艾比湖水底地形遥感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感具有覆盖面广、较强的实效性、经济性和获取方便等优点,可以实现水深的宏观动态观测。通过遥感反演,能够在像元级尺度上对面宽、水浅、水位变化大,交通不便的干旱区草型湖泊水底地形进行动态地监测。
     本文在水体遥感理论的基础上,通过实测水深与ASTER影像相关分析,确定了ASTER反演艾比湖水深的最佳波段为波段1(0.52~0.60μm)。
     构建了水深遥感反演模型Z = 2.5983x~2—57.069x+312.98,R~2 =0.8652,x为波段1的自然对数。反演结果表明,全湖平均水深0.94m,最大水深3.68 m。通过典型实测水深数据进行了验证,绝对误差在-0.36~0.20m之间,平均误差为0.03m,模型可以用于艾比湖遥感水深反演
     湖面高程减去水深DTM,构建了艾比湖水底地形DEM,并通过空间分析,得出以下结论:
     全湖长度大于850m的水下沙堤共38条。博尔塔拉河河口三角洲,面积0.39km~2。精河两条支流形成一大一小的扇型河口三角洲,面积分别为0.23,0.79 km~2。
     艾比湖湖水蓄积量为8.26亿m~3,构建了水位—蓄水量模型V = 1.0241h~2 - 381.08h + 35452,R~2 = 0.9994,h≤189。水面面积—蓄水量模型V= 5E-05 S~2 - 0.0091 S + 0.5316,R~2 = 0.9846,S< 550。V为蓄水量(亿m~3),S为水面面积(km~2),h为水位高程(m)。
     预测出湖体萎缩状况。
     当水面高程188.38m,水面面积450.00km~2时,蓄水量3.91亿m~3,水深最小值0.06m,最大值3.68m,平均1.85m。湖东南和西北部出露,其中,湖东南部将演变为面积67.68 km~2,呈新月状的干涸湖底。
     当水面高程187.00m,水面189.84km~2时,水深最小值1.18m,最大值3.60m,平均2.43m,蓄水量0.81亿m~3。湖体退缩至以点(655981,4971925,大致为湖体中央)为中心,长轴(长约23.5Km),短轴(长约7.7Km)的椭圆形区域内(海拔185.52~187.00m)。
     当水面高程186.00m,水面面积10.96km~2时,水深最小值0.63m,最大值3.51m,平均2.61m,蓄水量0.03亿m~3,湖体退缩至精河口水下洼地,基本干涸。
     湖体长、短轴方向上,水底地形坡度的最大值、平均值、标准差分别为1.23~0、0.13~0, 0.11与1.46~0、0.16~0, 0.14。各项统计指标,短轴方向NS均大于长轴方向EW,表明短轴方向上水底地形起伏较大,地形较破碎,这也充分说明长轴方向EW塑造水底地形的主动力为来自阿拉山口盛行西北风。
The remote-sensing with inexpensive, rich in widely coverage, stronger actual effect, easily date acquisition etc can achieve the marco-observation of water depth . By the technique of which remote-sensing Inversion, the bottom topography of macrophytic lakes in concerning the factors of the wide water region, shallow water, changeable water level , inconvenient located arid area can be conducted dynamic monitoring with image size.
     This paper based on the theory of remote-sensing for water, by actually measuring water depth and ASTER images correlation analysis, confirmed that the best wave band of the water depth on ASTER inversion Ebinur lake is band one (0.52-0.60μm), constructed a water depth of remote sensing inversion model Z = 2.5983x~2—57.069x +312.98,“x”is bond , one of natural logarithms. The inversion indicate that the modelcan be used in Remote Sensing inversion of Ebinur lakes in the average water depth of lake 0.94m,the deepest is 3.68 m . Those have been already proved by practice measure water depth. The absolute value error is 0.03m .
     The lake surface depth deducts the water depth. Building a whole lake bottom topography DEM and getting the result by analyzing the spare as following :
     The lake have the 38 piece of sand bar in the over 850 meters lengthier in whole lake. Bortala River estuarine delta covers 0.39 km~2. The two anabranch of Jin river formed fan shape estuary delta, in which one is large and another one is small, those are 0.23,0.79km~2.
     The Ebinur lakes water storage is 8.26 hundred millions m~3 ,Building the storage model on water level : V = 1.0241h2 - 381.08h + 35,R2 = 0.9994,h≤189. and V= 5E-05 S~2 - 0.0091 S + 0.5316,R2 = 0.9846,S< 550, V is storage capacity(hundred million m~3),S is water surface area(km~2),H is height of the water level(m).
     Showing the condition of the lake atrophy when the height of the water level is 188.38m, water surface area 450 km~2, storage capacity is 3.91 hundred millions m~3, the maximum value of water depth is 3.68m, minimum is 0.06m,mean is 1.85m. The east-south part of the lake is show off. in witch it will change to the area 67.68 km~2, the shape looks like crescent dry bottom. When the height of the water level is 187.00m,water surface area 189.84km~2 ,the storage capacity is 0.81 hundred millions m~3,the maximum value of water depth is 3.60m, minimum is1.18m,mean is 2.43m.
     The average lake drop to the point (655981,4971925 )is as a lake center the long axis is 23.5Km,short axis 7.7Km.within ellipse area(the elevation 185.52—187.00m) and along the Bortala river, Jin river banks, the average lake drop to main hollow under water . When the height of the water level is186 m water surface area 10.96 km~2 ,the storage capacity is0.03 hundred millions m~3, the maximum value of water depth is 3.51m, minimum is 2.61m,mean is 2.61m. lake is almost dry.
     The maximum gradient is 1.46~0, average one 0.16~0, standard deviation is 0.16~0,at short axis direction in bottom topography section. At long axis direction, the maximum gradient is 1.23~0,average one0.13~0, standard deviation is 0.11,all the statistical summary shows that the short axis direction NS is bigger than the long axis EW, which indicate that the fluctuate of bottom topography is bigger and more crisp in short axis direction, those also fully prove that the main power of long axis direction EW that build the bottom come from Alataw Pass that is prevalence north.
引文
[1]Benny,A H,Dawson,G J.Satellite imagery as an aid to bathymetric Charting in the Red Sea[J].The Cartographic Journal,1983,20:5-16.
    [2]Cracknell,A P,Ibrahim,M.Bathymetry studies on the coastal waters(Red Sea)of Jeddah,Saudi Arabia,using Shuttle MOMS-01 data[J].International Journal of Remote Sensing,1988,9(6):1 161-1 165.
    [3]George,D G.Bathymetric mapping using a Compact Airborne Spectographic Imager(CASI)[J].International Journal of Remote Sensing,1997,18:2 067-2 071.
    [4]Lyzenga D R·Passive remote Sensing techniques formapping water depth and bottom features[J],AppliedOptics, 1978, 17(3); 379~383.
    [5]Clark R K, et a1. 1 987,Comparison of Models for Remotely Sensed Bathym etry.AD-A197973.
    [6]MgengelV, SpitzerR J·Application of remote sensing data tomap-ping of shallow sear-floor near by Netherlands[ J]·International Journal of Remote Sensing, 1991, 57(5): 473~479.
    [7]王艳姣,董文杰,张培群,闫峰.水深可见光遥感方法研究进展[J].海洋通报,2007,26( 5): 93-100.
    [8]梁顺林,陈丙咸.遥感可见光波段的水体透视深度研究[J].南京大学学报,1989,25(2):322-332.
    [9]李铁芳,迟耀斌.浅海水下地形地貌遥感信息提取与应用[J].环境遥感,1991,6(1):22-29.
    [10]许殿元.黄河口海域水深分布的遥感研究[J].遥感技术与应用,1992,7(3):17-23.
    [11]张鹰.水深方法遥感研究[J].河海大学学报,1998,26(6):68-72.
    [12]张鹰,王文,丁贤荣.GIS在海岸工程规划设计中的应用[J].河海大学学报(自然科学版),1998,26(4):103-106.
    [13]张鹰,丁贤荣,王文.水深遥感与潮滩地形冲淤变化分析[J].中国港湾建设,1998,2:26-30.
    [14]丁贤荣,张鹰,黄志良.长江口北支水下地形遥感测量研究[J].中国港湾建设,1997(4):6-10.
    [15]邸凯昌,等.南沙群岛海域浅海水深提取及影像海图制作技术[J].国土资源遥感,1999,(3):59-64.
    [16]庞蕾,聂志峰.星载多光谱浅海水深测量方法[J].山东理工大学学报(自然科学版),2003,7(6):59-61.
    [17]黄海军,樊辉.1976年黄河改道以来三角洲近岸区变化遥感监测[J].海洋与湖沼,2004,35(4):306-314.
    [18]王艳姣,张鹰.基于BP人工神经网络的水体遥感测深方法研究[J].海洋工程,2006,23(4):33-38.
    [19]张鹰,张芸,张东钱燕.南黄海辐射沙脊群海域的水深遥感[J].海洋学报,2009,31(3):39-45.
    [20]黄韦艮,傅斌,周长宝,杨劲松,史爱琴,厉冬玲。星载SAR水下地形和水深遥感的最佳雷达系统参数模拟[J],遥感学报,2000,4(3):172-177.
    [21]范开国,黄韦艮,甘锡林,傅斌SAR海洋内波表层流反演方法探讨[J] ,遥感学报,2010,14(1):127-139.
    [22]梁开龙.水下地形测量[M].北京:测绘出版社,1995
    [23]柏春广,穆桂金,艾比湖湖相沉积物粒度的分维特征与环境意义[J].干旱区地理,2002,25(4):336-341.
    [24]陈蜀江,等,新疆艾比湖湿地自然保护区综合科学考察[M].乌鲁木齐,新疆科技出版社,2006,4-8,9-10,4-8,11-18.
    [25]吴敬禄,林琳,新疆艾比湖湖面波动特征及其原因[J].海洋地质与第四纪地质,2004,24(1):57-58.
    [26]阎顺,穆桂金,远藤邦彦,2500年来艾比湖的环境演变信息[J].干旱区地理,2003,26(3):227-232.
    [27]柏春光,穆桂金.艾比湖的湖岸地貌及其反映的湖面变化[J].干旱区理,1999,22(1):35-37.
    [28]吉力力·阿不都万里,穆桂金,艾比湖干涸湖底尘暴及其灾害分析[J].干旱区地理,2002,25(2):149-154.
    [29]杨川德,朱英民,艾比湖流域水资源及其特征[J],干旱区地理, 1990,13(4):15-22.
    [30]李艳红,楚新正,金海龙.新疆艾比湖流域水文特征分析[J].水文,2006,26(5):68-71.
    [31]周长海,雷加强,艾比湖地区风沙危害趋势及对欧亚大陆桥的影响[J].干旱区地理,2005,28(1):98-99.
    [32]苏颖君,张振海,包安明。艾比湖生态环境恶化及防治对策[J]干旱区地理,2002,25(2):143—148.
    [33]黄镇,何清.艾比湖面积的遥感气候学分析[J].新疆气象,2002,25(3):5-6.
    [34]弥艳,常顺利,师庆东,高翔,黄聪.艾比湖流域2008年丰水期水环境质量现状评价[J].湖泊科学,2009,21(6):891-894.
    [35]汪军能,张落成,艾比湖流域水资源变化与区域响应[J].干旱区资源与环境,2006,20(4):157—161.
    [36]钱亦兵,蒋进,吴兆宁,艾比湖地区土壤异质性及其对植物群落生态分布的影响[J].干旱区地理,2003,26(3):217-222.
    [37]袁国映.艾比湖退缩及其对环境的影响[J],干旱区地理,1990.13(4):62-67.
    [38]陈强,基于RS/GIS的土地利用/覆盖变化与生态环境质量研究以艾比湖沿岸绿洲为例[D].西北大学,2005,15-16.
    [39]程博,刘少峰,杨巍然. Terra卫星ASTER数据的特点与应用[J],华东地质学院学报.2003,26(1):15-17.
    [40]李天文.GPS原理及应用(21世纪高等院校教材)[M].北京科学出版社,2003.RTK技术.
    [41]程博,刘少峰,杨巍然. Terra卫星ASTER数据的特点与应用[J],华东地质学院学报.2003,26(1):15-17.
    [42]田庆久.基于遥感影像的大气辐射校正和反射率反演方法应用,气象学报,1998, 9(4 ): 4 56 - 461.
    [43]Chavez P S Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data[J]. Remote Sensing Environ.1988 ,24:4 59-479.
    [44]冯娟.西天山云杉林遥感生物量模型及其空间分布格局研究[D].新疆师范大学,硕士论文,2008,6.
    [45]梅安新等,遥感导论[M].北京,高等教育出版社,2002:84-91,112-123.
    [46]党安荣,王晓栋等.ERDAS IMAGINE遥感图像处理方法[M].北京,清华大学出版社,2003:174-184.
    [47]徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595.
    [48]叶明,李仁东,许国鹏.多光谱水深遥感方法及研究进展[J],世界科技研究与发展.2007,29(2):76-79.
    [49]赵英时.遥感应用分析原理与方法[M].北京,科学出版社,2003.
    [50]王艳姣,董文杰,张培群,闫峰.水深可见光遥感方法研究进展[J].海洋通报,2007,26( 5): 93-100.
    [51]汤国安,刘学军,闾国年等.数字高程模型及地学分析的原理与方法[M].北京,科学出版社,2005,4-8,12-15,111-119,243-251.
    [52]钟秋林,基于DEM的地形地貌生成技术研究与实现[硕士论文].南京,南京理工大学,2005,13-14,16-17.
    [53]陈于林,基于DEM的水系提取及水系网多级分解[硕士论文].西南交通大学, 2006,8-9.
    [54]许宝荣,基于栅格DEM的河网自动提取研究[硕士论文].兰州,兰州大学,2005,14-18.
    [55]杨正尧.测量学[M] .北京,化学工业出版社,2005:166-169.
    [56]李志林,朱庆.数字高程模型[M] .武汉大学出版社,1999:39-45.
    [57]王义祥,祁连山地区数字地形模型分析与地貌演化[D] .兰州大学,硕士论文,1999,7.
    [58]马龙,杜道生.GIS中DEM产品精度的分析和评价[J],测绘信息与工程,2003,28(3):4-5.
    [59]汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M],科学出版社,2006.
    [60]黄芳.空间统计学及其在空间模式分析中的应用[硕士论文]华中师范大学,2005.
    [61]郭仁忠.空间分析[M],高等教育出版社,2001.
    [62]Burrough, P. A. and McDonell, R.A.,1998. Principles of Geographical Information Systems (Oxford University Press, New York), p. 190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700