环境侵蚀下水泥土的损伤破裂试验及其本构模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥土及其桩体被广泛应用于地基处理、基坑围护和公路堤坝等工程之中,起到了非常重要的作用。然而,水泥土的应用特点,使其经常用于地下水受到诸如:海水、生活污水等侵蚀环境污染的地下工程中,研究水泥土的力学性质,特别是侵蚀环境条件下力学性能试验,是环境岩土工程领域的一项基础性前沿课题,在环境侵蚀条件下探讨水泥土力学性能的演化,分析其损伤演化规律并建立相应损伤本构模型,具有重要的理论意义和工程实际意义。
     首先在实验室配置了各种化学溶液来模拟各种侵蚀环境,将水泥土试件在溶液中进行预定时间的侵蚀。利用土力学三轴系统、冻融循环系统和高精度数码像机等,成功完成了正常条件下及各种侵蚀环境下水泥土的单、三轴压缩破裂过程的对比试验,得到了不同环境条件下水泥土的环境侵蚀效应和破裂过程的数码图片以及荷载位移曲线。另外,利用中国科学院武汉岩土力学研究所提供的岩石细观力学实验系统等设备,进行了单轴细观破裂全过程实时观测试验,得到了水泥土破裂全过程的应力-应变、弹性模量、极限强度等曲线和相关试验数据,获取了破裂全过程的全场以及局部显微图像。
     根据试验得到的有关数据,分析了不同pH值、不同浓度、不同化学溶液以及冻融条件等侵蚀环境对水泥土的宏-细观力学特性的影响。基于Matlab平台,首次应用神经网络理论编制了相应辩识程序,建立了环境侵蚀条件下水泥土的神经网络本构模型,试验数据与模拟结果的比较一致,说明该模型在描述环境侵蚀条件下水泥土内在属性的变化具有较高的精度和良好的泛化能力。本研究结果进一步说明神经网络模型适合于描述多影响因素的非线性复杂因果规律,为研究材料本构特性提供了一条新的途径。
     其次,分析了水泥土受各种侵蚀环境作用的破裂特征、方式和损伤机理。环境侵蚀条件下水泥土单轴压缩破坏以脆性破坏为主,各种环境下的破裂特征和方式基本相同。水泥土的环境侵蚀主要是其各种矿物成分与侵蚀环境中的化学溶液发生了一系列物理-化学作用,导致水泥土微细观结构发生了损伤破坏,水泥土变得松散脆弱,随之力学性能发生变化。水泥土的冻融循环破坏主要是物理作用的结果。另外,应用损伤力学理论,考虑水泥土的初始密度、初始损伤以及孔隙侵
Cement-mixed soil and its piles are wildly used in ground treatment, earth-retaining structure, road-bed and so on. Playing important action in engineering, which were mentioned to. However, cement-mixed soil has characteristic task at underground, where groundwater might be corrosive by seawater, sewage of living and erosive environments. Research on various mechanical properties of cement-mixed soil, in particular under the condition of environmental erosion, is one of the basic and preceding subjects in environmental geotechnology currently. It is of theoretical and practical importance to discuss damage evolving process and mechanical property changes of cement-mixed soil in order to build up the corresponding constitutive model for environmental erosion.
    At first, some solutions were maked up in laboratories to simulate erosion environments. Thereafter, some specimens of cement-mixed soil are cured in the solutions until to schedule time. Reaching the special curing time, the uniaxial, triaxial compression experiments with environmental erosion are co nducted, and the meanwhile corresponding macroscopic processing photos and curves between load and displacement are obtained by high precision digital camera, soil mechanic triaxial instrument and freezing and thawing equipment. In addition, using Rock Meso-mechanical Instrument provided by Wuhan Institute of Rock and Soil Mechanics, China Academy of Sciences, part uniaxial compression meso-failure process and real time observation experiments are done under different environmental condition. Therefore, corresponding stress-strain curves, modulus of elasticity, ultimate strength and other testing results are obtained. And the meantime mesoscopic photos of cement-mixed soil are recorded during microscopic cracking under compression.
    According to experimental data, the influences of environmental erosion on mechanical properties of cement-mixed soil caused by different pH values, strength of
引文
[1] 刘传正.环境工程地质学导论[M].1994,北京:地质出版社.
    [2] 罗国煜,储同庆.关于两类环境问题的研究[J].工程地质学报,1995(4):19-24.
    [3] 覃祖淼,曲永新.城市深基坑开挖的环境效应及其控制的初步研究,第三届全国环境工程地质学术研讨会论文集[C].1995,兰州:甘肃民族出版社.
    [4] 王心敬.论人类工程活动与地质环境的相互作用及其环境效应[J].地质灾害与环境保护,1997,8(1):19-26.
    [5] 中国21世纪议程[M].1994,北京:中国环境科学出版社.
    [6] 王思敬,周平根.环境地质学的现状与发展方向展望[J].工程地质学报,1995,3(4):12-18.
    [7] News Journal of International Society for Rock Mechanics [J]. 1997, 24(2): 41-42.
    [8] Miller DG, Manson PW. Long-time of concretes and mortars exposed to sulfate waters [J]. Technology Bull, University of Minnesota, Agricultural Experiment Station, 1951, 184.
    [9] 莫斯克文BM.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社,1988.
    [10] 刘西拉.重大土木与水利工程安全性及耐久性的基础研究[J].土木工程学报,2001,34(6):1-7.
    [11] 清华大学土木工程系.国家基础性研究重大项目(攀登计划)《重大土木与水利工程安全性和耐久性的基础研究》“现有混凝土结构耐久性评估”年度研究报告,1996.
    [12] 同济大学结构工程学院.国家基础性研究重大项目(攀登计划)《重大土木与水利工程安全性和耐久性的基础研究》“钢筋锈蚀预测模型”年度研究报告,1997.
    [13] 清华大学土木工程系,西安建筑科技大学建筑工程系.国家基础性研究重大项目(攀登计划B)《重大土木与水利工程安全性和耐久性的基础研究》“现有混凝土结构耐久性的评估”年度研究报告,1998.
    [14] 杨荣兴,周殉若,张荣华.水-岩反应实验研究现状与进展[J].现代地质,1995,9(4):419-422.
    [15] Bischoff J L, Dickson F W. Seawater-basalt interaction at 200℃ and 500 bars:??Implication for origin of sea floor heavy-metal deposits and regulation chemistry. Earth Planet Sci. Lett, 1975,25:385-397.
    [16] Hajash A, Archer P. An experimental seawater/basalt interaction: effects of cooling. Contrib Miner Petro,1980.75:1-13.
    [17] Mottle M J, Holland (?) D, Corr R F. Chemical exchange during hydro(?)ermal alteration of basalt by seawater- II. Geochim Cosmochim Acta, 1979, 43:869-884.
    [18| Seyfried W E, Bischoff J L. Low temperature basalt by seawater: An experimental study at 70℃ and 150℃. Geochim Cosmochim Acta, 1979,43:1937-1947.
    [19] Dibble .Jr, W E, Potter J M. Non-epuilibrium water-rock interactions[C]. 57~(th) Annunal Falt Technical Conference and Exhibition of the Society of petroleum engineer of AIME, Abstract. Washing D C: AIMPE,1982.
    [20] Dove P M, Crerar D A. Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor[J]. Geochim Cosmochim cta,1990,54:955-969.
    [21] Knauss K G,Wolery T J. Muscovite dissolution kinetics as a function of Ph and time at 70℃[J]. Geochim Cosnmochim Acta,1989,53:1493~1502.
    [22] Chou L,Wollast R. Steady-state kinetics and dissolution mechanisms of albite[J]. American Journal of Science.l985,285:963~993.
    [23] Hellmann R.The albite-water system: Part I. The kinetics of dissolution as a function of ph at 100, 200, and 30℃[J]. Geochim Cosnmochim Acta, 1994,58:595-611.
    [24] Luttge A, Metz P. Mechanism and kinetics of the reaction: 1 Dolomite +2Quartz=lDiopside+2CO_2investigated by experiments [J]. Canadian Mineralogist. 1991,29:803-821.
    [25] Roychoudhury A N, Wang Y, Cappellen P V. Flow-Through Reactors: kinetics of biogeochemical reaction in sediments [J]. EOS, Transactions American Geological Union, 1994,19:139.
    [26] Lupkowski M, Pabalan R T. Molecular dynamics simulation of Uranyl sorption on mineral surface [J]. EOS, Transactions, American Geological Union, 1994,19:138.
    [27] Rustad J R, Sherman D M. surface hydrolysis of ferric oxyhydroxides [J]. EOS, Transactions American Geological Union, 1994,19:138.
    [28] Atkinson B K, Meredith P G. Stress corrosion cracking of quartz: a note on the influence of chemical environment [J]. Tectonophysics, 1981, 77:T1~11.
    [29] L. J. Feucht and John M. Logan, Effects of chemically active solutions on shearing behavior of a sandstone[J]. Tectonophysics 1990, 175: 159-176.
    [30] Logan, J. M. and Blackwell, M. I., The influence of chemically active fluids on the frictional behavior of sandstones[J]. EOS, Trans. Am. Geophys. Union, 1983, 64:835.
    [31] Dieterich, J. H. and Conrad, G., Effects of humidity on time and velocity dependent friction in rocks [J]. Geophys. Res., 1984, 89:4196-4202.
    [32] J. Dunning, B. Douglas, M. Miller and S. McDonald. The role of the chemical cnvironmcnt in frictional deformation: stress corrosion cracking and comminution[J]. Pageoph. 1994, 143(1/2/3): 151-178.
    [33] Karfakis MG, Askram M. Effects of chemical solutions on rock fracturing[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1993, 37(7):1253-1259.
    [34] Lajtai E Z, Schmidtke R H, Bielus L P. The effect of on the time-dependent deformation and fracture of a granite [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1987, 24(4):247-255.
    [35] 陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335-342.
    [36] 孙钧,胡玉银.三峡工程饱水花岗岩抗拉强度时效特性研究[J],同济大学学报,1997,25(2):127-134.
    [37] 吴海青.孔隙水对岩石变形特性的影响及其工程意义,第二次全国岩石力学与工程学术会议论文集[C].知识出版社,1989.
    [38] 朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学,2000,21(1):64-67.
    [39] 谭卓英等.酸化环境下岩石强度弱化效应的实验模拟研究,第六次全国岩石力学与工程学术会议论文集[C].武汉,2000.
    [40] 谭卓英,刘文静,闭历平,梁祖荣,邱海涛.岩石强度损伤及其环境效应实验模拟研究[J].中国矿业,2001,10(4):49-53.
    [41] 冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性——第一部分:试验研究[J].岩石力学与工程学报,2000,19(4):403-407.
    [42] 王咏嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性——第二部分:时间分形分析[J].岩石力学与工程学报,2000,19(5):551-556.
    [43] 汤连生,王思敬.水-岩土化学作用与地质灾害防治[J].中国地质灾害与防治??学报,1999,10(3):61-70.
    [44] 汤连生,王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展,1999,14(5):433-439.
    [45] 汤连生.水-岩化学作用的环境效应[J].中山大学学报(自然科学版),2001,40(5):1(?)-107.
    [46] Xia-Ting Feng, Si-li Chen, Shao-jun Li. Effects of water chemistry on micro-cracking and compressive strength of granite[J]. Int. J. Rock Mech. Min. Sci. 2001; 38(4): 557-568.
    [47] 陈四利,冯夏庭,李邵军.岩石单轴抗压强度与破裂特征的化学腐蚀效应[J].岩石力学与工程学报,2003,22(4):547-551.
    [48] 陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J],岩土力学,2002,23(3):284-287.
    [49] 陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴压缩力学效应的试验[J].东北大学学报,2003,23(3):292-295.
    [50] Fisher, K. P. Properties of an artificially cemented-clay[J]. Canadian Geot, 1978, 15:25-37.
    [51] Kawasaki, T. Deep mixing using cement hardening agent[C]. Proc. 10thICSMFE, 1981, 37(2): 105-123.
    [52] 郝巨涛.水泥土材料力学特性的探讨[J].岩土工程学报,1991,13(3):53-59.
    [53] 王星华.粘土固化浆液固结过程的SEM研究[J].岩土工程学报,1999,21(1):34-40.
    [54] 陈善民,王立忠等.水泥土动力特性室内试验及复合地基抗震特性分析[J].浙江大学学报,2000,34(4):398-403.
    [55] 周国钧等.深层搅拌法加固软粘土技术[J],岩土工程学报,1981,3(4):53-65.
    [56] 周建民等.深层搅拌桩复合地基的有限元分析[J].岩土力学,1997,18(2):44-50.
    [57] 郑刚,姜忻良.水泥搅拌桩复合地基承载力研究[J].岩土力学,1999,20(3):46-50.
    [58] 宫必宁,李淞泉.软土地基水泥深层搅拌加固土物理力学特性研究[J].河海大学学报,2000,3:101-105.
    [59] Masake Kitazume, Centrifuge model on failure envelope of column type deep mixing method improved ground[J]. Soils and Foundations, 2000,4(40): 43-55.
    [60] 梁仁旺,于宁.加筋水泥土梁力学性能的试验研究[J],岩土力学,2000,??21(3):267-270
    [61] 凌光容,安海玉等.劲性搅拌桩的试验研究[J].建筑结构学报,2001,22(2):92-96.
    [62] 童小东,龚晓南,蒋永生.水泥土的弹塑性损伤试验研究[J].土木工程学报,2002,35(4):82-85.
    [63] 王立峰,朱向荣.水泥土的损伤模型的试验研究[J].科技通报,2003,19(2):136-139.
    [64] 裴向军,杨国春.防治海水对水泥土侵蚀的试验研究[J],长春工程学院学报,2000,1(1):12-14.
    [65] 谷秋芳,潘盛山.地下水影响粉喷桩强度的试验研究[J],北华大学学报,2001,2(4):361-363.
    [66] Kachanov, M. L., A microcrack model of rock inelasticity part Ⅰ: friction sliding on microcracks, Mechanics of materials, 1982, 23(1): 19-27.
    [67] Rabotnov Y N., On the equations of state tbr creep, Progress in Applied Mechanics, 1963, 307-315.
    [68] Janson J and Huit J., Fracture mechanics and damage mechanics, a combined approach. J. de Mech. Appl., 1977, 1(1):59-64.
    [69] 余天庆,宁国均.损伤理论及其在混凝土结构研究中的应用[J].桥梁建设,1986,No.2/3 0.
    [70] Tirosh J, Miller. A, Damage evolution and rupture in creeping of porous materials[J]. Int. J. Solids structures. 1988, 24(6).
    [71] Li. Z. X, Qian J. C, Creep damage analysis and its application to nonlinear creep of reinforced concrete beam. Eng. Frac. Mech, 1989, 34(4).
    [72] Yu. T. Q etal. An orthotropic of damage model for concrete at different temperatures, Eng, Frac Mech, 1989, 32(5).
    [73] 黄古智,徐秉业主编,固体力学发展趋势[M].北京理工大学出版社,1995.
    [74] [法]J.Lemaitre著 倪金刚,陶春虎译.损伤力学教程[M].科学出版社,1996.
    [75] Krajcinovic. D. Damage mechanics [M]. Mechanics of Material 1989.
    [76] Loland, K. E., Continuous damage model for load-response estimation of concrete [J]. Cement and concrete research, 1980, 10:395-402.
    [77] Mazars J. Application de la mecanique de lendnnagemment an comportment nonlinear de structure, These de doctorat detat Univ. Paris, ENSET, Mai 1984.
    [78] 余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1985(2):??140-160.
    [79] 钱济成,周建方.混凝土的两种损伤模型及应用[J].河海大学学报,1989(3):40—117.
    [80] 何明,符晓陵,徐道远.混凝土的损伤模型[J].福州大学学报,1994(4):109-114.
    [81] Supar(?)no F, Sidoroff F An isotropie damage modeling for brittle elastic materials. Symposium of Franc-poland, 1984.
    [82] Krajcinovic D. Constitutive equation for damaging platerials, J. Appl Mech 1983(50): 355-360.
    [83] 李兆霞,Zmroz.应变率相关的粘塑性损伤本构模型[C].岩石、混凝土断裂和强度学术会议论文集,国防科技大学出版社,1993.
    [84] 李兆霞,脆性材料损伤应变率效应及其本构模拟[J].固体力学学报,1998,19(4):110-118.
    [85] Lemaitre J. How to use damage mechanic. Nuclear Engineering and Design, 1984, 80(2): 233-245.
    [86] Chaboche. J. L. Continuum damage mechanics. Part Ⅰ-General concepts. Journal of Applied Mechanics, Trac of ASME. 1988, 55: 59-64.
    [87] 程光旭等.一种基于材料延性耗散模型的疲劳损伤研究方法[J].力学学报,1993,25(4):496-499.
    [88] 谢和平,鞠杨等.经典损伤定义中的强性模量法探讨[J].力学与实践,1997(2):1-5.
    [89] 张盛东.混凝土损伤本构关系的研究[D].哈尔滨建筑大学博士论文,1997.
    [90] 鞠杨.钢纤维(增强)混凝土疲劳损伤行为及其累积损伤理论和疲劳寿命估算方法研究[D].哈尔滨建筑大学博士论文,1995.
    [91] 谢里阳等.两级载荷作用下疲劳损伤状态的试验研究[J].机械强度,1994(3):52-54.
    [92] Del grands, Nancyk Dual-band infrared imaging to detect corrosion damage within airframed and concrete Strictures. Proceedings of SPIE-The international society for optical Engineering 1994, 224 (5): 202-209.
    [93] Hamad, BiW.s Evaluation and repair of fire damage reinforced concrete structures in beirut Journal of Applied Fire Science V6112 1997, 127-139.
    [94] J.WJU, and YZHANG, A thermo-mechanical model for airfield concrete pavement under transient high temperature loading. International journal of damage??mechanics. 1998, 17(1): 24-45.
    [95] 周苏波.混凝土损伤定量分析[D].河海大学,硕士论文,1998.
    [96] Dougill J W, Lau J C, Burt N J. Mechanics in Eng[J]. ASCE.EDM. 1976, 333-355.
    [97] Dragon A and Mroz Z. A Continuum Model for Plastic Behaviour of Rock and Concrete[J]. Int. Engineering Sciences, 1979, 17: 121-137.
    [98] Krajcinovic D. Creep of structures-A continuous damage mechanics approach[J]. J. of Structure Mechanics, 1983, 11 (1): 1-11.
    [99] 黎振兹.连续损伤力学的概念,方法及其应用[J].岩石混凝土断裂与强度,1984,(1):50-63.
    [100] 谢和平等.岩石的连续损伤力学模型探讨[J].煤炭学报,1988,(1):33-42.
    [101] 谢和平.岩石材料的局部损伤拉破坏[J].岩石力学与工程学报,1988,7(2):147-154.
    [102] 唐春安.岩石损伤参量与本构关系的统计理论及实验确定[J].岩石混凝土断裂与强度,1988,(1):80-83.
    [103] 卢应发,葛修润.岩石损伤本构理论[J].岩土力学,1990,11(2):67-72.
    [104] 王金龙等.脆性岩石的损伤与裂隙扩展[J].岩土力学,1990,11(3):1-8.
    [105] 叶黔元.岩石的内时损伤本构模型[C].第四届全国岩土力学数值分析与解析方法讨论会论文集,武汉测绘科技大学出版社,1991,85-90.
    [106] 李庆斌等.岩石三轴损伤本构模型[C].中国青年学者岩土工程力学及其应用讨论会论文集,1994,149-155.
    [107] 殷有泉.岩石的塑性、损伤及其本构表述[J].地质科学,1995,30(1):63-70.
    [108] 周光泉等,岩石连续损伤本构方程[J].岩石力学与工程学报,1995,14(3):229-235.
    [109] 李广平.类岩石材料微裂纹损伤模型分析[J].岩石力学与工程学报,1995,14(2):107-117.
    [110] 吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1996,15(1):55-61.
    [111] 杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报,1999,18(1):23-27.
    [112] 刘立等.复合岩石损伤本构方程与实验[J].重庆大学学报(自然科学版),2000,23(3):57-60.
    [113] 朱建明等.基于三轴压缩试验的破裂岩损伤演化方程的建立[J].工程地质学??报,2000,8(2):175-179.
    [114] 秦跃平.岩石损伤力学模型及其本构方程的探讨[J].岩石力学与工程学报,2001,20(4):560-562.
    [115] 周维垣等.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报,1988,20(5):54-57.
    [116] 陶振宇等.节理岩体损伤模型及验证[J].水利学报,1991,10(6):52-58.
    [117] 朱维申等.节理岩体等效连续模型与工程应用[J].岩土工程学报,1992,14(2):1-11.
    [118] 凌建明等.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展,1994,24(2):257-264.
    [119] 袁建新.岩体损伤问题[J].岩土力学,1993,14(1):1-13.
    [120] 李术才.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J].岩石力学与工程学报,1999,18(2):142-146.
    [121] 沈珠江、章为民.损伤力学在土力学中应用[C].第三届全国岩土工程数值分析解析方法论文集,1988.
    [122] 孙红,赵锡宏.软土的弹塑性各向异性损伤分析[J].岩土力学,1999,20(3):7-12.
    [123] 孙红.软土的各向异性损伤模型及其在土力学中的应用[D].同济大学博士学位论文,1999.
    [124] 赵锡宏,孙红,损伤土力学[M].上海:同济大学出版社,2002.5.
    [125] 何思明.双标量描述的土的损伤模型及其应用[J].岩土力学,2002(3):1-13.
    [126] Vatsala A, Nova R, Srinivasa Murthy BR. Elasto-plastic model for cemented soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001 (8): 679~687.
    [127] Rolling R S. Sulfate attach on cement-stabilized sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 121(5): 364~372
    [128] Masaki Kitazume, Kimihiko Okano and Shogo Miyajima. "Centrifuge model tests on failure envelope of column type deep mixing method improved ground". Soils And Foundations, 2000 (1): 43~55.
    [129] Coop MR, Atkinson JH. The mechanics of cemented carbonate sand [J]. Geotechnique, 1993, 43(1): 53~67.
    [130] 张土乔.水泥土的应力应变关系及搅拌桩破坏特性研究[D].杭州:浙江大??学,1992.
    [131] Budiansky B., Micromechanics, Symposium on Advances and Trends in Structure and Solid Mechanics, 1982.
    [132] 杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1-9.
    [133] 许江等.对单轴应力壮态下砂岩微观断裂发展全过程的实验研究[J].力学与实践,1986(4):16-20.
    [134] 谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990,152~166.
    [135] 李长春等.岩石类脆性材料的细观损伤本构关系[J].岩土力学,1989,10(2):55-68.
    [136] 凌建明.节理岩体损伤力学及时效损伤特性的研究[D].上海:同济大学,1992,55~59.
    [137] 凌建明等.非贯通裂隙岩体力学特性的损伤力学分析[J].岩石力学与工程学报,1992,11(4):373-383.
    [138] 凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):304-312.
    [139] 赵永红等.岩石微破裂发育的扫描电镜即时观测研究[J].岩石力学与工程学报,1992,11(3):284-294.
    [140] 赵永红等.岩石细观破裂的实验观测研究及其对认识地震活动性的启示[J].地球物理学报,1995,38(5):627-635.
    [141] 孙钧,凌建明.三峡船闸高边坡岩体的细观损伤及长期稳定性研究[J].岩石力学与工程学报,1997,16(1):1-7.
    [142] 张梅英等.单轴压缩过程中岩石变形破坏机理[J].岩石力学与工程学报,1998,17(1):1-8.
    [143] 尚嘉兰等.岩石细观损伤破坏的观测研究[J].实验力学,1999,14(3):373-383.
    [144] 肖洪天等.脆性岩石变形与破坏的细观力学模型研究,岩石力学与工程学报,2001,20(2)151-155.
    [145] 邵鹏等.脆性岩石细观损伤分析与临界破坏行为[J].煤炭科学技术,2001,29(7):31—33.
    [146] 尹光志等.岩石细观断裂过程的分叉与混沌特征[J].重庆大学学报(自然科学版),2000(2):56-59.[147] 李浩等.岩石在复杂荷载下的细观损伤模型[J].岩土力学,2001,22(2):159-162.
    [148] 周维垣,剡公瑞.岩石、混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计,1997,13(1):1-9.
    [149] 剡公瑞,周维垣,杨若琼.岩石混凝土粪材料细观损伤流变断裂模型及其工程应用[J].水利学报,1997,(10):33-38.
    [150] Kaplan, M.F. Crack propagation and the fracture of concrete [J]. ACI Journal, 1961 (11): 591~610.
    [151] 余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [152] 董聪,杨庆雄.细观损伤力学新进展[J].强度与环境,1993,4:1~10.
    [153] 杨卫.细观力学和细观损伤力学[J].力学进展,1992,25(1):1~9.
    [154] Bazant, Z,P. Tabbara,M,R. Random particle models for fracture of aggregate or fiber composites[J]. Journal of Engineering Mechanics, ASCE, 1990, 116(8): 1686~1705.
    [155] Mohamed AR, Hansen W. Micro mechanical modeling of concrete response under static loading-Partl: Model development and validation[J]. ACI Materials Journal, 1999 (2): 196~203.
    [156] 唐春安,朱万成.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2003.
    [157] 朱万成,黄明利,唐春安.混凝土试件裂纹扩展及破坏过程的计算机模拟[J].辽宁工程技术大学学报(自然科学版),2000,19(3):271~274.
    [158] 朱万成,唐春安,杨天鸿,梁正召.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24~29.
    [159] Ghaboussi J, Garrett Jr Jh and Wu X. Material modeling with neural networks. Proceedings of the international conference on numerical methods in engineering: Theory and applications, Swansea, U.K, 1990: 701-717.
    [160] Ghaboussi J, Garrett Jr Jh and Wu X. Knowledge-based modeling of material behavior with neural networks. Journal of engineering mechanics division, ASCE, 117(1), 1991: 132-153.
    [161] Wu X and Ghaboussi J, Modeling unloading mechanism and cyclic behavior of concrete with adaptive neural networks[C]. Proceedings, Second Asian-Pacific conference on computational mechanics, Sydney, Australia, 1993.
    [162] Ghaboussi J, Lade, P V, Sidarta, D E. Neural networks based modeling in??Geomechanics, M organtown, W V. 1994.
    [163] Ghaboussi J, Pecknold D A, Haj-Ali J A. Autoprogressive training of neural networks constitutive models[J]. International journal for numerical methods in engineering, 1998, 42(2): 105-127.
    [164] Ghaboussi J, Sidarta, D E. New nested adaptive neural networks(NANN) for constitutive modeling[J]. Computers and Geotechnics, 1998, 22(1): 29~52.
    [165] Penumadu D, Ronda Zhao. Triaxial compression behavior of sand and gravel using artificial neural networks(ANN) [J]. Computers and Geotechnics, 1999, 24: 207~230.
    [166] Ellis G W, Yao C, Zhao Rand, Penumadu D. Stress-strain modeling of sands using artificial neural networks[J]. Journal of Geotechnical Engineering, ASCE, 121 (5), 1995: 429~435.
    [167] Pernot S, Lamarque C H. Application of neural networks to the modeling of some constitutive laws [J]. Neural networks, 1999, 12: 371~392.
    [168] 逯静洲,林皋.人工神经网络技术在混凝土本构模型中的应用[J].土木工程学报,2003,36(4):38~44.
    [169] 韩敏,齐东海,王立久.神经网络理论在土木及水利工程中的应用展望[J].系统工程应用研究,1999,33(2):28—31.
    [170] 冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [171] 李继良.人工神经网络本构模型及岩体变形特征的研究与应用[D].北京:北京科技大学资源工程学院,1999.
    [172] 宁宝宽,陈四利,刘斌.环境侵蚀下水泥土的力学效应试验研究[J].岩土力学,2005(4):600-603.
    [173] 宁宝宽,陈四利,刘斌.水泥土的环境侵蚀效应与破裂过程分析[J].岩石土力学与工程学报,2005(10):1778-1782.
    [174] 宁宝宽,陈四利,刘斌.环境侵蚀下水泥土力学特性的时间效应分析[J].水文地质工程地质,2005,(2):82-86.
    [175] 宁宝宽,陈四利,刘斌.冻融循环对水泥土力学性质影响的研究[J].低温建筑技术,2004,(5):10-12.
    [176] 黄新,杨晓刚,胡同安.低温对水泥加固体强度影响的研究[J].工业建筑,1994,(9):13-18.
    [177] 张金山,薛敏,张学峰.水泥土力学性能和耐久性能简介与分析[J].包头钢??铁学院学报,1997(3):225-229.
    [178] 葛修润,李延芥,张梅英,刘继光.适用于岩石力学细观实验研究的加载仪[J].岩土力学,2000,21(3):289-293.
    [179] 陈四利.化学腐蚀下岩石细观损伤机理及其本构模型[D].沈阳:东北大学资士学院,2003.7.
    [180] Grady D E, Kipp M E, Continuum modeling of explosive fracture in shale[J]. Int. J. Rock Mech. Min. Sci., 1980, 17: 147~157.
    [181] Bellion G, Bernascoin G, In creep of engineering[J]. Material & Structure, 1978, 8(3): 54~65.
    [182] 宁宝宽,陈四利,刘斌.水泥土搅拌桩的加固机理及其应用[J].西部探矿工程,2005(6):26-28.
    [183] 宁宝宽,刘斌,陈四利.环境侵蚀对水泥土桩承载力影响的试验及分析[J].东北大学学报,2005(1):95-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700