顺直过渡段卵石浅滩航道整治方法及整治水位确定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于水动力条件和卵石运动机理较为复杂,在进行航道整治时往往对一些复杂卵石浅滩滩性和河床演变规律认识不足,从而导致采用的整治方法未能从根本上解决碍航问题,需反复整治。为此作者在对卵石浅滩特性进行深入研究的基础上,针对顺直过渡段卵石浅滩,采用概化模型试验和二维水流数值模拟手段对其航道整治方法和整治水位确定两方面问题进行了分析和研究。
     单纯采用挖槽整治方法并不能从根本上改变挖槽处水流结构,水流受周围河床形态影响较大,相应的挖槽处床沙的输移路径也没有发生根本变化,挖槽区域仍处于卵石输沙带内,洪水期上游来沙时挖槽内仍会有泥沙落淤,存在复淤趋势。
     采用丁坝整治方法使得丁坝附近水流结构发生明显改变,呈强三维性。在坝头附近产生的旋涡作用体系是造成丁坝局部冲刷的主要原因。在底部螺旋流的作用下,冲刷河床形成局部冲刷坑。床沙沿冲刷坑边缘附近绕过坝头向下游输移,卵石输移路径发生明显变化,卵石输沙带向丁坝对岸一侧发生偏移,有利于维持丁坝的整治效果。
     运用二维数学模型模拟燕子碛滩整治工程挖槽和筑坝两种整治方法整治前后流场变化,并结合实测资料对两种整治方法的整治效果进行分析。挖槽整治方法模拟结果验证了概化模型试验结果。尽管挖槽内的流速大于床沙的起动流速,但由于水流结构没有发生根本变化,挖槽区仍处于卵石输沙带内,挖槽仍然有复淤的趋势;筑坝整治方法整治前后流场分析和地形变化结果也与概化模型试验结果相一致,筑坝方法更有利于维持整治效果。
     在丁坝等整治建筑物位置基本确定的情况下,采用枯水期对浅滩河床冲刷作用最大的流量,即造床流量作为整治流量,其相对应的水位作为整治水位的整治水位确定方法,并结合燕子碛浅滩整治工程给出了该方法的应用实例。
The hydrodynamic conditions and gravel movement mechanism are both relatively complex, and some complex gravel shoals characteristics and riverbed evolution aren’t understanded sufficiently in the course of waterway regulation, so the adoptive regulation method maybe failed to solve navigation obstruction fundamentally, they often need regulated repeatedly. Therefore, based on the in-depth study of the characteristics of gravel shoals, this paper researched the regulation method of straight transition section gravel shoals and regulation water level by means of generalized model tests and two-dimensional mathematical model.
     Single dredging regulation method can’t fundamentally change the flow structure in dredging zone. The flow structure is influenced by the surrounding riverbed morphology. Dredging zone is still in the belt of bed-load transport. During flood period, the upstream bed-load begin to transport to downstream, and there will still be sediment falling in dredging zone. There will be deposition in the dredging zone possibly.
     Damming regulation method can obviously change the flow structure near the spur dyke, and the flow structure strongly shows the 3D characteristics. The local scour near the head of spur dyke is mainly caused by the generated eddy system. The scour pit is gradually forming under the action of bottom spiral flow. Bed-load transport over the head along the edge of scour pit, bed-load transport path begin to change obviously. The belt of bed-load transport changes in the direction of the opposite side of spur dyke, this action is in favor of the continuous regulation effect of the spur dyke.
     The variation of flow field before and after dredging or damming regulation can be modeled by two-dimensional mathematical model in Yanziqi gravel shoal, and the regulation effects also can be evaluated by measured data. The result of dredging modeling verified the conclusions of above generalized model tests. Although the local velocity in dredging zone is bigger than the starting velocity of bed-load, the flow structure don’t change fundamentally, the dredging zone is in the belt of bed-load transport, and there will be deposition in the dredging zone possibly; The variation of flow field and riverbed morphology in the damming regulation method is in agreement with the result of model tests, this phenomenon proves that the damming regulation method is in favor of the continuous regulation effect of gravel shoal.
     This paper puts forward the regulation water level determination method that in case of the determination of the position of spur dyke or other regulation structures, the regulation discharge is the discharge with the biggest scour effect, namely the second bed-building discharge, and the corresponding water level is the regulation water level. This paper shows the application example of this regulation water level determination method by Yanziqi gravel shoal regulation project.
引文
[1]国务院办公厅.国务院关于加快长江等内河水运发展的意见[EB/OL].[2011-02-14].http://www.gov.cn/zwgk/2011-01/30/content_1795360.htm
    [2]刘建民.山区性河流航道治理研究与实践文集[M].天津:天津科学技术出版社,2007.
    [3]杨胜发.长江上游宜宾—宜昌河段航道整治工程技术后评估研究大纲[R].重庆:重庆交通大学,2010.
    [4]胡标兵.叙渝段典型卵石急流滩整治技术研究[D].重庆:重庆交通大学,2009.
    [5]余文畴.长江河道演变与治理[M].北京:中国水利水电出版社,2005.
    [6]周冠伦.航道工程手册[M].北京:人民交通出版社,2003.
    [7]南宁航道工程局,重庆交通学院.卵石滩整治[M].北京:人民交通出版社,1985.
    [8]胡旭跃.航道整治[M].北京:人民交通出版社,2008.
    [9]《山区航道整治》三结合编写组.山区航道整治[M].北京:人民交通出版社,1975.
    [10]应强,焦志斌.丁坝水力学[M].北京:海洋出版社,2004.
    [11]窦国仁.丁坝回流及其相似律的研究[J].水利水运科技情报,1978,(3):1~24.
    [12] Narayanan R, Reynolds A J.Reattaching flow downstream of leaf gate.Journal of the Hydraulic Division [J].ASCE, 1972,98 (5):913-936
    [13]湖南交通厅调治构造物研究小组.拱型丁坝模型试验研究报告[R].长沙:湖南交通科学研究所,1981.
    [14]贾锐敏,李旺生.汉江游荡性河段航道整治计算方法的研究[R].天津:交通部天津水运工程科学研究所,1990.
    [15]韩玉芳.丁坝的造床作用研究[D].南京:南京水利科学研究院,2003.
    [16]王平义,程昌华,荣学文等.航道整治建筑物水毁理论及模拟技术[M].北京:人民交通出版社,2004
    [17]胡华锋.丁坝绕流结构的试验及数值研究[D].长沙:长沙理工大学,2006.
    [18]应强.淹没丁坝下游流场和局部水头损失的研究[D].南京:南京水利科学研究院,1991.
    [19]汪德胜.漫水丁坝若干水力学问题试验研究[D].合肥:合肥工业大学,1988.
    [20]蒋忠绥.平原河流浅滩整治线宽度计算理论和方法[J].水运工程(增刊),1979:55-62.
    [21]刘建民,刘俊涛.沙卵石浅滩整治水位及整治线宽度确定方法的研究[J].水道港口,2004,25:19-25.
    [22]廖国平.石滩整治[M].贵州:贵州教育出版社,1997.
    [23]纪永华.整治水位与整治线宽度计算方法的探讨[J].南京航务工程专科学校学报,1987(1).
    [24]王昌杰.河流动力学[M].北京:人民交通出版社,2000.
    [25]郭艳.挖槽紊动特性及弯曲分汊河段碛槽开挖稳定性分析[D].重庆:重庆交通大学,2008.
    [26]胡江.光滑明渠非恒定流传播特性及流速分布研究[D].南京:河海大学,2008.
    [27]王涵.山区河流深槽卵砾石起动规律研究[D].重庆:重庆交通大学,2009.
    [28]何凤华.丁坝、导流堤基础冲刷防护措施研究[J].公路交通科技,1995,(4):9-?
    [29]长科院河流研究室.国外丁坝研究综述[J].人民长江,1979,(3):51-61.
    [30]蒋焕章.公路水毁防治技术[M].北京:人民交通出版社,1993.
    [31] M.A.Gill.Erosion of Sand Beds Around Spur dikes [J].Journal of the Hydraulics Division, ASCE, Vol 9, 1972.
    [32]张洪武.河流力学研究[M].郑州:黄河水利出版社,1999.
    [33]谢鉴衡.河流模拟[M].北京:水利电力出版社,1990.
    [34]张乐.三峡水库成库初期库尾洪水急流滩航道条件变化研究[D].重庆:重庆交通大学,2010.
    [35] C.A. Brebbia, A.J. Ferrante.Computational hydraulics [M].London:Boston Butterworths, 1983.
    [36]杨胜发,张艾文.重庆市长江几江河段德感坝采砂论证研究报告[R].重庆:重庆交通学院,2004.
    [37]张艾文.山区河流采砂对河床演变影响研究[D].重庆:重庆交通大学,2006.
    [38] Koutitas Christopher G.Elements of computational hydraulics [M].New York:London Pentech Press, 1983.
    [39]邓誉久.重庆内河航运志[M].北京:科学技术文献出版社,1992.
    [40]六六一工程指挥部.燕子碛滩航道整治工程扩大初步设计文件[R].重庆:长江重庆航道工程局,1970.
    [41]六六一工程指挥部.燕子碛滩航道整治初步设计书[R].重庆:长江重庆航道工程局,1975.
    [42]长江重庆航道工程局勘察设计所.长江重庆至宜宾河段滩险整治情况资料集(1953~1999)[R].重庆:长江重庆航道工程局勘察设计所,2000.
    [43]天津水科所,西南水科所.川江苦竹碛、燕子碛浅滩整治工程经验总结[R].天津水科所,西南水科所,1978.
    [44]傅华,马耀昌,王士毅.川江风簸碛滩河床演变及航道整治[J].泥沙研究,2006,(6):70-74.
    [45]张艾文,杨胜发,程昌华.长江上游德感坝采砂坑对河床演变影响分析[J].重庆交通学院学报,2006,(5):152-156.
    [46]重庆交通大学.长江上游金钟碛、城背嘴、甄炳碛、关刀碛、浅碛子滩险航道整治数学模型研究报告[R].重庆:重庆交通大学,2003.
    [47]王士毅,甘鉴登,周冠伦,吴炳海,刘建民,邓伯强.长江上游航道的整治[J].水利学报.1980,(4):12-24.
    [48]黄才安,奚斌.水流强度指标与推移质输沙率[J].扬州大学学报,1999,(1):66-71.
    [49] Einstein H A.The bed load function for sediment transportation in open channel flows [R].In:U.S.Dept.Agri.Tech.Bull.1950.
    [50]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [51] Yalin, M.S, Mechanics of sediment transport [M].Pergamon Press, Oxford, 1977.
    [52]邵学军,王兴奎.河流动力学概论[M].北京:清华大学出版社,2005.
    [53]杨胜发,周华君,胡江.内流河宽浅变迁河段水沙运动规律研究[M].重庆:重庆大学出版社
    [54]王秀英,王东胜,赵梁明.造床流量法确定整治水位的适用性探讨[J].水运工程,2008,(7):115-120.
    [55]肖立敏,朱立俊,范红霞.造床流量法中变指数m值的确定[J].东北水利水电,2007,(7):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700