersed. So we got the mechanism of SBC was synergism of steric force and electronic repulsive force.
     The saturated point of water reducers in concrete was an important parameter for the application of water reducers, and novel method to determine the parameter was developed in the paper. Firstly, the cement flocculation particle distribution after SPs added was tested; and then, fractal dimensions (Df) were counted; finally, the relationship between Df and dosage of SPs was discussed. The results indicated that the Df was affected greatly by the dosage of SP. When the dosage reaches certain range, a saltation of Df will occur. The dosage range corresponding to the saltation of SPs fitted well with the saturation point measured by cement paste fluidity. Thus the saturation point of SPs can be ascertained via Df. The method has some advantages, such as simple, convenient, and cement and water reducers saving.
     Based on flocculation theory of cement, the flocculated volumes of cement pastes with or without SPs were investigated, and the water-reducing factor (L) was educed. Ls trended to different constants in range from 0 to 1 for different SPs. The Ls had effect on the hydration of cements and the compatibility between SPs and cements. Water content of concrete decreased accompanying the L increasing, and approximately was equal to real water content in the same workability. The results indicated that L could guide concrete mix design.
     The water reducing ratio of SBC was affected by the structure of SBC. The ratio of mortar with 1% SBC ranged form 11.2% to 16.5%, and that of concrete ranged from 9% to 19.5%. The bending strength and compressive strength of mortar with SBC8 were improved obviously. The concrete with SBC8 could have good workability, lower bleeding ratio, lower slump loss and good water retention. The applications of SBC8 in C40 concrete indicated that SBCs have potential to be developed as high range water reducer.
引文
[1]师昌绪,李恒德,周廉.材料科学与工程手册.北京:化学工业出版社,2004.
    [2]郑芳宇.水泥混凝土过程工程学研究.(博士学位论文).大连:大连理工大学.2007.
    [3]Shunsuke Hanehara,Kazuo Yamada.Interaction between cement and chemical admixture from the point of cement hydration,absorption behaviour of admixture,and paste rheology.Cement and Conerete Research,1999,29(8):1159-1165.
    [4]Mollah M Yousuf A,Padmavathy Palta,Thomas R Hess.Chemical anf physical sffects of sodium lignosulfonate superplasficizer on the hydration of portland cement and solidification/stabilization consequences.Cement and Concnte Research,1995,25(3):671-682.
    [5]Xinping Ouyang,Xueqin Qiu,Chen P.Physicochemical characterization of calcium lignosulfonate-A potentially useful water reducer.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,282-283:489-497.
    [6]胡红梅,马保国,何柳.萘系高效减水剂的优化合成与改性.武汉理工大学学报,2005,27(9):38-41.
    [7]Byung-Gi Kim,Shiping Jiang,Carmel Jolicoeur,et al.The adsorption behavior of PNS superplasticizer and its relation to fluidity of cement paste.Cement and Concrete Research,2000,30(6):887-893.
    [8]Chang D,Chan S,Zhao R.The combined admixture of calcium lignosulphonate and sulphonated naphthalene formaldehyde condensates.Construction and Building Materials,1995,9(4):205-209.
    [9]史昆波,牛学蒙,张敬东.氨基磺酸系高效减水剂的实验室研制.延边大学学报(自然科学版),2002,28(2):106-109.
    [10]Princc W,Espagne M,Aitcin P C.Interaction between ettringite and a polynaphthalene sulfonate superplasficizer in a cemenfitious paste.Cement and Concrete Research,2002,32(1):79-85.
    [11]Grabiec A M.Contribution to the knowledge of melamine superplasticizer effect on some characteristics of concrete after long periods of hardening.Cement and Concrete Research,1999,29(5):699-704.
    [12]郭新秋,方占民,王栋民,等.共聚梭酸高效减水剂的合成与性能评价(第一部分).应用基础与工程科学学报,2002,10(3):219-225.
    [13]混凝土外加剂中释放氨的限量.GB 18588-2001.
    [14]蒋新元.绿色氨基磺酸系高性能减水剂ASM的研制与作用机理研究:(博士学位论文).广州:华南理工大学.2004.
    [15]陈建奎.混凝土外加剂原理与应用(第二版).北京:中国计划出版社.2004.
    [16]David N S.Structure of Cellulose.Polymer News.1988,13(1):134-138
    [17]陈家楠.纤维素化学的现状与发展趋势.1995,3(1):1-10.
    [18]王钟建.提高秸秆营养价值研究进展.饲料工业.1998,(5):12-14.
    [19]陈中玉,张祖立,白小虎.农作物秸秆的综合开发利用.农机化研究.2007,(5):194-196.
    [20]Nevell T P,Zeronian S H.Cellulose Chemistry and Its Application.New York:Wiley.1985.
    [21]张俐娜主编.天然高分子科学与材料.北京:科学出版社.2007.
    [22]高洁,汤烈贵主编.纤维素科学.北京:科学出版社,1999:24-25.
    [23]Yamashiki T,Kamide K,Okajima K,et al.Some characteristic features of dilute aqueous alkali solution of specific alkali concentration which possess maximum solubility power against cellulose.Polymer Journal,1988,20(6):447-457.
    [24]Isogai A,Atalla R H.Dissolution of cellulose in aqueous NaOH solution.Cellulose,1998,5(4):309-319.
    [25]Cuculo J A,Smith C B,Sangwatanaroj U,et al.A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system.I.Journal of Polymer Science Part A:Polymer Chemistry,1994,32(2):229-239.
    [26]Qin Xu,Li-Fu Chen.Ultraviolet spectra and structure of zinc-cellulose complexes in zinc chloride solution.Journal of Applied Polymer Science,71(9):1441-1446.
    [27]Michael M,Ibbett R N,Howarth O W.Interaction of cellulose with amine oxide sovents.Cellulose,2000,7(1):21-23.
    [28]Heinze T,Liebert T,Klufers P,et al.Carboxymethylation of cellulose in unconventional media.Cellulose,1999,6(2):153-165.
    [29]McCormick C L,Calliais P A,Hutchinson B H.Solution studtes of cellulose in lithium chloride and N,N-dimethylacetamide.Maeromoleeules,1985,18(12):2394-2401.
    [30]黄汉生.现代化工.北京:化学工业出版社.1991:48-52.
    [31]李翠珍,黄斌,罗太安.纤维素的酸预处理研究.浙江化工,2004,35(11):4-5.
    [32]BATTISTA O A.Hydrolysis and Crystallization of Cellulose.Industrial and engineering chemistry,1950,42(3):502-507.
    [33]Moormann W,Michel U.Hydrocelluloses with low degree of polymerization from liquid ammonia treated cellulose.Carbohydrate Polymers,2002,50:349-353.
    [34]杨之礼,苏茂尧,高洗.纤维素醚基础与应用.广州:华南理工大学出版社,1990
    [35]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料.北京:中国建材工业出版社,2004.
    [36]Holmer Savastano Jr,Vahan Agopyan.Transition zone studies of vegetable fibre-cement paste composites.Cement and Concrete Composites,1999,21(1):49-57.
    [37]Romildo D.Toledo Filho,Karen Scrivener,et al.Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites.Cement and Concrete Composites,2000,22(1):127-143
    [38]徐欣,程光旭,刘飞清,等.树脂基纤维增强摩阻材料研究进展.材料科学与工程学报,2005,23(3):457-461.
    [39]贺子岳,余红,蔡剑英.国外新型纤维增强混凝土及其应用.国外建材科技,1998,19(3):7-11
    [40]Khayat K H.Workability,testing and performance of self-consolidating concrete.ACI Materials Journal,1999,96(3):346-53.
    [41]Khayat K H,Yahia A.Effect of Welan gum-high range water reducer combinations on rheology of cement grout.ACI Materials Journal,1997,94(5):365-372.
    [42]Kamal H Khayat.Viscosity-Enhancing Admixtures for Cement-Based Materials-An Overview.Cement and Concrete Composites,1998,20(2):171-188.
    [43]Sebastien Rols,Jean Ambroise,Jean Pera.Effects of different viscosity agents on the properties of self -leveling concrete.Cement and Concrete Research,1999,29(2):261-266.
    [44]Khayat K H.Effects of antiwashout admixtures on fresh concrete properties.ACI Materials Journal,1995,92(2):164-171.
    [45]Hagen Wolfgang,Holm Wilfried,Hildebrandt Wolfgang,et al.Cement-based systems using plastification/extrusion auxiliaries prepared from raw cotton linters.United States Patent 20050241543.2005.
    [46]顾国芳,曹民干.水溶性聚合物对水下施工混凝土性能的影响.建筑材料学报,2003,6(1):30-34.
    [47]Wang Yuli,Zhou Mingkai,Shan Junhong,et al.Influences of Carboxyl Methyl Cellulose on Performances of Mortar.Journal of Wuhan University of Technology-Materials Sci.Ed.2007,22(1):108-111.
    [48]管学茂,罗树琼,杨雷,等.纤维素醚对加气混凝土用抹灰砂浆性能的影响研究.混凝土,2006,(10):35-37.
    [49]Saric-Coric M,Khayat K H,Tagnit-Hamou A.Performance characteristics of cement grouts made with various combinations of high- range water reducer and cellulose-based viscosity modifier.Cement and Concrete Research,2003,33(12):1999-2008.
    [50]许志钢.水泥制品中纤维素醚的应用特性.新型建筑材料,2001,(7):13-15.
    [51]黄月文.树脂水泥砂浆建筑粘合剂的性能研究.粘接,2002,23(5):18-223.
    [52]张国防,王培铭,吴建国.聚合物千粉对水泥砂浆体积密度和吸水率的影晌.新型建筑材料,2004,(2):29-31.
    [53]L.Schmim,C-J.Hacker,张量(译).纤维素醚在水泥基干拌砂浆产品中的应用.新型建筑材料,2006,(7):45-49.
    [54]Khayat K H.Workability,Testing and performance of self-consolidating concrete.ACI Mater J 1999;96(3):346-53.
    [55]Tegiacchi F,Casu B.Alkylsulfonated polysaccharides and mortar and concrete mixtures containing them.Ger.Offen.,DE,3406745.1984.
    [56]Tanaka Y,Uryu T,Yaguehi M.Additives for cement mixtures,their manufacture,cement mixtures containing the additives,and process for improving the flowability of cement mixtures.Ger.Often.,DE4407499.1994.
    [57]Einfeldt L,Albrecht G,Kern A,et al.Use of water-soluble polysaccharide derivatives as dispersing agents for mineral binder suspensions.US20040103824A1.2004.
    [58]Simone Knaus,Birgit Bauer-Heim.Synthesis and properties of anionic cellulose ethers:influence of functional groups and molecular weight on flowability of concrete.Carbohydrate Polymers,2003,53:383-394.
    [59]Vieira M C,Klemm D,Einfeldt L,et al.Dispersing agents for cement based on modified polysaccharides.Cement and Concrete Research,2005,35(5):883-890.
    [60]刘伟区,罗广建.从棉绒纤维素制取混凝土外加剂(1).化学建材,1996,(2):73-75.
    [61]刘伟区,罗广建.从棉绒纤维素制取混凝土外加剂(2).化学建材,1996,(3):118-120.
    [62]龚福忠,程世贤,李成海.以甘蔗渣为原料制备水溶性分散剂的研究.广西化工.2001,30(2):6-8.
    [63]程发,侯桂丽,伊长青,等.磺化淀粉开发用作新型水泥减水剂的研究.精细化工,2006,23(7):711-716.
    [64]Dong-Fang Zhang,Ben-Zhi Ju,Shu-Fen Zhang,et al.Dispersing Mechanism of Carboxymethyl Starch as Water-Reducing Agent.Journal of Applied Polymer Science,2007,105:486-491.
    [65]Dong-Fang Zhang,Ben-Zhi Ju,Shu-Fen Zhang,et al.The study on the synthesis and action mechanism of starch succinate half ester as water-reducing agent with.super retarding performance.Carbohydrate Polymers,2007,70(4):363-368.
    [66]何曼君,陈维孝,董西侠.高分子物理(修订版).上海:复旦大学出版社.2000:152-184.
    [67]程镕时.粘度数据的外推和从一个浓度的溶液粘度计算特性粘数.高分子通讯,1960,(4):159-162.
    [68]Wurzburg O B.Starch derivatives and modification.In:Methods in Carbohydrate Chemistry,4th ed.:Whistler RL.Academic Press:New York.1964:286-288.
    [69]Yilmaz V T,Kindness A,Glasser F P.Determination of sulphonated naphthalene formaldehyde superplasticizer in cement:a new spectrofluorimetric method and assessment of the UV method.Cement and concrete research,1992,22(4):663-670.
    [70]Kazuhiro Yoshioka,Ei-ichi Tazawa,Kenji Kawai,et al.Adsorption characteristics of superplasticizers on cement component minerals.Cement and Concrete Research,2002,32(10):1507-1513.
    [71]Kazuo Yamada,Tomoo Takahashi,Shunsuke Hanehara,et al.Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer.Cement and Concrete Research,2000,30(2):197-207.
    [72]Asakura A.Influence of superplasticizer on fluidity of fresh cement paste with different clinker phase composition,Proceeding of the 9th international congress on the chemistry of cement,New Dehil,India,1992:570-576.
    [73]Cunningham J C.Adsorption characteristics of sulphonated melamine formaldehyde condensates by high performance size exclusion chromatography.Cement and Concrete Research,1989,19(6):919-926.
    [74]生活垃圾渗沥水化学需氧量(COD)的测定(重铬酸钾法).CJ/T 3018.12-93.
    [75]吴刚.材料结构表征及应用.北京:化学工业出版社.2002.
    [76]P Kappen,K Reihs,C Seidel,et al.Overlayer thickness determination by angular dependent X-ray photoelectron spectroscopy(ADXPS)of rough surfaces with a spherical topography.Surface Science,2000,465(1-2):40-50.
    [77]D.布里格斯著.曹立礼,邓宗武译.聚合物表面分析:X射线光电子谱(XPS)和静态次级离子质谱(SSIMS).北京:化学工业出版社.2001.
    [78]Battista O A,Howsmon J A,Sydney Coppick.Hydrocellulosc water flow number:relationship to fine structures of fibers,particularly fiber orientation.Industrial and engineering chemistry,1954,45(9):2107-2112.
    [79]Battista O A.Hydrolysis and Crystallization of Cellulose.Industrial and engineering chemistry,1950,42(3):502-507.
    [80]Battista O A,Sydney Coppick,Howsmon J A,et al.Level-Off Degree of Polymerization:relation to polyphase structure of cellulose fibers.Industrial and engineering chemistry,1956,48(2):333-335.
    [81]王宗德,范国荣,黄敏,等.杉木微晶纤维素的制备.江西农业大学学报(自然科学版),2003,25(4):591-593.
    [82]金咸穰.染整工艺试验.北京:纺织工业出版社.1987.
    [83]涂志雄.二次加碱法制备羧甲基纤维素钠盐.广东化工,1993,(2):34-337.
    [84]朱诚身.聚合物结构分析.北京:科学出版社.2004.
    [85]魏玉萍.纤维素基高分子表面活性剂的合成及性能表征.(博士学位论文).天津:天津大学.2005.
    [86]刑国秀.淀粉二元酸单酯的合成与应用研究.(博士学位论文).大连:大连理工大学博士学位论文.2007.
    [87]Clasen C,Kulieke W M.Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives.Progress of polymer science,2001,26(9):1839-1919.
    [88]Carmel Jolieoeur,Mare-Andre Simard.Chemical Admixture-Cement Interactions:Phenomenology and Physicochemical Concepts.Cement and Concrete Composites,1998,20(2-3):87-101.
    [89]魏秀军,崔宝林,韩建文.混凝土减水剂和泵送剂的临界掺量.沈阳建筑工程学院学报,1997,15(3):251-255.
    [90]孙振平,蒋正武,范建东,等.氨基磺酸盐高性能减水剂的合成及应用.硅酸盐学报,2005,33(7):864-870.
    [91]黄苏萍,肖奇,张清岑,等.嵌段型超分散剂在固/液界面的吸附机理.中南工业大学学报,2002,33(1):41-44.
    [92]李国希,邓姝皓,夏笑虹,等.聚乙二醇在Al_2O_3/水界面吸附行为的ESR研究.波谱学杂志,2000,17(6):495-498.
    [93]Pourchez J,Grosseau P,Guyonnet R,et al.HEC influence on cement hydration measured by conductometry.Cement and Concrete Research,2006,36(9):1777-1780.
    [94]Pourchez J,Peschard A,Grossean P,et al.HPMC and HEMC influence on cement hydration.Cement and Concrete Research,2006,36(2):288-294.
    [95]Singh N K,Mishra P C,Singh V K,et al.Effect of hydroxyethyl cellulose and oxalic acid on the properties of cement,Cement and Concrete Research,1997,33(9):1177-1184.
    [96]张冠伦.混凝土外加剂原理与应用.北京:中国建筑工业出版社出版.1989.
    [97]G.Kakali,E.Chniotakis,S.Tsivilis,E.Danassis.Differential Scanning Calorimetry-A Useful Tool for Prediction of the Reactivity of Cement Raw Meal.Journal of thermal analysis.1998,32:871-879.
    [98]Agarwal S K,Irshad Masood,Malhotra S K.Compatibility of superplasticizers with different cements.Construction and Building Materials,2000,(14):253-259.
    [99]Ramachandran V S.Application of differential thermal analysis in Cement Chemistry.New York:Chemical Publishing Co.Inc.1969.
    [100]马保国,张莉,张平均,等.蔗糖对水泥水化历程的影响.硅酸盐学报.2004,32(10):1285-1288.
    [101]马保国,许永和,董荣珍.糖类及其衍生物对硅酸盐水泥水化历程的影响.硅酸盐通报,2005,(4):45-48.
    [102]马保国,谭洪波,许永和,等.不同减水剂对水泥水化的作用机理研究.混凝土与水泥制品,2007,(5):6-8.
    [103]袁润章.胶凝材料学.武昌:武汉工业大学出版社.1989:87-88.
    [104]Leon Black,Krassimir Garbev,Gunter Beuchle,et al.X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling.Cement and Concrete Raseareh,2006,36(6):1023-1031.
    [105]彭家惠,瞿金东,张建新,等.石膏减水剂的吸附形态与分散稳定性研究.武汉理工大学学报,2003,25(11):25-28.
    [106]K.Yoshioka,E.Sakai,M.Daimon,A.Kitahara.Role of steric hindrance in the performance of superplasticizers for concrete.Journal of the American Ceramic Society,1997,80(10):2667-2671.
    [107]Yoskioka K,Tazawa E,Kawai K,et al.Adsorption characteristics of superplasticizers on cement component minerals.Cement and Concrete Research,2002,32(10):1507-1513.
    [108]Sspiratos N,Jolicoeur C.Trends in concrete chemical admixtures for the 21st century,6th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete,Nice,France,2000.
    [109]Flatt R J.Dispersion forces in cement suspensions.Cement and Concrete Research,2004,34(3):399-408.
    [110]Christopher M Neubaner,Ming Yang,Hamlin M.Jennings.Interparticle Potential and Sedimentation Behavior of Cement Suspensions:Effects of Admixtures.Advn Cem Bas Mat,1998,8:17-27.
    [111]Yang M,Neubauer C M,Jennings H M.Interparticle Potential and Sedimentation Behavior of Cement Suspensions:Review and Results from Paste.Advanced Cement Based Materials,1997,5(1):1-7.
    [112]H.Uchikawa,S.Hanchara,D.Sawaki.The role of steric repulsive force in the dispersion of cement particles in flesh paste with organic admixture.Cement and Concrete Research,1997,27(1):37-50.
    [113]Pedersen H G,Bergstrom L.Forces measured between zirconia surfaces and poly(acrylic acid)solutions,Journal of the American Ceramic Society,1999,82(5):1137-1145.
    [114]De Games P G.Polymers at an interface:a simplified view.Advances in Colloid and Interface Science,1987,27:189-209.
    [115]Chandra S,Bjomstrom J.Influence of cement and superplasticizers type and dosage on the fluidity of cement mortars-Part Ⅰ.Cement and Concrete Research,2002,32(10):1605-1611.
    [116]徐永模,彭杰,赵昕南.评价减水剂性能的新方法-砂浆坍落扩展度.硅酸盐学报,2002,30(增刊):124-130.
    [117]徐海军,文梓芸.Marsh筒法测定超塑化剂与水泥相容性研究.广东建材,2004,(4):19-22.
    [118]Larrard F,Bosc F,Catherine C,et al.The AFREM method for the mix design of high performacne concrete.Material structure,1997,30(8-9):439-446.
    [119]肖忠明,郭俊萍,席劲松,等.Marsh筒法和净浆流动度法用于水泥与减水剂适应性测试的比较.水泥,2006,(8):1-4.
    [120]吴笑梅,樊粤明,简运康.用Marsh筒法研究水泥与减水剂的适应性问题.水泥,2002,(12):12-14.
    [121]王立久,谭晓倩,曹明莉.结合分形理论的水泥絮凝研究.沈阳建筑大学学报,2007,23(1):82-84.
    [122]王圃,池年平.絮凝体分形体影响因素的研究.水处理技术,2006,32(9):19-22.
    [123]常颖,张金松.絮凝体分形维数投药控制研究.环境污染治理技术与设备,2006,7(4):46-49.
    [124]Da-Hong Li,Ganszarczyk J.Fractal geometry of particle aggregates generated in water and wastewater treatment processes.Environ Sci Technol,1989,23(11):1385-1389.
    [125]Jiang Q,Logan B E.Fractal dimensions of aggregates determined from stead-state size distributions.Environment Sci Techuol,1991,25:2031-2038.
    [126]Li D H,Ganszarczyk J J.Stroboscopic determination of settling velocity,size and porosity of activated sludge flocs.Water Research,1987,21(3):257-262.
    [127]Bushell G,Amal R.Measurment of fractal aggregates of polydisperse particles using small-angle light scattering.J Colloid Interface Sci,2000,221:186-194.
    [128]唐明,王涛.激光仪下矿渣粉颗粒群分形特征的快速评价.沈阳建筑工程学院学报:自然科学版,2003,19(3):200-202.
    [129]Tambo N,Watauabe Y.Physical characteristics of flocs-Ⅰ.The floc density function and aluminum floc.Water research,1979,13:419-429.
    [130]王立久,李振荣编著.建筑材料学.北京:中国水利水电出版社.2000.
    [131]王立久,曹明莉编著.建筑材料新技术.北京:中国建材工业出版社.2007.
    [132]T.C.Powers.水泥浆的物理性质.见:黄大能,沈威,等.新拌混凝土的结构和流变特征.北京:中国建筑工业出版社.1983:49-121.
    [133]马保国,董荣珍,张莉,等.硅酸盐水泥水化历程与初始结构形成的研究.武汉理工大学学报[J].2004,26(7):17-19.
    [134]Archie G E.The electrical resistivity log as an aid in determining some reservoir characteristics[J].Transaction of the American Institute of Mining Metallurgical and Petroleum Engineer.1942,146:54-62.
    [135]魏小胜,肖莲珍,李宗津.用电阻率法研究水泥水化过程.硅酸盐通报.2004,32(1):34-38.
    [136]孙振平,蒋正武.水泥含碱量对萘系高效减水剂作用效果的影响.混凝土,2002,(4):6-7.
    [137]JIANG Shiping,KIM Byung-Gi,AITCIN Pierre-Claude.Importance of adequate soluble alkali content to ensure cement/superplasticizer compatibility.Cement and Concrete Research.1999,29(1):71-78.
    [138]蒋建新,杨中开,朱莉伟,等.竹纤维结构及其性能研究.北京林业大学学报.2008,30(1):128-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700