动水环境下三维壁面射流机理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,水资源日益匮乏且水资源分布不均匀,因此管道输水已经得到越来越多的应用。在输水管道中,泥沙的淤积问题是一个比较常见但又较难解决的问题。虽然有一些简单的工程措施来减轻这一问题,但目前最主要的还是靠人工清淤,这样无疑增加了运行成本、减少了运行时间。针对这一问题,设想开发一套利用三维壁面射流设施定期定时的进行管道中的清淤工作。基于此,本文对动水环境下三维壁面射流机理特性进行研究。文中从理论分析、模型试验及数值模拟三个方面对动水环境下的三维壁面射流的流速分布、发展规律及影响范围进行了研究,主要的研究内容有:
     1、总结了自由射流及静水环境下的三维壁面射流理论的成果,借鉴他们的研究方法,为动水环境下三维壁面射流的深入研究打下基础。
     2、利用模型试验,测量在一定的动水速度下两种不同壁面射流流速情况下的流速分布,得出对称中心平面和展向流动平面的流速分布都各自具有相似性,对称中心平面的最大流速随着三维壁面射流的发展呈衰减趋势。
     3、通过数值模拟,计算得出了3组动水环境各7种射流比总计21个工况的射流流场,通过与模型试验实测数据的对比,肯定了数值模拟计算的准确性。对数值模拟结果的分析得出:三维壁面射流的影响范围与射流比呈线性关系,随着射流比的增大而增大,同时随着动水速度的增大,影响范围的增大速率也逐渐增大。
     通过本文的研究,得出了动水环境下三维壁面射流的发展规律,并着重研究了射流比及动水速度对射流影响范围的影响。研究表明,三维壁面射流能较大的提高近壁区的流速,因此应用到实际管道清淤工作中有一定的可行性。
Pipe line has been used widely for transporting water with the development of economics. In the water pipeline, sediment deposition is a relatively common but difficult problem. Although there are some simple engineering measures to solve this problem, but the main measure is desilting by artificial currently. This will increase the running cost and reduce the running time surely. To solve this problem, a facility using three-dimensional wall jet for dredging work of the pipeline on a regular basis is envisaged to develop. Based on this, the paper researched the mechanism and characteristics of the three-dimensional wall jet in dynamic water. The paper studied the distribution of velocity, the law of development and the sphere of influence through theoretical analysis, model test and numerical simulation. The main research content of this paper are as follows:
     1. The results of the theory of free jet and the three-dimensional wall jet in hydrostatic water is summarized. Drawing on the methods of their research, the foundation for the research of the hree-dimensional wall jet in dynamic water is laid.
     2. The distributions of velocity of two different wall jet velocity at a certain speed of hydrostatic water are measured by model test. The distributions of velocity of both symmetry middle plane and level development plane are obtained. They have similarity in each plane. The maximum velocity of symmetry middle plane shows the trend of attenuation with the development of three-dimensional wall jet.
     3. The flow fields of 3 groups with different dynamic water velocity are calculated by numerical simulation, each group contains 7 differtent jet ratios. There are 21 conditions totally. The computation results are consistent with the model test data. The analysis of the numerical simulation results obtained that the sphere of influence of the three-dimensional wall jet has a linear relationship with the jet ratio, it increases with the increase of the jet ratio. At the same time as the increasing speed of the flowing water, the increase rate of the sphere of influence is gradually increased.
     The development pattern of three-dimensional wall jet in dynamic water is obtained by the research of this paper. It focused on the impact to sphere of influence of jet ratio and the velocity of dynamic water. The results of the research show that three-dimensional wall jet can improve the velocity of water near the wall greatly, so it is possible to apply to the actual dredging work in the pipeline.
引文
[1]李慧英,田文泽,阎海新.倒虹吸管.中国水利水电出版社[M],2006.1
    [2]刘成,何耘,韦鹤平.城市排水管道泥沙问题浅析[J].给水排水,1999.25(12):7-13
    [3]侯佩瑾,赵克梅.高压输水管道泥沙淤积的试验研究[J].山西水利科技,2002.(3):35-38
    [4]彭龙生.螺旋流冲沙与输沙[J].太原理工大学学报,1998.29(1):4-9
    [5]兰雅梅,孙西欢,霍德敏.圆管螺旋流的三维数值模拟[J].太原理工大学学报,2001.3
    [6]毛野,杨华,袁新明,吉庆丰.采用PIV研究明渠紊流拟序结构[J].中国学术期刊文摘,2001.(9):1190-1193
    [7]毛野,杨华,袁新明.表面糙率与明渠紊流猝发现象[J].水利学报,2002.(6):53—59
    [8]毛野,张志军,袁新明.沙波附近紊流拟序结构特性初步研究[J].河海大学学报,2002.30(5):56-61
    [9]黄才安.关于挟沙水流流速分布问题[J].长江科学院院报,2000.16(4):15-17
    [10]黄才安,奚斌.泥沙颗粒起动时明渠的阻力方程[J].河海大学学报,2000.28(5):98-100
    [11]黄才安,奚斌.水流强度指标与推移质输沙率[J].扬州大学学报,1999.2(1):66-71
    [12]袁新明.管道悬移质水力输送的研究.江苏省教委鉴定,1999.11
    [13]黄才安.泥沙输移强度计算公式的再研究[J].水动力学研究与进展,2003.18(5):625-632
    [14]黄才安.泥沙输移与水流强度指标[J].水利学报,2003.(6):1-7
    [15]董志勇.射流力学[M].科学出版社,2005.3
    [16]袁新明.The experimental study of solid-liquid flow in a pipeline by laser velocimetry[J].第二届国际水科学学术研讨会,清华大学出版社,1995.3:416-423
    [17]U Shavit, S. Moltchanov and Y. Agnon. Particles repension in vave using visulation and PIV measurements-coherence and intermittency[J]. International Journal of Multiphase Flow, Vol.29,2003: 1183-1192
    [18]Shigeo Hosokawa and Akio Tomiyama. Turbulence modification in gas-liquid and solid-liquid dipersed two-phase pipe flows[J]. International Journal of Heat and Fluid Flow, Vol.25,2004:489-498
    [19]Margaret S. Greenwood and Judith A. Bamberger. Ultrasonic sensor to measure the density of a liquid or slurry during pipeline transport[J]. Ultrasonics, Vol.40,2002:413-417.
    [20]J. Li et al. Solids deposition in low-velocity slug flow pneumatic conveying[J]. Chemical Engineering and Procesing, Vol.44,2005:167-173
    [21]周丰.动水环境中射流特性的实验和数值模拟研究[D].大连理工大学博士学位论文,2007.9:57-69
    [22]Craft T. J. and Launder B. E.. On the spreading mechanism of three-dimensional turbulent wall jet[J]. Journal of Fluid Mechanics,2001:435-505
    [23]戴会超,槐文信,吴玉林,许唯临.水利水电工程水流精细模拟理论与应用[M].科学出版社,2006.4
    [24]张兆顺,崔桂香,许春晓.走近湍流[J].力学与实践,2002.24(1):1-8
    [25]K. Hanjalic and B. E. Launder. Multiple-time-scale concepts in turbulent transport modeling[J]. Turbulent Shear Flow Ⅱ, Springer-Verlag, New York,1980:36-49
    [26]S. W. Kim and C. P. Chen. A multiple-time-scale turbulence model based on variable partitioning on the turbulent kinetic energy spectrum[J]. Numerical Heat Transfer, Part B,1989, Vol.16:193-211
    [27]Robert Rubinstein. Formulation of a two-scale model of turbulence. NASA/CR-2000-209853, ICASE Report No.2000-5, Feb.2000
    [28]蔡晓丹,陈义良.双时间尺度湍流模型的应用[J].工程热物理学报,1994.15(4):387-390
    [29]S. W. Kim, Calculation of divergent Flows with a multiple-time-scale turbulent model[J]. AIAA, Journal,1991, Vol.29(4):547-554
    [30]叶孟琪,陈义良.复杂剪切流场中湍流模型的研究[J].水动力学研究与进展,Ser.A,1996(3):226~283
    [31]Kim S. and Benson T. J.. Calculation of a circular jet in crossflow with a multiple-time-scale turbulence model[J]. Inter. Journal of Heat and Mass Transfer,1992. Vol.35(10):2357-2365
    [32]袁新明,毛根海等.双时间尺度紊流模型的非线性修正与验证[J].水科学进展,2002.13(1):78-82
    [33]马晖扬等.高超声速流动中双尺度湍流模式的应用[J].中国科学技术大学学报,2001.31(5):528-534
    [34]谢象春.湍流射流理论与计算[M].科学出版社,1975.1
    [35]Triipel T. Ueber die Einwirkung eines Luftsrahles auf die ungobende Luft[J]. Zeitschrift fur das gesammte Turbinenwesen,1915:5-6
    [36]Forthmann E. Ueber turbulente Strahlausbreitung[J]. Ingenieur-Archiv,1934.5(1)
    [37]Taylor GI. Diffusion by continuous movements[J]. Proc London Math Soc,1921.20:196
    [38]P rand L. Berichtuber Untersuchungen. Zur Ausgebideten Turbulenz[J]. ZAMM,1925.5:136
    [39]Von Karman T. Mechanische Anlichkeit and Turbulenz[J]. Nachr Ges Wiss Gottingen Math-Phys,1930.51:76
    [40]He, J., Walker, J. D. A.. Note on the Baldwin-Lomax turbulence mode[J]. Journal of Fluids Engineering, Transactions of the A SME,1995,117(3):528-531
    [41]Tam, C. J., Orkwis, P. D., Disimile, P. J.. Comparison of Baldwin-Lomax turbulence models for two-dimensional open cavity computations[J]. AIAA Journal,1996,34(3):629-631
    [42]曾剑辉.工程控制下T型明渠交汇口表层水流特性研究[D].河海大学硕士学位论文,2007
    [43]Sai, V. A., Lutfy, F. M.. Analysis of the Baldwin-Barth and Spalart-Allmaras one-equation turbulence model[J]. AIAA Journal,1995,33(10):1971-1974
    [44]Lee, Jaesoo, Paynter, Gerald C.. Moeified Spalart-Allmaras one-equation turbulence model for rough wall boundary layers[J]. Journal of Propulsion and Power,1996,14(4):809-812
    [45]Elkhoury, Michel. An improved wall-distance-free version of the Baldwin-barth turbulence model[J]. American Society of Mechanical Engineers, Fluids Engineering Division(Publication) FED, v 259, Proceedings of the ASME Fluids Engineering Division-2003,2003:441-448
    [46]Jones Wp. Launder Be Prediction of laminarization with a two-equation model of turbulence[J]. Int J Heat Mass Transfer,1972,15(2):301-14
    [47]杨建明,曹树良.水轮机尾水管三维湍流数值模拟[J].水力发电学报,1998:01
    [48]杨建明,吴建华.淹没水跃的数值计算[J].水动力学研究与进展,2001,12
    [49]V. Yakhot and S. A. Orzag. Renormalization group analysis of turbulence[J]. Journal of Scientific Computing. Vol.1. No.1,1986:3-5
    [50]V. Yakhot, S. A. Orzag et al. Development of turbulence models for shear flows by double expansion technique[J]. Phys. Fluids A, Vol.4, No.7,1992:1510
    [51]王福军,计算流体动力学分析[M].清华大学出版社,2004.9
    [52]王少平,曾扬兵.用RNG κ-ε模式数值模拟180°弯管内的湍流分离流动[J].力学学报,1996.5,28(3)
    [53]蒋莉,王少平等.应用RNG κ-ε湍流模式数值模拟90°弯曲槽道内的湍流流动[J].水动力学研究与进展,A13(1),1998.3:8-13
    [54]陈群,戴光清等.阶梯溢流坝面流场的紊流数值模拟[J].天津大学学报(自然科学与工程技术版),2002,(1)
    [55]杨学军,李玉柱.挑流冲坑紊流场的二维数值模拟[J].水利水电技术,2002.2
    [56]符松,郭阳.无壁面参数低雷诺数非线性涡黏性模式研究[J].力学学报,2001.2
    [57]叶坚,窦国仁.紊流模型中壁面函数关系的改进[J].水利水运科学研究,1990(3)
    [58]Smagorinsky J S. General circulation experiments with the primitive equations I:the basic experiment[J]. Monthly Weather Review,1963,91:99-164
    [59]Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics,1970,41:453-480
    [60]Bardina J, Ferziger J H, Reynolds W C. Improved subgrid models for large eddy simulation[J]. AIAA Paper,1980:80-1357
    [61]Moin P, Kim J. Numerical investigation of turbulent channel flow[J]. Journal of Fluid Mechanics,1982, 118:341-377
    [62]Frohlich J, Rodi W. Introduction to large eddy simulation of flow around rectangular prism[J]. J Wind Eng Ind Aero,1977,67&68:195-208
    [63]戴会超,坏温馨,吴玉林,许唯临等.水利水电工程水流精细模拟理论与应用[M].科学出版社,2006.4
    [64]曾诚.带自由表面的后向台阶流动的流场研究[D].河海大学硕士学位论文,2006
    [65]张晓东.泄洪洞高速水流三维数值模拟[D].中国水利水电科学研究院博士学位论文,2004
    [66]马贵阳,王岳.三步有限元法的大涡模拟[J].石油化工高等学校学报,1998.3
    [67]孙涛,邱秀云.边界元法在悬板区过流问题上的应用[J].水利水运科学研究,2000(2)
    [68]Guo Mao-Ying. Numerical Study for the compensation of Axial Flow Force in a spool value by Boundary Element Method[J]. Proc of 1th International Sympoaium on Fluid Power Transition and Contral.1991, BeiJing, China
    [69]周雪漪.计算水力学[M].清华大学出版社,1995.9
    [70]赵毅山,韦鹤平.大型泵站前池非定常平面的流态模拟[J].同济大学学报(自然科学版),1998(4)
    [71]王洪庆.泄洪洞的紊流数值模拟及试验研究[D].西北农林科技大学硕士学位论文,2006
    [72]张丽.水库深水排沙设施的水动力和排沙特性的研究[D].天津大学硕士学位论文,2008
    [73]田会静.水跃区水流脉动压力的大涡模拟及实验研究[D].天津大学硕士学位论文,2007
    [74]钟志镭.跌坎型底流消能宫的试验研究与数值模拟分析[D].昆明理工大学硕士学位论文,2008
    [75]郑邦民,赵听.计算流体动力学[M].武汉大学出版社,2001.8
    [76]陶文铨.数值传热学(第2版)[M].西安交通大学出版社,2001
    [77]王艳明.高坝挑流冲坑流场的数值模拟[J].水动力学研究与进展,1995(2)
    [78]Guan Jian-yong and Chen Bi-hong.3-D turbulent flow simulation for the tall water-channel [J]. Journal of Hydrandynamics, Ser, B.4,1996:78-87
    [79]陈永灿,冬俊瑞.三峡溢流坝下游冲刷坑特性研究[J].清华大学学报(自然科学版),1998(1)
    [80]蔡兆麟.用有限体积法计算叶轮机械内三维粘性流动[J].华中理工大学学报,2000(9)
    [81]金忠青.N-S方程的数值解和紊流模型[M].河海大学出版社,1989
    [82]J. P. Van Doormal, G. G. Raithby. Enhancement of the SIMPLE method for predicting incompressible fluid flows[J]. Numerical Heat Transfer,7,1984:147-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700