坡面径流水动力学特性及挟沙机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面径流水动力学特性和挟沙机理研究是目前土壤侵蚀的研究热点也是薄弱环节,虽有不少研究成果面世,但由于流动型态的特殊性,使得阻力规律、流态判定、输沙动力学机理等方面研究尚存疑颇多,本文通过不同粗糙度定床阻力试验、径流小区模拟降雨试验和水槽冲刷试验相结合的方法,探讨了坡面水流增阻机理,得到了流态判别新判数,并对水流强度指标进行了归纳总结,提出了挟沙能力统一表达式,最后,基于粒子群优化算法,推导出了坡面水流挟沙能力计算公式,从而为土壤侵蚀预报模型提供有益参考,主要取得的创新性成果有:
     (1)通过理论推导和定床阻力试验相结合的方法,揭示了坡面水流水动力学特性。坡面水流平均流速、平均水深、弗如德数和阻力系数均与单宽流量、坡度、粗糙度呈幂函数形式变化,在此基础上,给出各水力要素的经验计算公式。由此表明,各水力要素之间的关系可围绕流态指数m进行分析和探讨。本试验验条件下,流态指数m在0.317~0.418之间变化,并随着床面粗糙度的增加而增大;流速修正系数在0.2-0.75之间变化,同时随雷诺数和床面粗糙度的增加而增大,而随坡度的增加逐渐减小,这表明坡面流垂线流速分布与明渠水流垂线流速分布不同。验证和探讨了坡面水流“增阻”现象,并初步阐明增阻的本质。坡面水流阻力与雷诺数的呈反比关系,相同雷诺数条件下,阻力系数比明渠层流阻力系数要大,且随床面粗糙度的增加而增大。关于增阻的原因主要有:一方面坡面薄层水流的绕流作用,在床面突起物后形成尾涡,造成压差阻力,另一方面与自由表面失稳后形成的附加阻力有关。
     (2)揭示了坡面滚波流演化规律,并得到了自由表面失稳的临界水力条件。滚波波速与单宽流量和韦伯数均成幂函数形式变化,当韦伯数小于1.0时,波速增幅较大;当韦伯数大于1.0时,韦伯数对波速的影响逐渐弱,而与昂色格数呈线性关系。波长沿流程长度的增加近似呈线性增加,特定断面波长与单宽流量和韦伯数的关系均呈单驼峰形状变化;而与试验坡度成良好的线性关系;层流失稳区临界弗汝德数在0.5到0.7之间变化,临界昂色格数在3.0×10~(-3)与3.9×10~(-3)之间变化,而紊流区失稳区临界弗汝德数在1.59到2.2之间变化。
     (3)提出了坡面水流流态判别新方法。根据滚波消退临界条件,给出了新的流态判数——粘深比,该参数综合表征了惯性力、粘滞力和重力三者的对比关系,同时也反应了无量纲参数弗如德数和雷诺数的对比关系。当粘深比δ/h大于临界值0.12时,水流处于层流失稳区(即滚波流区);当δ/h小于临界值0.12时,水流处于紊流区。“滚波掀沙,水流输沙”成为坡面水流输沙的本质所在。
     (4)阐明了降雨条件下沙黄土坡面薄层水流的水动力学特性。当雨强在1.0~2.33mm/min、坡度在6-21°之间变化时,沙黄土坡面水流粘性底层厚度δ在0.25~0.45mm之间,粘深比ξ=δ/h大约在0.95~0.30左右,水流处于层流失稳区。坡面形态处于低能态区和过渡区。随着水流强度增加,坡面形态由沙纹向动平床的过渡,当地面坡度较缓时,床面出现沙纹现象,宏观上多呈缓流,反之,地面坡度陡时,坡面由沙纹和沙垄向动平床过渡,宏观上多呈急流,并给出了考虑绕流影响的阻力系数的计算通式。
     (5)明确了降雨条件下沙黄土坡面和无粘性沙质床面各水流强度指标与输沙强度的优劣关系,并给出了试验条件下坡面水流挟沙能力计算公式。两种试验条件下,坡面水流输沙强度与水流功率的关系均最好。对于粘性沙,平均流速类指标相对较好,而对于无粘性沙,平均流速指标不宜使用。在此基础上,对各水流强度指标进行分析和总结,给出了以流速、坡度和水深三者结合的统一水流强度参数,得到了坡面挟沙能力的通式,最后采用改进粒子群优化算法,推导出本试验条件下,坡面水流挟沙能力计算新公式,从误差分析表明,模拟计算值与实测值比较接近。
Research on hydrodynamic characteristics of slope surface flow and mechanisms of sediment transport by the surface flow is not only a hot spot, but also a weak aspect in the area of soil erosion. There are some important problems which should be addressed in the resistance law, flow regime discrimination, and the dynamics of sediment transport because of the particularity of slope surface flow, though a great many research achievements have been reached. By the flume experiment of fixed bed resistance with different sizes of roughness under simulated rainfall, the mechanisms of increased resistance of surface flow are discussed and a new method for flow regime discrimination is found. Meanwhile, the indexes of surface flow strength are summarized and a general expression of sediment transport capacity is given. Finally, a formula for calculating sediment transport capacity by surface flow is presented based on particle swarm optimization. The work can provide a reference to the construction of soil erosion prediction model. The main results are as follows:
     (1) Hydrodynamic characteristics of surface flow are revealed through theoretical derivation combined with the experiment of fixed bed resistance. All of the average velocity, average depth, Froude number, and resistance coefficient of surface flow have a power function relation with unit width discharge, slope, and roughness. Accordingly, an empirical formula for calculating hydraulic parameters is given. The result indicates that the relationship among the hydraulic parameters can be analyzed based on flow regime index, m, which varies from 0.317 to 0.418 and increases with increased bed roughness under the experimental condition. The flow regime index may increase with increased bed roughness. Correction coefficient of flow velocity ranges from 0.2 to 0.75 and it increases with increased bed roughness and increased Reynolds number, but decrease with increased slope. This indicates that the vertical velocity distribution of surface flow is different from that of open channel flow.
     The phenomena of increased resistance is proved and discussed and the essence of increased resistance is elucidated. The resistance of surface flow has a reverse relation with Reynolds number. With the same Reynolds number, the resistance coefficient of surface flow is greater than that of laminar flow in open channel and increases with increased bed roughness. One reason for the increased resistance is the pressure difference resistance caused by trailing vortex of obstacles under the detouring action of surface shallow flow. Another is the increased resistance caused by the instability of free surface.
     (2) The evolvement of rolling wave in surface flow is revealed and the critical condition for the instability of free surface is found. The velocity of rolling wave has a power function relation with unit width discharge and Weber number. With the Weber number less than 1.0, the velocity of rolling wave increases greatly. When Weber number is greater than 1.0, its influence on the velocity decays gradually and there is a linear relationship between the velocity and Onsager number. The relationship between wave length and flow path length is approximately linear. The wave length in special section is changed with unit width discharge and Weber number in a form of single peak, but has a good linear relation with slope. In the unstable region of laminar flow, the critical Froude number ranges from 0.5 to 0.7 and the critical Onsager number ranges from 3.0×10-3 to 3.9×10-3, while in the turbulence flow, the critical Froude number ranges from 1.59 to 2.2.
     (3) A new method for the discrimination of surface flow regime is put forward. The new discrimination is given as the ratio of viscous sublayer depth to its thickness according to the critical condition of rolling wave recession. The ratio indicates not only the contrastive relation of inertial force, fluid viscosity force, and gravitational force, but also the contrastive relation of Froude number and Reynolds number. Surface flow is in the unstable region of laminar flow (waving flow) when the ratio is greater than 0.12 and is in turbulence flow region when the ratio is less than 0.12. The essence of sediment transport by surface flow is the“lifting by the rolling wave and sediment transporting by the flow”.
     (4) Hydrodynamic characteristics of slope shallow flow on loess sandy slope under simulated rainfall are clarified. When simulated rainfall intensity is between 1.0 and 2.33 mm/min and slope is between 6°and 21°, the thickness of viscous sublayer ranges from 0.25 to 0.45 mm, the ratio of viscous sublayer depth and its thickness ranges from 0.95 to 0.30, and surface flow is in the unstable region of laminar flow. Slop shape is in lower energy status and transition status. With flow strength increasing, slope shape is changed from sand waves to calm bed. Surface flow on steep slope is the subcritical flow as the bed appears as sand waves. On steep slope, contrariwise, it is basically the torrent flow as the bed is shifted from sand waves and sand dunes to calm bed. A formula for calculating resistance coefficient incorporating the influences of circum flow, namely transition from sand waves to calm bed, is given.
     (5) The relationships between flow strength indexes and sediment transport strength on loess sandy slope and incohesive sandy bed under simulated rainfall are clarified and a formula for calculating sediment transport capacity on slope under the experimental condition is given. There is a good relationship between sediment transport strength and flow power under the two experimental conditions. The averaged velocity index is relatively better for cohesive sand and however, it may not be used for incohesive sand. Based on the understanding, a combined parameter of flow strength incorporating flow velocity, slope, and flow depth is determined and a general expression of sediment transport capacity is presented, after analyzing the flow strength indexes. Finally, a formula for calculating sediment transport capacity under the specific experimental condition is found by using the improved particle swarm optimization algorithm. Error analysis shows that the predicted values are close to the measured data.
引文
蔡强国.1995.小流域侵蚀产流过程模型.第二届全国泥沙基本理论研究学术讨论会论文集.北京:中国水利水电出版社:233-238
    曹如轩. 1975.高含沙水流挟沙力探讨.黄河泥沙研究报告选编第二集.太原:249-258
    曹银真.1987.土壤侵蚀过程中的地貌临界.中国水土保持. (10):30-33
    陈宝林.1989.最优化理论与算法.北京:清华大学出版社
    陈椿庭.1995.关于明渠水流的六区流态.人民长江.26(3):43-46
    陈国祥.1995.土壤侵蚀与流域产沙的物理过程及预报模拟.全国泥沙基本理论研究学术讨论会会议论文集,北京:中国水利水电出版社.214-249
    陈渭南.1988.从地貌条件预测土壤侵蚀的研究.人民黄河.55(3):59-61
    陈彦平.2009.小浮标测流系数试验研究.水文.29(2):71-73
    邓安军,郭庆超,陈建国.2007.挟沙水流综合糙率系数的研究.(5):24-29
    邓建中,刘之行.2004.计算方法(第2版).西安:西安交通大学出版社
    丁四中,段日强,姜胜.2008.下降液膜孤波分析,原子能科学技术.42(6):525-529
    丁文峰,李占斌,丁登山.2002.坡面细沟侵蚀过程的水动力学特征试验研究.水土保持学报.16(3):72-75
    窦国仁,王国宾.1989.黄河小浪底泥沙模型可行性研究.南京:南京水利科学研究院
    耿晓东, 2010.主要水蚀区坡面土壤侵蚀过程与机理对比研究. [博士学位论文].杨陵:中科院水土保持研究所
    龚纯,王正林. 2009.精通MATLAB最优化计算.北京:电子工业出版社.
    龚时旸,熊贵枢.1979.黄河泥沙的来源与输移.人民黄河,(1):7-11
    龚时旸.1988.黄河流域黄土高原土壤侵蚀的特点.中国水土保持.(9):8-10
    郭云,吴松强,李建蜀.1996.三次样条曲线拟和的算法及实现.计算机应用研究. (6):41-42
    胡春宏,陈绪坚,陈建国.2010.21世纪黄河泥沙的合理安排与调控.中国水利.(9):12-15
    胡世雄,靳长兴.1998.坡面流与坡面侵蚀动力过程研究的最新进展.地理研究.17(3):326-335
    黄才安,奚斌.1999.水流强度指标与推移质输沙率.扬州大学学报.2(l):66-71
    黄才安,严恺,奚斌.2003.泥沙输移强度计算公式的再研究.水动力学研究与进展,18(5):626-632
    黄才安,杨志达. 2003.泥沙输移与水流强度指标.水利学报, (6):1-7
    黄平,孟永纲. 2009.最优化理论与方法.北京:清华大学出版社.
    江忠善,宋文经.1988.坡面流速的试验研究.中国科学院水利部水土保持研究所刊集.(7):46-52
    景可,陈永宗,李凤新.1993.黄河泥沙与环境.北京:科学出版社:139
    景可,王万忠,郑粉丽.2005.中国土壤侵蚀与环境.北京:科学出版社
    景可.1986.黄河中游粗沙区的范围、数量及其基岩产沙研究.科学通报(12):6-7
    敬向锋,吕宏兴,潘成忠,潘志宝,雒天峰,吉丽娜.2007.坡面薄层水流流态判定方法的初步探讨.农业工程学报. 23(5): 56-61
    敬向锋,吕宏兴,张宽地.2007.不同糙率坡面水力学特征的试验研究水土保持通报. (2):33-38
    雷阿林,唐克丽. 1997.坡沟系统土壤侵蚀研究回顾与展望[J].水土保持通报,17(3):37~43.
    雷俊山,杨勤科.2004.坡面薄层水流侵蚀试验研究及土壤抗冲性评价.泥沙研究.6:22-26
    雷廷武,张晴雯,等. 2002.细沟侵蚀动力过程输沙能力试验研究[J].土壤学报,39(4): 476-482.
    李凤英,李琳,何小武.2006.坡面流水力学参数的估算.江西农业大学学报.28(3): 477-480
    李建中,宁利中.1994.高速水力学.西安:西北工业大学出版社
    李侃禹,曹志先,刘青泉.2009.可冲刷坡面滚波数值模拟研究.31(1):24-27
    李鹏,李占斌,郑良勇.2010.黄土坡面水蚀动力与侵蚀产沙临界关系试验研究.应用基础与工程科学学报, 18(3): 435-441
    李锐,上官周平,刘宝元,等.2009.近60年我国土壤侵蚀科学研究进展.中国水土保持科学.7(5):1-6
    李占斌,鲁克新,丁文峰.2002.黄土坡面土壤侵蚀动力过程实验研究.水土保持学报.16(2):5-7,49
    李智广,曹炜,刘秉正,罗志东.2008.中国水土流失现状与动态变化.中国水土保持.(12):7-10
    林建忠,阮晓东,陈邦国,等.2005.流体力学.北京:清华大学出版社
    刘春晶,李丹勋,曲兆松,等.2006.过渡区动床明渠流的流速分布.水科学进展.17(1):49-54
    刘震.2004.水土保持检测技术.北京:中国大地出版社: 46
    卢川,段日强,姜胜耀.2008.下降液膜的阴影成像法研究以及数值图像处理.核动力工程.29(3):119-123
    吕宏兴,裴国霞,杨玲霞.2002.水力学.北京:中国农业出版社
    倪晋仁,马蔼乃.1998.河流动力地貌学.北京:北京大学出版社:1-7
    倪晋仁,薛安秦,华鹏.1997.影响水流运动研究进展的若干关键问题1.糙率研究.5(4):369-376
    潘成忠,上官周平.2009.降雨和坡度对坡面流水动力学参数的影响.应用基础与工程科学学报.17(6): 843-851
    钱宁,万兆惠,钱意颖.1979.黄河的高含沙水流问题.科学通报.24(8):368-371
    钱宁,万兆惠.1983.泥沙运动力学.北京:科学出版社
    沙际德,白清俊.2001.粘性土坡面细沟流的水力特性试验研究.泥沙研究.(6):39-44
    沙际德,蒋允静.1995.试论初生态侵蚀性坡面薄层水流的基本动力特性.水土保持学报.9(4): 29-35
    沙玉清.1965.泥沙运动力学引论.北京:中国工业出版社
    沈冰.1996.地表水文有限元模拟.西安:西北工业大学出版社
    盛殿爱.程建忠.2008.黑河流域山溪性河流浮标系数比测试验研究.甘肃水利水电技术.44(7):466-468
    舒安平. 1994.高含沙水流挟沙能力及输沙机理的研究.[博士学位论文].北京:清华大学
    水利部黄河水利委员会.2006.探索之路:黄河中游粗泥沙集中来源区界定研究.郑州:黄河水利出版社
    唐克丽.2004.中国水土保持.北京:中国科学出版社
    王光谦,胡春宏.2006.泥沙研究进展.北京:中国水利水电出版社
    王礼先,朱金兆.2005.水土保持学.北京:中国林业出版社: 126-127
    王明甫.1995.高含沙水流及泥石流.北京:水利电力出版社
    王万忠,焦菊英. 2002.黄土高原水土保持减沙效益预测.郑州:黄河水利出版社.
    王文龙,雷阿林,李占斌,唐克丽.2004.黄土区坡面侵蚀时空分布与上坡来水作用的实验研究.水利学报,5:30-35.
    王兴奎,邵学军.2004.河流动力学.北京:科学出版社
    王瑄,李占斌,尚佰晓,郑良勇. 2005.坡面土壤剥蚀率与水蚀因子关系室内模拟试验,农业工程学报,24(9):22-25.
    王玉海,喻国华,胡彦君.2006.明渠水流自由面失稳与滚波发育研究.水科学进展, 17(6):49-54.
    文康,金管生,李碟娟,李琪.1991.地表径流过程的数学模拟.北京:水利电力出版社
    吴长文,王礼先.1995.林地坡面的水动力学特性及其阻延地表径流的研究.水土保持学报.9(2): 32-38
    吴普特,周佩华.1992.坡面薄层水流流动型态与侵蚀搬运方式的研究.水土保持学报.6(1): 19-24
    吴普特.1997.动力水蚀实验研究.西安:陕西科学技术出版社
    吴钦孝,赵鸿雁.1999.黄土高原水土保持目标及对策.水土保持研究, 6(2): 76-80
    夏卫生,雷廷武,刘春平,赵军.2004.降雨条件下坡面薄层水流速度特征.水利学报.119-123
    肖培青,郑粉莉,姚文艺.2009.坡沟系统坡面径流流态及水力学参数特征研究.水科学进展.20(2): 236-240.
    谢鉴衡.1982.河流泥沙工程学(上册).北京:水利水电出版社.1-372.
    徐在庸.1962.坡面径流的试验研究.水利学报.(4):23-28.
    杨锦,吕宏兴,上管周平.2008.薄层水流水力特性试验研究.灌溉排水学报. 27(4):58-60.
    姚文艺.1996.坡面流阻力规律试验研究.泥沙研究. (1): 74-81.
    叶学民.2002.壁面薄膜流的热质传递和稳定性研究. [博士学位论文].保定:华北电力大学
    张光辉,刘宝元,张科利.2002.坡面径流分离土壤的水动力学实验研究.土壤学报.39(6):882-886
    张光辉.2001.坡面水蚀过程水动力学研究进展.水科学进展.12(3):395-402
    张光辉.2002.坡面薄层流水动力学特性的实验研究.水科学进展.13(3):159-1651
    张红武,张清.1992.黄河水流挟沙力的计算公式.人民黄河. (11):7-9
    张建.1995.CREAMS模型在计算黄土坡地径流量及侵蚀量中的应用.土壤侵蚀与水土保持学报,1(1):54-57
    张建军,毕华兴.2003.坡面水土保持林地地表径流挟沙能力研究.北京林业大学学报.25(5):25-28
    张科利,唐克丽. 2000.黄土坡面细沟侵蚀能力的水动力学实验研究,土壤学报,37(l):9-15
    张科利,唐克丽.2000.黄土坡面细沟侵蚀能力的水动力学实验研究,土壤学报,37(l):9-15
    张宽地,吕宏兴,王光谦,王占礼.2011a.人工加糙床面滚波流水动力学特性研究,农业工程学报, 26(4):41-45.
    张宽地,吕宏兴,王光谦. 2011b.基于改进粒子群算法求解马蹄形断面正常水深,排灌机械工程学报,25(1):42-46.
    张宽地,王光谦,吕宏兴.2010c.明流条件下城门洞断面临界水深直接计算法.四川大学学报(工程科学版) , 26(3):20-25.
    张瑞瑾.1998.河流泥沙动力学(第二版).北京:中国水利水电出版社
    张新和.2007.黄土坡面片蚀—细沟侵蚀—切沟侵蚀演变与侵蚀产沙过程研究,[博士学位论文].杨陵:中科院水土保持研究所
    赵小娥,魏琳,曹叔尤等.2009.强降雨条件下坡面流的水动力学特性研究.水土保持学报. 23(6):45-48
    郑粉莉,王占礼,杨勤科.2004.土壤侵蚀学科发展战略.土保持研究.l1(4):1-10
    周宜林.2004.冲积河流的水流挟沙能力.水利水运工程学报.(2):7-15
    Abrahams A D, Gang Li, Anthony J Parsons.1996.Rill hydraulics on a semiarid hillslope, Southern Arizona. Earth Surface Processes landforms. 21:35-47.
    Abrahams A D, Parsons A J, Hirsch PJ. Field and laboratory studies of resistance to interrill overland flow on semi-arid hillslopes, southern Arizona [A]. Parsons AJ, Abrahams AD (eds), Overland Flow: Hydraulics and Erosion Mechanics [M], London: UCL Press, 1992, 1-23.
    Abrahams A D,Parson A J.1994.Hydraulics of interrill overland flow on stone-covered desert surfaces.Catena.23:111-140.
    Alekseenko S V, Nakoryakov V E, Pokusaev B G.1985.Wave formation on vertical falling liquid films.Int.J.Multiphase Flow.11(5):607-627
    Alekseenko S V,Nakoryakov V E.1995.Instability of a liquid film moving under the effect of gravity andgas flow.Int J Heat Mass Transfer.38(11):2127-2134
    Alonso C V,Neibling W H ,Foster G R.1981.Estimating sediment transport capacity in watershed modeling. Transactions of the ASAE.24(5):1211-1120,1226.
    Bagnold R A.1966.An approach to the sediment transport problem for general physics. Geological Survey Professional Paper (US)
    Bagnold R A.1973.The nature of saltation and of‘bed-load‘transport in water. Proceedings of the Royal Society of London.473-504.
    Bagnold R A.1977.Bed load transport by natural rivers.Water Resources Research.13:303-312.
    Bagnold R A.1980.An empirical correlation of bedload transport rates in flumes and natural rivers. Proceedings of the Royal Society of London.372:453-473.
    Barry J J,Buffington J M,King J G,Goodwin P.2006.Performance of bed load transport equations in mountain gravel-bed rivers:a re-analysis.Proceedings of the Eighth Federal Interagency Sedimentation Conference,April 2-6.Reno: 90-97.
    Bathurst J C,Graf W H,Cao H H.1987.Bed load discharge equations for steep mountain rivers.Sediment Transport in Gravel-bed Rivers.John Wiley & Sons,Chichester,UK.453-491.
    Benjamin T B.1975.Wave formation in laminar flow down an inclined plane.Journal of Fluid Mechanics.2:554-573
    Carson M A.1987.Measures of flow intensity as predictors of bed load.Journal of Hydraulic Engineering.113(11):1402-1421.
    Charles W H.1949.An engineering concept of flow in pipes. Procedings ASCE. Chen C L,ChowVT.1971.Formulation of mathematical watershed-flow model.Journal of Engineering Mechanics Division.ASCE.97(3):809-828.
    Chen C L.1992.Momentum and energy coefficients based on power-law velocity profile.Journal of Hydraulic Engineering.118:1571-1584.
    Chen C L.1993.Unique laminar-flow stability based on shallow-water theory.Journal of Hydraulic Engineering.119:816-829.
    Covers G.1990.Empirical relationship forthe transport capacity of over land flow:Erosion, transport,and deposition process.LAHS Publ.189:45-63
    De Roo.1996.The LISEM Project:An Introduction.Hydrological Processes.10(8):1021-1025.
    Dressler R F, Pohle FV.1953.Resistance effects on hydraulic instability.Communications on Pure and AppliedMathematics.6(1):93-96.
    Dunkerley D.2004.Flow threads in surface run-off:Implications for the assessment of flow properties and friction coefficients in soile rosion and hydraulics investigations. Earth Surface Processes and Landforms.29(8):10112-1026.
    Dunkerley D L.2001.Estimating the mean speed of laminar overland flow using dye in jection-uncertainty on rough surfaces. Earth Surface Processes and Landforms.26: 363-374.
    Dunne T, Dietrich W E.1980.Experimental study of Horton overland flow on tropical hillslopes, 2. Hydraulic characteristics and hillslope hydrographs. Z Geomorphol Suppl. 35: 60-80.
    Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//Proc 6th Int Symposium on Micro Machine and Human Science, Nagoya, 1995:39-43.
    Einstein H A.1950.The bed-load function for sediment transport in open channel flows.US Dept ofAgriculture,soil Consevration Service Technical Bulletin.1026:1-7
    Emmett W W. 1978, Overland flow [A]. Kirkby MJ (ed.), Hillslope Hydrology [M], New York: John Wiley & Sons, 145-176.
    Emmett W W.1970.The hydraulics of overland flow on hillslopes.United States Geological Survey. Washington D C: 662-A
    Engelund F, Hansen E.1972.AmonograPhonSedimentTransPortinAlluvial Streams.Teknisk Forlag CoPehnagen.62
    Everaert W.1991.Empirical relations for the sediment transport capacity of interrill flow. Earth Surface Processes and Landforms.16:513-532.
    Finkner S C,Nearing M A,Foster G R,et al.1989.A simplified equation for modeling sediment transport capacity. Transactions of the ASAE.32(5): 1545-1550
    Flammer G H, Tullis JP, Mason ES.1970.Free surface, velocity gradient flow past hemisphere. Journal of the Hydraulics Division.ASCE.96: 1485-1502.
    Foster G R, Huggins L F, Meyer L D.1984a.A lamboratory sdudy of rill hydraulics:I:Velocity relationship. Trans of ASAE.Vol.27(3):790-796.
    Foster G R. 1982. Modeling the erosion process [A]. Haan et al. (ed.), Hydrologic modeling of small watersheds [M]. ASAE Monographs No. 5. St. Joseph, MI, 297-380.
    Gary Li,Abrahams D A.1996.Correction factors in the determination of mean velocity of overland flow. Earth Surface Processes and Landforms.21:509-515
    Gilley J E, Finckner S C, Nearing MA, Lane LJ.1989.Hydraulics of overland flow. Lane LJ, Nearing MA (eds), USDA-Water Erosion Prediction Project: Hillslope Model Documentation, 9.1-9.4 Report No.2, USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN
    Gilley J E, Finker S C.1991.Hydraulic roughness coeffients as affected by random roughness. Transacctions of the ASAE.33(3): 897-903.
    Gilley J E, Kottwite E R, Simanton JR.1990.Hydraulic characteristics of Rills.Transactions of the ASAE.33(6): 1900-1906.
    Govers G,Takken I,Helming K.2000.Soil roughness and overland flow.Agronomie.20:131-146.
    Govers G.1990.Empirical relations for the sediment transport capacity of overland flow. IAHS Press.45-63.
    Govers G.1992.Relationships between discharge,velocity and flow area for rills eroding loose,non-layered materials.Earth Surface Processes and landforms.17(5):515-528.
    Graf W H. 1971.Hydraulics of Sediment Transport[M]. New York: McGraw-Hill,1-483
    Guy B T,Dickinson W T,Rudra R P.1987.The roles of rainfall and runoff in the sediment transport capacity of interrill flow.Transactions of the ASABE.30(5):1378-1386.
    Hafzullah A, Kavvas M L.2005.A review of hillslope and watershed scale erosion and sediment transport models. Catena.64:247-271.
    Horton R E,Leach HR,Van Vliet R.1934.Laminar sheet flow.Transactions of the American Geophysical Union.15(2): 393-404.
    Horton R E. 1945.Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin.56: 275-370.
    Hsieh T.1964.Resistance of cylindrical piers in open-channel flow. Journal of the Hydraulics Division.ASCE.90(11): 61-73.
    Jeffreys H.1925.The flow of water in an inclined channel of rectangular section.Philosophy Magazine.49:793-807
    Julien P Y, Hartley D M.1986.Formation of roll waves in laminar sheet flow.Journal of Hydraulic Research.24: 5-17
    Julien P Y,Simons D B.1985.Sediment transport capacity of overland flow.Transactions of the ASABE.28(3):755-762.
    Kennedy J, Eberhart R. 1995.Particle swarm optimization[C]//Proc of IEEE Int Conf on Neural Networks Perth,1942-1948.
    King K W,Norton L D.1992.Methods of rill flow velocity dynamics.American Society of Agricultural Engineers.92-2542
    Kirkby M J. 1978.Hillslope Hydrology. John Wiley and Sons.Chichester UK Kranenburg C.1992.On the evolution of roll waves. Journal of Fluid Mechanics.245:249-261.
    Lewis R M,Torczon V.1998.Pattern search methods for linearly constrained minimization.SIAM J.Optimiz.10(3):917-941
    Li G, Abrahams A D.1996.Correction factors in the determination of mean vilocety of overland flow.Earth Suiface Process and Landforms.21:509-515.
    Li G, Abrahams A D. Effect of saltating sediment load on the determination of the mean velocity of overland flow [J]. Water Resources Research, 1997, 33: 341-347.
    Lighthill M J, Whitham G B.1955.On kinematic waves:I Flood movement in long rivers.Proceedings of the Royal Society of London.229A:281-316.
    Lin S P. 1983.Waves on fluid interfaces. NewYork:Academic Press.261-290.
    Liu Q Q, Chen L,LI J C,et al.2005.Roll waves in overland flow.Journal of Hydraulic Engineering 10(2):110-11
    Lu J Y,Cassol EA,Moldenhauer W C.1989.Sediment transport relationships for sand and silt loam soils.Transactions of the ASAE.32:1923-1931
    Manning R.1891.On the flow of water in open channels and pipes, Transaction,Insititution of civil Engineers of ireland,Vol.20:161-207.
    Mavis F T, Ho C, Tu C.1937.The transportation of detritus by flowing water-Ⅱ.Iowa: Iowa University Meyer L D,Monke E J.1965.Mechanics of soil erosion by railfall and overland flow. Transactions of the ASAE.572-580.
    Meyer L D,Wischmeier W H.1969.Mathematical simulation of the process of soil erosion by water. Trans.ASAE.12:754-758,762.
    Meyer-Peter E, Muller R.1948.Formulae for bed load transport. Proc of 2nd meeting of IAHR.Stock holm.39-64.
    Morgan P C,Quinton J N, Smith R E, et al.1998.The European soil erosion model(EUROSEM): documentation and user guide. Silsoe College ,Cranfield University.1-38.
    Musgrave G W.1947.The quantitative evaluation of factors in water erosion-A first approximation. Journal of Soil and Water Conservation.2(3):133-138, 170.
    Nearing M A,Foster R G,Lane L J,et al.1989.A process-based soil erosion model for USDA-Water Erosion Prediction Project technology.Transactions of the ASAE.32(5): 1587-1593.
    Nearing M A,Simanton J R,Norton LD,et al.1999.Soil erosion by surface water flow on a stony, semiarid hillslope.earth Suiface processes and landforms.24(8):677-686.
    Nearing M, Norton L, Bulgakav A, et al.1997.Hydraulics and erosion in eroding rills.Water resources Research.33(4):865-876.
    Needham D J , Merkin J H1.1984.On roll waves down an open inclined channel. Proceedings of the Royal Society of London.394A:259-2781
    Ooshida T.1999.Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number.Phys Fluids.11:3247-3269
    Parsons A J, Abrahams A D.1992.overland Flow,Hydraulics and Erosion Mechanics. London:UCL Press Peter I A.2005.Sediment transport by medium to large drops impacting flows at subterminal velocity. Soil Science Society of America Journal .39(3):902-905
    Pitlick J C and Thorne C R. 1987. Sediment supply,movement and storage in an unstable gravel-bed river//Thorne C R,Bathurst J C,Hey R D.Sediment Transport in Gravel-bed Rivers.John Wiley,Chichester, UK, 151-183.
    Prosser I P,Rustomji P.2000.Sediment transport capacity relations for overland flow.Progress in Physical Geography.24(2): 179-193.
    Robertson J M.1941.Hunter Rouse on the four regimes of open-channel. Civil engineering Roels J M.1984.Flow resistance in concentrated overland flow on rough slope surface. Earth surface process and landforms.9:541-551.
    Romkens M J M, Wang JY.1986.Effect of tillage on surface roughness.Transacctions of the ASAE. 29:429-433.
    Samaga B R, Ranga Raju K G, Grade R J.1986.Suspended load transport of sediment mixtures. Journal of Hydraulic Engineering.112(11): 1019-1035.
    Savat J.1980.Resistance to flow in rough supercritical sheet flow.Earth Surface Processes and Land forms,1980,5(2):103-122.
    Selby M J.1993.Hillslope Materials & Processes. Oxford :Oxford University Press Shen H W, Li R M.1973.Rainfall effects on sheet flow over smooth surface. J Hydraul Div. ASCE.99(5): 771-792
    Shi Y, Eberhart R C. 1999. Empirical study of particle swarm optimization [C]//Proceedings of the IEEE World Congress on Evolutionary Computation, IEEE Press, 1945-1950.
    Sidorchuk A, Schmidt J,Cooper G.2008.Variability of shallow overland flow velocity and soil aggregate transport observed with digital videography.Hydrological Processes.22(20):4035-4048.
    Swamee P K, Ojha C S P.1991.Bed-load and suspended-load transport of non-uniform sediment. Journal of Hydraulic Engineering.117(6): 774-787.
    Thompson S M.1985.Transport of gravel by flows up to 500m3/s, Ohau rivier, Otago, NewZealand. Journal of Hydraulic Research.23(3):285-303.
    Torczon V.1997.On the convergence of pattern search algorithms.SIAM J.Optimiz.7(1):1-25
    Trifinov Y Y.1996.Wave formation on a film flowing down inclined plane with account for phase transition and shear stress on the interface.Journal of Applied Mechanics and Technical Physics. 37(2):109-119
    Tyfur G. 2002.Applicability of sediment transport capacity models for nonsteady state erosion from steep slopes. Journal of Hydrologic Engineering.7(3) :252-259.
    Vanoni V A.1978.Prediction Sediment Discharge inAlluvial Channels. WaterSupply and Management.1:399-417.
    Washanthan A M.1995.Calibration of riverbed roughness.Hydr Engrg.ASCE.12(19):664-671
    Weltz M A, Awadis AB, Lane LJ.1992.Hydraulic roughness coefficients for native. rangelands. J Irrig Drain Engr.ASCE.118(5): 776-790.
    Williams G P.1967.Flume experiment of the transport of a coarse sand. Washington: U S Geological Survey
    Willis J C, Coleman N L, Eillis W M.1972.Laboratory Study of Transport of Fine Sand, Bed-Load and Suspended-Load Transport of Non-Uniform Sediment.Journal of the Hydraulics Division.98 (3): 137-151.
    Woolhiser D A, Liggett J A.1967.Unsteady one-dimensional flow over a plane:The rising hydrograph. Water Resource Research.3(3): 753-771.
    Woolhiser D A, Hanson C L, Kuhlman AR.1970.Overland flow on rangeland watersheds. Journal of Hydrology (N.Z.).9(2): 336-356
    Yalin M S.1972.Mechanics of sediment transport. Oxford:Pergamon Press.
    Yang C T,Huang C A.2001.Applicability of sediment transport formulas.International Journal of Sediment Research.16(3):335-353
    Yang C T. 1972.Unit stream power and sediment transport,Journal of the Hydraulics Division. 98(10):1805-1862.
    Yang C T. Incipient motion and sediment transport[J].Journal of the Hydraulics Division, 1973, 99(10): 1679-1704.
    Yang C T.1976.Minimum unit stream power and fluvial hydraulics.Journal of the Hydraulics Division.102:919-934.
    Yang C T.1996.Sediment Transport: Theory and Practice. NewYork: McGraw-Hill.1-396.
    Yin C S.Stability of liquid flow down an inclined plane[J].The Physics of Fluids, 1963, 6:321-334.
    Yong C T,Albert Molinos.1982.Sediment transport and unit stream power function. Journal of the Hydraulics Division. 108(6):774-793
    Yong N Y,Wenzel H G.1971.Mechanics of sheet flow under simulated rainfall.Journal of the hydraulics Division. 97(9): 1367-1386
    Yosef S S, Bruce A B.1994.Optimization by pattern search.European Journal of Operational Research. 78(13): 388-303.
    Zartl S A ,Klik A ,Huang C.2000.Soil detachment and transport processes from interrill and rill areas.Phys Chem Earth.26(1): 25-26.
    Zhang G H, Liu Y M,Han Y F,Zhang X C.2009.Sediment transport and soil detachment on steep slopes:I. transport capacity estimation. Soil Science Society of America Journal.73(4):1291-1297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700