低分子量水溶性聚合物与蒙脱土的相互作用及其环境响应行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油开采的不断进行,深层油气资源储量在能源中所占的比例越来越大。为了解决能源短缺、满足我国能源的需求,高效地勘探和开采深层油气资源已成为亟待解决的问题。基于深层油气资源开发中面临的高温、高盐等苛刻环境,作者通过大量的文献调研发现具有高电荷、高温下易与粘土吸附的磺酸基、羟基、胺基等强水化基团的水溶性聚合物能够维持和控制钻井液在高温、高盐条件下的滤失性和流变性能,因此研究高温、高盐下该类具有特定结构及功能基团的水溶性聚合物分子物理化学性质的变化及其与粘土颗粒之间的相互作用,能够为调控钻井液的各项性能及合成新型钻井液处理剂提供理论指导,有利于发展适用于深井和超深井的高性能钻井液技术,也是保护油气层、提高油气产量、提高油气勘探开发综合经济效益、满足环保等多方面的必然要求。
     近年来,为了提高钻井液的抗温抗盐性能,该领域的研究主要集中在具有特定结构及功能基团的新型水溶性聚合物分子的合成,以及室温下该类水溶性聚合物分子的物理化学性质及其与粘土颗粒之间的相互作用,得到了该类水溶性聚合物的物理化学性质随浓度、pH值、无机盐浓度、温度等因素变化的规律,深刻认识了这些因素对水溶性聚合物与粘土颗粒之间的相互作用的影响。尽管如此,我们注意到仍有许多问题需要进一步深入探讨:(1)低分子量的聚醚胺在粘土颗粒上的吸附机理与其分子结构的关系,以及在高温、高盐下聚醚胺对粘土颗粒分散体系稳定性的影响;(2)温度对低分子量聚醚胺与粘土颗粒之间的相互作用的影响,进而对端胺聚醚与粘土混合分散体系流变学性质的影响;(3)低分子量的磺化共聚物分子与无机盐的相互作用及其导致的聚合物分子构型、亲疏水性、界面活性以及乳化性能的变化;(4)仍需大量新的表征方法探讨具有高电荷、高温下易与粘土吸附的磺酸基、羟基、胺基等强水化基团的水溶性聚合物的结构与溶液特性的关系及其在水溶液中的聚集行为发生的机理。
     基于上述背景,本文选择了两类钻井液中常用的低分子量的水溶性聚合物一端胺聚醚和苯乙烯磺酸-马来酸酐共聚物(PSSMA)。首先,初步探讨了不同结构的端胺聚醚在蒙脱土颗粒上的吸附机理及其对粘土分散体系稳定性的影响,进一步考察无机盐加入或高温处理后端胺聚醚/粘土混合分散体系稳定性的变化并分析其原因。在此基础上,发现了端胺聚醚与蒙脱土混合体系的温敏凝胶化现象,考察了不同温度下端胺聚醚/蒙脱土混合分散体系流变学性能的变化并尝试解释了该混合体系出现溶胶-凝胶转变的机理。第四章探讨了无机盐诱导PSSMA分子构型、亲疏水性、界面活性以及乳化性能的变化,制备出钙离子敏感的Pickering乳液。丰富了高温高盐下聚合物分子物理化学性质变化的研究,提出了聚合物性质改变的可能机理,明确了聚合物性质的改变对粘土分散体系胶体稳定性的影响。
     本文的主要内容包括以下三个部分:1.端胺聚醚对蒙脱土悬浮液胶体稳定性的影响
     对比研究了含有相似数目氧乙烯基团(EO)的端胺聚醚JeffamineM1000(M1000)和聚乙二醇PEO在蒙脱土颗粒上的吸附及对粘土体系胶体稳定性的影响。首先,我们利用总有机碳分析仪测定了M1000和PEO在蒙脱土颗粒上的吸附等温线,结合文献和实验给出了两者在蒙脱土颗粒上的吸附机理。通过X射线粉末衍射、Zeta电位、流变、沉降观察和透射电子显微镜(TEM)等手段表征了M1000和PEO对蒙脱土分散体系影响的异同,并且利用相互作用势能曲线解释了M1000和PEO的吸附构象对粘土分散体系抗盐性的影响。实验结果证实,M1000分子主要以末端的极性胺基通过静电作用吸附在粘土颗粒表面,使得EO基团伸向体相溶液中,从而在粘土颗粒表面形成浓密堆积的类似蘑菇的构象,提高了粘土分散体系的抗盐性并维持了高温老化处理后粘土分散体系的稳定性和流变学性能。相应地,PEO分子主要通过氢键作用吸附在粘土颗粒上,并采取平躺的构象,不能有效地提高粘土分散体系的抗盐性,而且还会导致高温老化处理后的粘土分散体系发生桥联絮凝,恶化了高温处理后粘土分散体系的流变学性能。这种聚合物末端结构的不同导致胶体分散体系性质的改变,可以用来指导分散体系胶体稳定性的调控,而且在特殊的应用领域如钻井液和水处理有着潜在的应用前景。2.端胺聚醚与蒙脱土混合体系的温敏凝胶行为的研究
     通常聚合物与粘土的混合体系表现为低温粘度增大而高温粘度降低的特点,而端胺聚醚与蒙脱土的混合体系则表现出相反的粘温效应,即低温粘度降低而高温粘度增大。当端胺聚醚和蒙脱土按照一定比例混合时,会出现温敏凝胶化的现象。在较低的温度时,吸附在粘土颗粒表面上的聚氧乙烯(PEO)或聚氧丙烯(PPO)嵌段的溶解性较好,能够有效地伸展并提供空间位阻作用,使得粘土分散体系稳定,形成低粘度的溶胶。随着温度的升高,PEO或PPO嵌段发生去水化,在水中的溶解性降低,伸展的PEO或PPO嵌段逐渐发生卷曲;当超过临界转变温度时,粘土分散体系由溶胶转变为凝胶,对应的表观粘度增大,且这种溶胶-凝胶的转变是可逆的。此外,随着端胺聚醚分子中EO或PO基团的数目增多,该溶胶-凝胶转变的临界温度升高。根据对胶体颗粒之间的相互作用力的定性分析,发现端胺聚醚修饰的粘土颗粒的相互作用势能曲线上存在着一个较弱的吸引势能(第二极小值)。随着温度的升高或者端胺聚醚分子量的降低,空间稳定层的厚度减小,吸引势能的势垒增加,导致端胺聚醚与蒙脱土的混合体系在远离0温度条件下发生溶胶-凝胶的转变,由于该吸引势能的势阱较浅,所以混合体系溶胶-凝胶转变具有可逆性,这一特性使得此类温敏智能凝胶体系在钻井堵漏过程中有着巨大的应用前景。3.钙离子诱导PSSMA形成可逆的纳米聚集体及其响应的Pickering乳液
     磺化聚合物由于其电荷密度高,不受分散介质pH值的影响,以及良好的降滤失效果被广泛应用于油气钻探方面,而由高温高盐导致的磺化聚合物去水化和聚集会引起深井钻探时钻井液性能的恶化,因此研究高温、高盐下磺化聚合物物理化学性质的变化具有重要意义。本章研究了苯乙烯磺酸-马来酸酐共聚物(PSSMA)与钙离子的结合对该结合引起的分子尺寸、亲水性和界面活性的变化。利用动态光散射、低温透射电镜、荧光芘探针和动态界面张力仪等手段对加入氯化钙后磺化聚合物水溶液的性质进行了表征。随着钙离子浓度的增加,PSSMA分子的尺寸先减小后增大,当超过临界钙离子浓度0.2mol/L时,在水溶液中形成纳米聚集体,其平均粒径在10-40nm。用纯水稀释后,PSSMA纳米聚集体又重新溶解。基于PSSMA纳米聚集体的这一特性,我们成功制备了钙离子响应的Pickering乳液。当钙离子浓度较高时,形成的PSSMA纳米聚集体颗粒能够吸附在油水界面上,有效地降低界面张力,从而形成稳定的纳米尺度的Pickering乳液;而通过简单的纯水稀释,体系中钙离子浓度下降,PSSMA纳米聚集体又解离为单个的聚合物分子,使得聚集体颗粒从油水界面上脱附,导致乳液的稳定性快速下降。低温透射电镜和动态界面张力证实了PSSMA纳米聚集体在乳液滴表面的吸附。乳液的显微镜照片也清楚地表明了乳液的稳定性与钙离子浓度之间的关系。因此认为制备的Pickering乳液是钙离子浓度响应的,为调控乳液稳定性提供了一种新的方法。
With the ongoing exploration of oil, the proportion of oil and gas resources in deep strata is becoming larger and larger. In order to meet the increasing demand for oil energy, the efficient exploration and exploitation of oil and gas resources in deep strata are of particular importance. Based on investigation of a large number of related literatures in detail, the water-soluble polymer with-SO3H,-NH2, or-OH groups are usually used to effectively regulate and control the rheology and filtration loss under high-temperature and high-salinity. Therefore, the investigation of the physical and chemical properties of the above polymer molecules in solution under high-temperature and high-salinity and their effects on the colloidal stability of montmorillonite suspensions is the key technology to design and produce the high-temperature resistant water-based drilling fluids. It is very important for the development of the ultra-deep drilling technology and the application of oil consumption in such a large demandent country. What is more, it could accelerate the speed of China's oil and gas exploration and development, to ensure self-sufficiency ratio of oil and gas resources in China and the country's energy security.
     Recently, researchers focus on the developing new drilling fluid additives with good performance through polymerization with molecular structure design. They also studied the effects of polymer concentration, pH, salt concentration and temperature on the physical and chemical properties of the above polymer molecules in solution at room temperature and their influences on the colloidal stability of montmorillonite suspensions. However, there are still some problems in the following aspects. Firstly, the adsorption mechanism of polyetheramine on montmorillonite particles and its influences on the colloidal stability of montmorillonite suspensions are not fully understood. Secondly, the effect of temperature on the rheology behaviors of aqueous solutions containing polytheramine and montmorillonite particles should be studied in detail. Thirdly, the influences of high-salinity on the properties of sulfonated polymers are not clear. Finally, more methods should be explored to investigate the effects of high-temperature and high-salinity on the properties of water-soluble polymer in solutions.
     Based on the above discussion, in this dissertation, two kinds of water-soluble polymers with low molecular weight, polyetheramine and styrene sulfonic acid maleic anhydride copolymer (PSSMA) are investigated. First, the adsorption mechanism of polyetheramines on montmorillonite particles and their effects on the colloidal stability of montmorillonite suspensions after high temperature treatments or in the presence of salts are studied. Second, by investigating the rheology behavior of montmorillonite dispersion with polyetheramine under different temperatures, thermogelling in polyetheramine/montmorillonite suspensions are studied in detail. In addition, the physical and chemical properties of PSSMA molecules in the presence of Ca2+ions are investigated systematically, including the aggregation of PSSMA molecules and the interfacial activity.
     The present dissertation includes three topics.
     1. Colloidal properties of montmorillonite suspensions modified with polyetheramine
     A systematical evaluation of a polyetheramine (Jeffamine M1000) and polyethylene oxide (PEO), which have a similar number of ethylene oxide units and molecular weight, on modulating colloidal stability of montmorillonite suspensions exposed to high temperature (120℃,16h) or salt conditions are performed. A varied of methods including measurement of adsorption, X-ray diffraction (XRD), zeta potential, transmission electron microscopy (TEM), settlement experiments and rheology measurements are used to illustrate the difference. Results indicate that M1000molecules adsorb onto the particles mainly through electrostatic interaction and adopt a densely packed mushroom configuration on the clay surface. Because of the adsorption properties of M1000, the salt tolerance is improved slightly (from10mmol/L to50mmol/L NaCl) and the colloidal stability of the high temperature treated suspensions is maintained. Meanwhile, PEO molecules adsorb onto clay via hydrogen bonding and take a compact conformation on the clay surface, which could not improve the salt tolerance effectively and leads to a weak bridging flocculation at high temperature. Thus, this finding not only provides some new guidance on modulating the colloidal stability of dispersion but also would be very useful in specific applications, such as drilling fluids and water treatment.2. Thermoreversible gelation in montmorillonite suspension containing polyetheramine
     Most types of structured complex fluids tend to decrease in viscosity with increasing temperature. However, in polyetheramine/montmorillonite mixed system the polymer-liquid affinity is strongly influenced by temperature, and as a result, unusual behaviors occur in the microstructure of dispersions upon heating. At low temperature (5℃), water is a good solvent for PEO and PPO chains of polyetheramine molecules adsorbed on montmorillonite particles, and the dispersion is a stable, low-viscosity sol. With the increase of temperature, water becomes a progressively worse solvent for PEO and PPO chains. Beyond a critical temperature (Tc), there is a sharp transition in microstructure from a stable sol to a volume-filling gel. The sol-gel transition is reversible, which requires each component to be present in certain percentage. Remarkably, the gelation occurs under significantly better than0temperature, which nearly equals the lower consolute solution temperature for PEO and PPO chains in water. Tc is strongly influenced by the chain length of PEO and PPO. The longer the PEO chains, the higher the Tc for gelation. We attribute the onset of thermogelling to the secondary minimum in the interparticle potential that can develop in the case of short stabilizing moieties and moderate solvent conditions. Owing to the modulating of the microstructure upon heating, this finding provides theoretical basis and guidance for filed application of the plugging principle and technology of gel sug.
     3. Ca2+ion responsive Pickering emulsions stabilized by PSSMA nanoaggregates
     Sulfonated polymers are a variety of strong water-soluble anionic polyelectrolytes with high charge density, good dispersion property in aqueous solution, without pH control and good surface and interfacial activities. They are often used in oil and gas drilling, whose dehydration and aggregation frequently brings about the difficulty of losing control of drilling fluid filtration at the elevated temperatures and salt concentrations. Therefore, the investigations of the physical and chemical properties of the sulfonated polymer molecules in solution under high-temperature and high-salinity are important. This topic is mainly focused on the interaction between Ca2+and Poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) molecules and its effect on the physical and chemical properties of PSSMA molecules. Results from dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM) indicate that the formation of PSSMA nanoaggregates is strongly dependent on Ca2+concentration. The PSSMA copolymer only aggregates above a critical Ca2+concentration (0.2mol/L) with an average diameter of10-40nm. After dilution with water, PSSMA nanoaggregates are rapidly redissolved again. Based on the properties of PSSMA nanoaggregates, Ca2+ion responsive Pickering emulsions were successfully prepared. At high Ca2+concentrations, the emulsions with high stability against coalescence can be prepared with the size in the submicrometer range as determined by DLS. Cryo-TEM and dynamic interfacial tension results confirm the adsorption of PSSMA nanoaggregates at the interface, which is the key to the stability of the emulsions. More importantly, rapid demulsification can be achieved by dilution with water on demand. It is because that upon dilution with water, PSSMA nanoaggregates undergo a transition from stable nanoaggregates to individual polymer chains, which leads to interfacial desorption of nanoaggregates and rapid demulsification of emulsions. Thus, this finding presents a new manipulation on emulsion stability and is expected to provide a useful guidance in the field of oil recovery, food science, environment protection and so on.
引文
[1]鄢捷年,钻井液工艺学,石油大学出社,2001.
    [2]Caenn, R.; Chillingar, G. V., Drilling fluids:State of the art[J], Journal of petroleum science and engineering,1996,14:221-230.
    [3]Bland, R. G.; Mullen, G. A.; Gonzalez, Y. N.; Harvey, F. E.; Pless, M. L., HPHT drilling fluid challenges, in:IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Society of Petroleum Engineers,2006.
    [4]Fisk, J.; Jamison, D., Physical properties of drilling fluids at high temperatures and pressures[J], SPE drilling engineering,1989,4:341-346.
    [5]Amani, M.; Al-Jubouri, M., The Effect of High Pressures and High Temperatures on the Properties of Water Based Drilling Fluids [J], Energy Science & Technology, 2012,4.
    [6]Thaemlitz, C.; Patel, A.; Coffin, G.; Conn, L., New environmentally safe high-temperature water-based drilling-fluid system[J], SPE drilling & completion,1999, 14:185-189.
    [7]Wu, Y.-M.; Zhang, B.-Q.; Wu, T.; Zhang, C.-G., Properties of the forpolymer of N-vinylpyrrolidone with itaconic acid, acrylamide and 2-acrylamido-2-methyl-l-propane sulfonic acid as a fluid-loss reducer for drilling fluid at high temperatures [J], Colloid and Polymer Science,2001,279:836-842.
    [8]Patel, A.; Stamatakis, S.; Young, S.; Friedheim, J., Advances in Inhibitive Water-Based Drilling Fluids-Can They Replace Oil-Based Muds?, in:International Symposium on Oilfield Chemistry, Society of Petroleum Engineers,2007.
    [9]Burrafato, G.; Miano, F.; Carminati, S.; Lockhart, T., New chemistry for chromium-free bentonite drilling fluids stable at high temperatures, in:International symposium on oilfield chemistry,1995, pp.181-190.
    [10]Dickert Jr, J. J.; Heilweil, I. J., Controlled release dispersant for clay-thickened, water-based drilling fluids, in, Google Patents,1987.
    [11]Burba III, J.; Holman, W.; Crabb, C., Laboratory and Field Evaluations of Novel Inorganic Drilling Fluid Additive, in:SPE/IADC Drilling Conference, Society of Petroleum Engineers,1988.
    [12]Wilcox, R.; Jarrett, M., Polymer Deflocculants:Chemistry and Application, in: SPE/IADC Drilling Conference, Society of Petroleum Engineers,1988.
    [13]Plank, J. P.; Hamberger, J., Field Experience With a Novel Calcium-Tolerant Fluid-Loss Additive for Drilling Muds, in:European Petroleum Conference, Society of Petroleum Engineers,1988.
    [14]张和平;吴修宾;耿晓慧;侯美玲,复合阳离子钻井液体系的研究和应用[J],石油钻探技术,2006,33:40-42.
    [15]王中华,对中国钻井液处理剂及钻井液体系发展的认识[J],钻井液与完井液,2001.18:32-35.
    [16]刘庆来,高钙盐钻井液体系的研究与应用[J],石油钻探技术,2005,33:26-28.
    [17]孙举;王中华;王善举;郭金爱;马文英;杨海,强抑制性高钙盐聚合物钻井液体系的研究与应用[J],断块油气田2011,18:541-544.
    [18]王平全,三磺处理剂的高温交联及影响因素IJ],钻井液与宏井液,1991,8:26-32.
    [19]王中华,国内钻井液及处理剂发展评述[J],中外能源,2013,18.
    [20]赵炬肃;陈亮,6925米超深井钻井液技术[J],钻并液与宏井液,2007,24:78-81.
    [21]林学文;李家龙,抗高温复合金属聚磺钻井液的评价与应用IJ],钻采工艺2000.23:65-67.
    [22]Luckham, P. F.; Rossi, S., The colloidal and rheological properties of bentonite suspensions [J], Advances in Colloid and Interface Science,1999,82:43-92.
    [23]Brown, G.; Brindley, G., Crystal structures of clay minerals and their X-ray identification[J], Mineralogical Society, London,1980,361-410.
    [24]Tombacz, E.; Szekeres, M., Colloidal behavior of aqueous montmorillonite suspensions:the specific role of pH in the presence of indifferent electrolytes [J], Applied clay science,2004,27:75-94.
    [25]健鹰,泥浆胶体化学,石油大学出版社,1988.
    [26]Van Olphen, H., Internal mutual flocculation in clay suspensions[J], Journal of colloid science,1964,19:313-322.
    [27]Chang, S.; Ryan, M.; Gupta, R., The effect of pH, ionic strength, and temperature on the rheology and stability of aqueous clay suspensions[J], Rheologica acta,1993, 32:263-269.
    [28]Durand, G.; Lafuma, F.; Audebert, R., Adsorption of cationic polyelectrolytes at clay-colloid interface in dilute aqueous suspensions-effect of the ionic strength of the medium, in:Trends in Colloid and Interface Science II, Springer,1988, pp.278-282.
    [29]Flood, C.; Cosgrove, T.; Howell, I.; Revell, P., Effects of electrolytes on adsorbed polymer layers:Poly (ethylene oxide)-silica system[J], Langmuir,2006,22:6923-6930.
    [30]Beall, G. W.; Goss, M., Self-assembly of organic molecules on montmorillonite[J], Applied clay science,2004,27:179-186.
    [31]Deng, Y.; Dixon, J. B.; White, G. N., Bonding mechanisms and conformation of poly (ethylene oxide)-based surfactants in interlayer of smectite [J], Colloid and Polymer Science,2006,284:347-356.
    [32]Kang, S.; Xing, B., Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT[J], Langmuir,2007,23:7024-7031.
    [33]Theng, B., Clay-polymer interactions; summary and perspectives [J], Clays and Clay Minerals,1982,30:1-10.
    [34]Parfitt, R.; Greenland, D., The adsorption of poly (ethylene glycols) on clay minerals[J], Clay Minerals,1970,8:305-315.
    [35]Hamaker, H., The London-van der Waals attraction between spherical particles[J], Physica,1937,4:1058-1072.
    [36]French, R. H., Origins and applications of London dispersion forces and Hamaker constants in ceramics [J], Journal of the American Ceramic Society,2000, 83:2117-2146.
    [37]Hough, D. B.; White, L. R., The calculation of Hamaker constants from Liftshitz theory with applications to wetting phenomena[J], Advances in Colloid and Interface Science,1980,14:3-41.
    [38]Ackler, H. D.; French, R. H.; Chiang, Y.-M., Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water:From force laws and physical properties[J], Journal of colloid and interface science,1996,179:460-469.
    [39]Israelachvili, J. N., Intermolecular and surface forces:revised third edition, Academic press,2011.
    [40]Israelachvili, J. N.; Adams, G. E., Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm[J], Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1978,74:975-1001.
    [41]Van Oss, C. J., Interfacial forces in aqueous media, CRC press,2006.
    [42]Elimelech, M.; Jia, X.; Gregory, J.; Williams, R., Particle deposition & aggregation:measurement, modelling and simulation, Butterworth-Heinemann,1998.
    [43]Napper, D. H., Polymeric stabilization of colloidal dispersions, Academic Press London,1983.
    [44]Vrij, A., Polymers at interfaces and the interactions in colloidal dispersions [J], Pure Appl. Chem,1976,48:471.
    [45]Zhulina, E. B.; Borisov, O. V.; Priamitsyn, V. A., Theory of steric stabilization of colloid dispersions by grafted polymers[J], Journal of colloid and interface science, 1990,137:495-511.
    [46]Bevan, M. A.; Prieve, D. C., Forces and hydrodynamic interactions between polystyrene surfaces with adsorbed PEO-PPO-PEO[J], Langmuir,2000,16:9274-9281.
    [47]Walz, J. Y.; Sharma, A., Effect of long range interactions on the depletion force between colloidal particles[J], Journal of colloid and interface science,1994,168: 485-496.
    [48]Mao, Y.; Cates, M.; Lekkerkerker, H., Depletion force in colloidal systems[J], Physica A:Statistical Mechanics and its Applications,1995,222:10-24.
    [49]Koenderink, G.; Vliegenthart, G.; Kluijtmans, S.; Van Blaaderen, A.; Philipse, A.; Lekkerkerker, H., Depletion-induced crystallization in colloidal rod-sphere mixtures[J], Langmuir,1999,15:4693-4696.
    [50]Oversteegen, S.; Lekkerkerker, H., The importance of correlations in free-volume models for depletion phenomena[J], Physica A:Statistical Mechanics and its Applications,2002,310:181-196.
    [51]Baghdadi, H. A.; Jensen, E. C.; Easwar, N.; Bhatia, S. R., Evidence for re-entrant behavior in laponite-PEO systems[J], Rheologica acta,2008,47:121-127.
    [52]Eckert, T.; Bartsch, E., Re-entrant glass transition in a colloid-polymer mixture with depletion attractions [J], Physical review letters,2002,89:125701.
    [53]Pham, K. N.; Puertas, A. M.; Bergenholtz, J.; Egelhaaf, S. U.; Moussaid, A.; Pusey, P. N.; Schofield, A. B.; Cates, M. E.; Fuchs, M.; Poon, W. C., Multiple glassy states in a simple model system[J], Science,2002,296:104-106.
    [54]李晓晖;朱怀江,实用流变测量学[J],石油工业出版社,1998.[55] Steffe, J. F., Rheological methods in food process engineering, Freeman press,
    1996.
    [56]Bingham, E. C., Fluidity and plasticity [J],1922.
    [57]Casson, N., Rheology of disperse systems, ed. CC Mill, in, London:Pergamon Press,1959.
    [58]Herschel, W.; Bulkley, R., Measurement of consistency as applied to rubber-benzene solutions, in:Am. Soc. Test Proc,1926, pp.621-633.
    [59]Zaman, A. A.; Delorme, N., Effect of polymer bridging on rheological properties of dispersions of charged silica particles in the presence of low-molecular-weight physically adsorbed poly (ethylene oxide)[J], Rheologica acta,2002,41:408-417.
    [60]Hiller, K., Rheological measurements on clay suspensions and drilling fluids at high temperatures and pressures [J], Journal of Petroleum Technology,1963,15:779-788.
    [61]Van Olphen, H., Forces between suspended bentonite particles[J], Clays and Clay Minerals,1956,4:204-224.
    [62]Annis, M. R., High-temperature flow properties of water-base drilling fluids[J], Journal of Petroleum Technology,1967,19:1,074-071,080.
    [63]Alderman,N.;Gavignet,A.;Guillot,D.;Maitland,G.,High-Temperature High-Pressure Rheology of Water-Based Muds, in:SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers,1988.
    [64]Briscoe, B.; Luckham, P.; Ren, S., The properties of drilling muds at high pressures and high temperatures [J], Philosophical Transactions of the Royal Society of London. Series A:Physical and Engineering Sciences,1994,348:179-207.
    [65]胡书勇;张烈辉;寥清碧;敬兴胜;杜波;余华洁,现代钻井技术的发展与油气勘探开发的未来[J],天:然气工业,2005.
    [66]周进;王宏;陈林;刘远扬,却勒构造高密度欠饱和盐水钻井液技术[J],钻井液与完井液,2003,20:38-40.
    [67]孟庆生;江山红;石秉忠,塔河油田盐膏层钻井液技术[J],钻井液与完并液2005.19:74-76.
    [68]Khandal, R.; Tadros, T. F., Application of viscoelastic measurements to the investigation of the swelling of sodium montmorillonite suspensions[J], Journal of colloid and interface science,1988,125:122-128.
    [69]Miano, F.; Rabaioli, M., Rheological scaling of montmorillonite suspensions:the effect of electrolytes and polyelectrolytes[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,1994,84:229-237.
    [70]Callaghan, I.; Ottewill, R., Interparticle forces in montmorillonite gels[J], Faraday Discussions of the Chemical Society,1974,57:110-118.
    [71]Norrish, K., The swelling of montmorillonite[J], Discuss. Faraday Soc.,1954,18: 120-134.
    [72]Rand, B.; Pekenc, E.; Goodwin, J. W.; Smith, R. W., Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions[J], Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1980,76:225-235.
    [73]Paineau, E.; Michot, L. J.; Bihannic, I.; Baravian, C., Aqueous suspensions of natural swelling clay minerals.2. Rheological characterization[J], Langmuir,2011,27: 7806-7819.
    [74]Rossi, S.; Luckham, P.; Tadros, T. F., Influence of non-ionic polymers on the rheological behaviour of Na+-montmorillonite clay suspensions. Part II. Homopolymer ethyleneoxide and polypropylene oxide-polyethylene oxide ABA copolymers[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003,215:1-10.
    [75]De Lisi, R.; Gradzielski, M.; Lazzara, G.; Milioto, S.; Muratore, N.; Prevost, S., Aqueous Laponite Clay Dispersions in the Presence of Poly (ethylene oxide) or Poly (propylene oxide) Oligomers and their Triblock Copolymers[J], The Journal of Physical Chemistry B,2008,112:9328-9336.
    [76]Morariu, S.; Bercea, M., Effect of Temperature and Aging Time on the Rheological Behavior of Aqueous Poly (ethylene glycol)/Laponite RD Dispersions [J], The Journal of Physical Chemistry B,2011,116:48-54.
    [77]Sun, K.; Raghavan, S. R., Thermogelling aqueous fluids containing low concentrations of Pluronic F127 and laponite nanoparticles[J], Langmuir,2010,26: 8015-8020.
    [78]罗平亚,抗高温水基泥浆作用原理[J],石油学报1981,2:81-92.
    [79]鄢捷年,抗高温抗盐失水控制剂磺甲基酚醛树脂(SMP)作用机理的研究[J],西南石油大学学报(自然科学版),1984,4:1-15.
    [80]李卓美,高分子泥浆降失水剂的分子结构与其耐盐性能的关系(Ⅰ)[J],油田化学1986,3:28-38.
    [81]李卓美,高分子泥浆降失水剂的分子结构与其耐盐性能的关系(Ⅱ)[J],油田化学,1986,3:103-113.
    [82]Peng, S.; Wu, C., Light scattering study of the formation and structure of partially hydrolyzed poly (acrylamide)/calcium (II) complexes[J], Macromolecules,1999,32: 585-589.
    [83]Tanahatoe, J.; Kuil, M., Polyelectrolyte aggregates in solutions of sodium poly (styrenesulfonate)[Jl, The Journal of Physical Chemistry B,1997,101:5905-5908.
    [84]Sondjaja, H. R.; Hatton, T. A.; Tarn, K., Self-assembly of poly (ethylene oxide)-block-poly (acrylic acid) induced by CaCl2:mechanistic study[J], Langmuir,2008,24: 8501-8506.
    [85]Kj(?)niksen, A.-L.; Zhu, K.; Behrens, M. A.; Pedersen, J. S.; Nystrom, B., Effects of temperature and salt concentration on the structural and dynamical features in aqueous solutions of charged triblock copolymers[J], The Journal of Physical Chemistry B,2011,115:2125-2139.
    [86]Liu, X.; Luo, S.; Ye, J.; Wu, C., Effect of Ca2+ion and temperature on association of thermally sensitive PAA-b-PNIPAM diblock chains in aqueous solutions [J], Macromolecules,2012,45:4830-4838.
    [87]Wang, T.; Zhao, C.; Xu, J.; Sun, D., Enhanced Ca2+binding with sulfonic acid type polymers at increased temperatures [J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,417:256-263.
    [88]Ramsden, W., Separation of Solids in the Surface-Layers of Solutions and'Suspensions'(Observations on Surface-Membranes, Bubbles, Emulsions, and Mechanical Coagulation).-Preliminary Account[J], Proceedings of the Royal Society of London,1903,156-164.
    [89]Pickering, S. U., Cxcvi.-emulsions[J], Journal of the Chemical Society, Transactions,1907,91:2001-2021.
    [90]Velev,O.; Furusawa, K.; Nagayama, K., Assembly of latex particles by using emulsion droplets as templates.1. Microstructured hollow spheres[J], Langmuir, 1996,12:2374-2384.
    [91]Velev, O.; Furusawa, K.; Nagayama, K., Assembly of latex particles by using emulsion droplets as templates.2. Ball-like and composite aggregates [J], Langmuir, 1996,12:2385-2391.
    [92]Velev, O.; Nagayama, K., Assembly of latex particles by using emulsion droplets. 3. Reverse (water in oil) system[J], Langmuir,1997,13:1856-1859.
    [93]Dinsmore, A.; Hsu, M. F.; Nikolaides, M.; Marquez, M.; Bausch, A.; Weitz, D., Colloidosomes:selectively permeable capsules composed of colloidal particles[J], Science,2002,298:1006-1009.
    [94]Hsu, M. F.; Nikolaides, M. G.; Dinsmore, A. D.; Bausch, A. R.; Gordon, V. D.; Chen, X.; Hutchinson, J. W.; Weitz, D. A.; Marquez, M., Self-assembled shells composed of colloidal particles:fabrication and characterization [J], Langmuir,2005, 21:2963-2970.
    [95]Duan, H.; Wang, D.; Sobal, N. S.; Giersig, M.; Kurth, D. G.; Mohwald, H., Magnetic colloidosomes derived from nanoparticle interfacial self-assembly [J], Nano letters,2005,5:949-952.
    [96]Noble, P. F.; Cayre, O. J.; Alargova, R. G.; Velev, O. D.; Paunov, V. N., Fabrication of "hairy" colloidosomes with shells of polymeric microrods[J], Journal of the American Chemical Society,2004,126:8092-8093.
    [97]Binks, B. P., Particles as surfactants-similarities and differences [J], Current Opinion in Colloid & Interface Science,2002,7:21-41.
    [98]Levine, S.; Bowen, B. D.; Partridge, S. J., Stabilization of emulsions by fine particles I. Partitioning of particles between continuous phase and oil/water interface[J], Colloids and surfaces,1989,38:325-343.
    [99]Paunov, V. N.; Cayre, O. J., Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique[J], Advanced Materials,2004,16:788-791.
    [100]Aveyard, R.; Binks, B. P.; Clint, J. H., Emulsions stabilised solely by colloidal particles[J], Advances in Colloid and Interface Science,2003,100:503-546.
    [101]Vignati, E.; Piazza, R.; Lockhart, T. P., Pickering emulsions:interfacial tension, colloidal layer morphology, and trapped-particle motion[J], Langmuir,2003,19: 6650-6656.
    [102]Saleh, N.; Sarbu, T.; Sirk, K.; Lowry, G. V.; Matyjaszewski, K.; Tilton, R. D., Oil-in-water emulsions stabilized by highly charged polyelectrolyte-grafted silica nanoparticles[J], Langmuir,2005,21:9873-9878.
    [103]Zhang, J.; Li, L.; Wang, J.; Xu, J.; Sun, D., Phase inversion of emulsions containing a lipophilic surfactant induced by clay concentration[J], Langmuir,2013, 29:3889-3894.
    [104]Wang, J.; Yang, F.; Tan, J.; Liu, G.; Xu, J.; Sun, D., Pickering emulsions stabilized by a lipophilic surfactant and hydrophilic platelike particles[J], Langmuir, 2009,26:5397-5404.
    [105]Binks, B.; Lumsdon, S., Influence of particle wettability on the type and stability of surfactant-free emulsions[J], Langmuir,2000,16:8622-8631.
    [106]Finkle, P.; Draper, H. D.; Hildebrand, J. H., THE THEORY OF EMULSIFICATION1[J], Journal of the American Chemical Society,1923,45:2780-2788.
    [107]Schulman, J.; Leja, J., Control of contact angles at the oil-water-solid interfaces. Emulsions stabilized by solid particles (BaSO4)[J], Transactions of the Faraday Society,1954,50:598-605.
    [108]Stiller, S.; Gers-Barlag, H.; Lergenmueller, M.; Pflttcker, F.; Schulz, J.; Wittern, K. P.; Daniels, R., Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,232:261-267.
    [109]Stiller, S.; Gers-Barlag, H.; Lergenmueller, M.; Pflucker, F.; Schulz, J.; Wittern, K.; Daniels, R., Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,232:261-267.
    [110]Binks, B.; Lumsdon, S., Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J], Langmuir,2000,16:2539-2547.
    [111]Frelichowska, J.; Bolzinger, M.-A.; Chevalier, Y, Pickering emulsions with bare silica[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009, 343:70-74.
    [112]Yang, F.; Liu, S.; Xu, J.; Lan, Q.; Wei, F.; Sun, D., Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability[J], Journal of colloid and interface science,2006, 302:159-169.
    [113]Ashby, N.; Binks, B., Pickering emulsions stabilised by Laponite clay particles[J], Physical Chemistry Chemical Physics,2000,2:5640-5646. [114] Midmore, B., Preparation of a novel silica-stabilized oil/water emulsion[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,132:257-265.
    [115]Horozov, T. S.; Binks, B. P., Particle-Stabilized Emulsions:A Bilayer or a Bridging Monolayer?[J], Angewandte Chemie,2006,118:787-790.
    [116]Tambe, D. E.; Sharma, M. M., The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability [J], Advances in Colloid and Interface Science,1994,52:1-63.
    [117]Briggs, T., Emulsions with finely divided solids[J], Industrial & Engineering Chemistry,1921,13:1008-1010.
    [118]Binks, B. P; Lumsdon, S., Stability of oil-in-water emulsions stabilised by silica particles[J], Physical Chemistry Chemical Physics,1999,1:3007-3016.
    [119]Horozov, T. S.; Binks, B. P.; Gottschalk-Gaudig, T., Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles[J], Physical Chemistry Chemical Physics,2007,9:6398-6404.
    [120]Yan, N.; Masliyah, J. H., Effect of pH on adsorption and desorption of clay particles at oil-water interface [J], Journal of colloid and interface science,1996,181: 20-27.
    [121]Midmore, B., Effect of aqueous phase composition on the properties of a silica-stabilized w/o emulsion[J], Journal of colloid and interface science,1999,213:352-359.
    [122]Yang, F.; Niu, Q.; Lan, Q.; Sun, D., Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles[J], Journal of colloid and interface science,2007,306:285-295.
    [123]Lan, Q.; Liu, C.; Yang, F.; Liu, S.; Xu, J.; Sun, D., Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J], Journal of colloid and interface science,2007,310:260-269.
    [124]Binks, B. P.; Whitby, C. P., Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,253:105-115.
    [125]Binks, B.; Lumsdon, S., Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity[J], Physical Chemistry Chemical Physics,2000,2:2959-2967.
    [126]Read, E.; Fujii, S.; Amalvy, J.; Randall, D.; Armes, S., Effect of varying the oil phase on the behavior of pH-responsive latex-based emulsifiers:Demulsification versus transitional phase inversion[J], Langmuir,2004,20:7422-7429.
    [127]Tsuji, S.; Kawaguchi, H., Thermosensitive Pickering emulsion stabilized by poly (N-isopropylacrylamide)-carrying particles[J], Langmuir,2008,24:3300-3305.
    [128]Binks, B. P.; Whitby, C. P., Temperature-dependent stability of water-in-undecanol emulsions[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,224:241-249.
    [129]Binks, B. P.; Murakami, R.; Armes, S. P.; Fujii, S., Temperature-Induced Inversion of Nanoparticle-Stabilized Emulsions [J], Angewandte Chemie,2005,117: 4873-4876.
    [130]Amalvy, J.; Unali, G.-F.; Li, Y.; Granger-Bevan, S.; Armes, S.; Binks, B. P.; Rodrigues, J.; Whitby, C. P., Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions [J], Langmuir, 2004,20:4345-4354.
    [131]Fujii, S.; Cai, Y.; Weaver, J. V.; Armes, S. P., Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers [J], Journal of the American Chemical Society,2005,127: 7304-7305.
    [132]Weaver, J. V.; Tang, Y.; Liu, S.; Iddon, P. D.; Grigg, R.; Billingham, N. C.; Armes, S. P.; Hunter, R.; Rannard, S. P., Preparation of shell cross-linked micelles by polyelectrolyte complexation[J], Angewandte Chemie,2004,116:1413-1416.
    [133]Ngai, T.; Behrens, S. H.; Auweter, H., Novel emulsions stabilized by pH and temperature sensitive microgels[J], Chemical communications,2005,331-333.
    [134]Brugger, B.; Rutten, S.; Phan, K. H.; Moller, M.; Richtering, W., The colloidal suprastructure of smart microgels at oil-water interfaces[J], Angewandte Chemie International Edition,2009,48:3978-3981.
    [135]Kim, J.-W.; Fernandez-Nieves, A.; Dan, N.; Utada, A. S.; Marquez, M.; Weitz, D. A., Colloidal assembly route for responsive colloidosomes with tunable permeability[J], Nano letters,2007,7:2876-2880.
    [136]Amalvy, J.; Armes, S.; Binks, B.; Rodrigues, J.; Unali, G., Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions [J], Chemical communications,2003, 1826-1827.
    [137]Fujii, S.; Armes, S. P.; Binks, B. P.; Murakami, R., Stimulus-responsive particulate emulsifiers based on lightly cross-linked poly (4-vinylpyridine)-silica nanocomposite microgels[J], Langmuir,2006,22:6818-6825.
    [138]Liu, H.; Wang, C.; Zou, S.; Wei, Z.; Tong, Z., Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification[J], Langmuir,2012,28:11017-11024.
    [139]Richtering, W., Responsive emulsions stabilized by stimuli-sensitive microgels: emulsions with special non-Pickering properties[J], Langmuir,2012,28:17218-17229.
    [140]Gautier, F.; Destribats, M.; Perrier-Cornet, R.; Dechezelles, J.-F.; Giermanska, J.; Heroguez, V.; Ravaine, S.; Leal-Calderon, F.; Schmitt, V., Pickering emulsions with stimulable particles:from highly-to weakly-covered interfaces[J], Physical Chemistry Chemical Physics,2007,9:6455-6462.
    [141]Ngai, T.; Auweter, H.; Behrens, S. H., Environmental responsiveness of microgel particles and particle-stabilized emulsions[J], Macromolecules,2006,39: 8171-8177.
    [142]Brugger, B.; Richtering, W., Magnetic, Thermosensitive Microgels as Stimuli-Responsive Emulsifiers Allowing for Remote Control of Separability and Stability of Oil in Water-Emulsions[J], Advanced Materials,2007,19:2973-2978.
    [143]Melle, S.; Lask, M.; Fuller, G. G., Pickering emulsions with controllable stability[J], Langmuir,2005,21:2158-2162.
    [1]Kelessidis, V.; Poulakakis, E.; Chatzistamou, V., Use of Carbopol 980 and carboxymethyl cellulose polymers as rheology modifiers of sodium-bentonite water dispersions[J], Applied Clay Science,2011,54:63-69.
    [2]Wang, G.-H.; Zhang, L.-M., Reinforcement in thermal and viscoelastic properties of polystyrene by in-situ incorporation of organophilic montmorillonite[J], Applied Clay Science,2007,38:17-22.
    [3]Li, Z.; Chang, P.-H.; Jean, J.-S.; Jiang, W.-T.; Wang, C.-J., Interaction between tetracycline and smectite in aqueous solution[J], Journal of colloid and interface science,2010,341:311-319.
    [4]Bojemueller, E.; Nennemann, A.; Lagaly, G., Enhanced pesticide adsorption by thermally modified bentonites[J], Applied clay science,2001,18:277-284.
    [5]Luckham, P. F.; Rossi, S., The colloidal and rheological properties of bentonite suspensions [J], A dvances in Colloid and Interface Science,1999,82:43-92.
    [6]Lewis, J. A., Colloidal processing of ceramics[J], Journal of the American Ceramic Society,2000,83:2341-2359.
    [7]Paineau, E.; Bihannic, I.; Baravian, C.; Philippe, A.-M.; Davidson, P.; Levitz, P.; Funari, S. S.; Rochas, C.; Michot, L. J., Aqueous suspensions of natural swelling clay minerals.1. Structure and electrostatic interactions [J], Langmuir,2011,27:5562-5573.
    [8]Velde, B., Introduction to clay minerals:chemistry, origins, uses and environmental significance, Chapman and Hall Ltd,1992.
    [9]Rossi, S.; Luckham, P.; Tadros, T. F., Influence of non-ionic polymers on the rheological behaviour of Na+-montmorillonite clay suspensions-Ⅰ Nonylphenol-polypropylene oxide-polyethylene oxide copolymers[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,201:85-100.
    [10]Rossi, S.; Luckham, P.; Tadros, T. F., Influence of non-ionic polymers on the rheological behaviour of Na+-montmorillonite clay suspensions. Part II. Homopolymer ethyleneoxide and polypropylene oxide-polyethylene oxide ABA copolymers[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003,215:1-10.
    [11]Alagha, L.; Wang, S.; Yan, L.; Xu, Z.; Masliyah, J., Probing Adsorption of Polyacrylamide-Based Polymers on Anisotropic Basal Planes of Kaolinite Using Quartz Crystal Microbalance[J], Langmuir,2013,29:3989-3998.
    [12]Caenn, R.; Darley, H. C.; Gray, G. R., Composition and properties of drilling and completion fluids, Gulf Professional Publishing,2011.
    [13]Briscoe, B.; Luckham, P.; Ren, S., The properties of drilling muds at high pressures and high temperatures [J], Philosophical Transactions of the Royal Society of London. Series A:Physical and Engineering Sciences,1994,348:179-207.
    [14]Zhong, H.; Qiu, Z.; Huang, W.; Cao, J., Poly (oxypropylene)-amidoamine modified bentonite as potential shale inhibitor in water-based drilling fluids[J], Applied clay science,2012,67:36-43.
    [15]Qu, Y.; Lai, X.; Zou, L.; Su, Y. n., Polyoxyalkyleneamine as shale inhibitor in water-based drilling fluids [J], Applied clay science,2009,44:265-268.
    [16]Wang, L.; Liu, S.; Wang, T.; Sun, D., Effect of poly (oxypropylene) diamine adsorption on hydration and dispersion of montmorillonite particles in aqueous solution[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011,381:41-47.
    [17]Lin, J.-J.; Chen, Y.-M., Amphiphilic properties of poly (oxyalkylene) amine-intercalated smectite aluminosilicates[J], Langmuir,2004,20:4261-4264.
    [18]Chou, C.-C.; Shieu, F.-S.; Lin, J.-J., Preparation, organophilicity, and self-assembly of poly (oxypropylene) amine-clay hybrids[J], Macromolecules,2003,36: 2187-2189.
    [19]Cui, Y.; van Duijneveldt, J. S., Adsorption of polyetheramines on montmorillonite at high pH[J], Langmuir,2010,26:17210-17217.
    [20]Cui, Y.; Pizzey, C. L.; van Duijneveldt, J. S., Modifying the structure and flow behaviour of aqueous montmorillonite suspensions with surfactant[J], Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2013,371.
    [21]Flood, C.; Cosgrove, T.; Howell, I.; Revell, P., Effects of electrolytes on adsorbed polymer layers:Poly (ethylene oxide)-silica system[J], Langmuir,2006,22: 6923-6930.
    [22]Alderman, N.; Gavignet, A.; Guillot, D.; Maitland, G., High-temperature, high-pressure rheology of water-based muds, in:SPE Annual Technical Conference and Exhibition,1988.
    [23]Parida, S. K.; Dash, S.; Patel, S.; Mishra, B., Adsorption of organic molecules on silica surface[J], Advances in Colloid and Interface Science,2006,121:77-110.
    [24]Glotzer, S. C.; Solomon, M. J., Anisotropy of building blocks and their assembly into complex structures [J], Nature materials,2007,6:557-562.
    [25]Parfitt, R.; Greenland, D., The adsorption of poly (ethylene glycols) on clay minerals[J], Clay Minerals,1970,8:305-315.
    [26]Burchill, S.; Hall, P.; Harrison, R.; Hayes, M.; Langford, J.; Livingston, W.; Smedley, R.; Ross, D.; Tuck, J., Smectite-polymer interactions in aqueous systems[J], Clay Miner,1983,18:373-397.
    [27]Lee, W. F.; Chen, Y. C., Effect of bentonite on the physical properties and drug-release behavior of poly (AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive[J], Journal of applied polymer science,2004,91:2934-2941.
    [28]Fournaris, K.; Karakassides, M.; Petridis, D.; Yiannakopoulou, K., Clay-polyvinylpyridine nanocomposites[J], Chemistry of materials,1999,11:2372-2381.
    [29]Lagaly, G.; Ziesmer, S., Surface modification of bentonites. Ⅲ. Sol-gel transitions of Na-montmorillonite in the presence of trimethylammonium-end-capped poly (ethylene oxides)[J], Clay Minerals,2005,40:523-536.
    [30]Kozak, M.; Domka, L., Adsorption of the quaternary ammonium salts on montmorillonite[J], Journal of Physics and Chemistry of Solids,2004,65:441-445.
    [31]Zhang, L.; Lu, Q.; Xu, Z.; Liu, Q.; Zeng, H., Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions [J], Journal of colloid and interface science,2012,378:222-231.
    [32]Studart, A. R.; Amstad, E.; Gauckler, L. J., Colloidal stabilization of nanoparticles in concentrated suspensions [J], Langmuir,2007,23:1081-1090.
    [33]Annis, M. R., High-temperature flow properties of water-base drilling fluids[J], Journal of Petroleum Technology,1967,19:1,074-071,080.
    [34]Kelessidis, V. C.; Christidis, G.; Makri, P.; Hadjistamou, V.; Tsamantaki, C. Mihalakis, A.; Papanicolaou, C.; Foscolos, A., Gelation of water-bentonite suspensions at high temperatures and rheological control with lignite addition[J], Applied clay science,2007,36:221-231.
    [35]Sun, K.; Raghavan, S. R., Thermogelling aqueous fluids containing low concentrations of Pluronic F127 and laponite nanoparticles[J], Langmuir,2010,26: 8015-8020.
    [36]Shay, J. S.; Raghavan, S. R.; Khan, S. A., Thermoreversible gelation in aqueous dispersions of colloidal particles bearing grafted poly (ethylene oxide) chains [J], Journal of Rheology (1978-present),2001,45:913-927.
    [37]Lin-Gibson, S.; Kim, H.; Schmidt, G.; Han, C.; Hobbie, E., Shear-induced structure in polymer-clay nanocomposite solutions[J], Journal of colloid and interface science,2004,274:515-525.
    [1]Bromberg, L. E.; Ron, E. S., Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery[J], Advanced drug delivery reviews, 1998,31:197-221.
    [2]Jeong, B.; Kim, S. W.; Bae, Y. H., Thermosensitive sol-gel reversible hydrogels[J], Advanced drug delivery reviews,2002,54:37-51.
    [3]Ruel-Gariepy, E.; Leroux, J.-C., In situ-forming hydrogels-review of temperature-sensitive systems[J], European Journal of Pharmaceutics and Biopharmaceutics,2004,58:409-426.
    [4]Klouda, L.; Mikos, A. G., Thermoresponsive hydrogels in biomedical applications[J], European Journal of Pharmaceutics and Biopharmaceutics,2008,68: 34-45.
    [5]Kobayashi, K.; Huang, C.-i.; Lodge, T. P., Thermoreversible Gelation of Aqueous Methylcellulose Solutions[J], Macromolecules,1999,32:7070-7077.
    [6]Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.; Hoemann, C.; Leroux, J.; Atkinson, B.; Binette, F.; Selmani, A., Novel injectable neutral solutions of chitosan form biodegradable gels in situ[J], Biomaterials,2000,21:2155-2161.
    [7]McKee, J. R.; Hietala, S.; Seitsonen, J.; Laine, J.; Kontturi, E.; Ikkala, O., Thermoresponsive Nanocellulose Hydrogels with Tunable Mechanical Properties [J], ACS Macro Letters,2014,3:266-270.
    [8]Kataoka, T.; Kidowaki, M.; Zhao, C.; Minamikawa, H.; Shimizu, T.; Ito, K., Local and network structure of thermoreversible polyrotaxane hydrogels based on poly (ethylene glycol) and methylated a-cyclodextrins[J], The Journal of Physical Chemistry B,2006,110:24377-24383.
    [9]Karino, T.; Okumura, Y.; Zhao, C.; Kidowaki, M.; Kataoka, T.; Ito, K.; Shibayama, M., Sol-gel transition of hydrophobically modified polyrotaxane[J], Macromolecules,2006,39:9435-9440.
    [10]Chung, Y.-M.; Simmons, K. L.; Gutowska, A.; Jeong, B., Sol-gel transition temperature of PLGA-g-PEG aqueous solutions[J], Biomacromolecules,2002,3:511-
    [11]Jeong, B.; Kibbey, M. R.; Birnbaum, J. C.; Won, Y.-Y.; Gutowska, A., Thermogelling biodegradable polymers with hydrophilic backbones:PEG-g-PLGA[J], Macromolecules,2000,33:8317-8322.
    [12]Nambam, J.; Philip, J., Thermogelling properties of triblock copolymers in the presence of hydrophilic Fe3O4 nanoparticles and surfactants [J], Langmuir,2012,28: 12044-12053.
    [13]Lambourne, R.; Strivens, T., Paint and surface coatings:theory and practice, Elsevier,1999.
    [14]Stoeber, B.; Hu, C.-M. J.; Liepmann, D.; Muller, S. J., Passive flow control in microdevices using thermally responsive polymer solutions [J], Physics of Fluids (1994-present),2006,18:053103.
    [15]Kelessidis, V.; Poulakakis, E.; Chatzistamou, V., Use of Carbopol 980 and carboxymethyl cellulose polymers as rheology modifiers of sodium-bentonite water dispersions [J], Applied Clay Science,2011,54:63-69.
    [16]Wang, G.-H.; Zhang, L.-M., Reinforcement in thermal and viscoelastic properties of polystyrene by in-situ incorporation of organophilic montmorillonite[J], Applied Clay Science,2007,38:17-22.
    [17]Li, Z.; Chang, P.-H.; Jean, J.-S.; Jiang, W.-T.; Wang, C.-J., Interaction between tetracycline and smectite in aqueous solution[J], Journal of colloid and interface science,2010,341:311-319.
    [18]Luckham, P. F.; Rossi, S., The colloidal and rheological properties of bentonite suspensions[J], Advances in Colloid and Interface Science,1999,82:43-92.
    [19]Vrij, A., Polymers at interfaces and the interactions in colloidal dispersions [J], Pure Appl. Chem,1976,48:471.
    [20]Napper, D.; Netschey, A., Studies of the steric stabilization of colloidal particles [J], Journal of colloid and interface science,1971,37:528-535.
    [21]Napper, D.-H., Steric stabilization [J], Journal of colloid and interface science, 1977,58:390-407.
    [22]Saeki, S.; Kuwahara, N.; Nakata, M.; Kaneko, M., Upper and lower critical solution temperatures in poly (ethylene glycol) solutions[J], Polymer,1976,17:685-689.
    [23]Sun, K.; Raghavan, S. R., Thermogelling aqueous fluids containing low concentrations of Pluronic F127 and laponite nanoparticles[J], Langmuir,2010,26: 8015-8020.
    [24]Cui, Y.; van Duijneveldt, J. S., Adsorption of polyetheramines on montmorillonite at high pH[J], Langmuir,2010,26:17210-17217.
    [25]Parfitt, R.; Greenland, D., The adsorption of poly (ethylene glycols) on clay minerals[J], Clay Minerals,1970,8:305-315.
    [26]Burchill, S.; Hall, P.; Harrison, R.; Hayes, M.; Langford, J.; Livingston, W.; Smedley, R.; Ross, D.; Tuck, J., Smectite-polymer interactions in aqueous systems[J], Clay Miner,1983,18:373-397.
    [27]Napper, D., Flocculation studies of sterically stabilized dispersions[J], Journal of colloid and interface science,1970,32:106-114.
    [28]Kjellander, R.; Florin, E., Water structure and changes in thermal stability of the system poly (ethylene oxide)-water[J], Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1981,77:2053-2077.
    [29]Eliassi, A.; Modarress, H.; Mansoori, G. A., Measurement of Activity of Water in Aqueous Poly (ethylene glycol) Solutions (Effect of Excess Volume on the Flory-Huggins ζ-Parameter)[J], Journal of Chemical & Engineering Data,1999,44:52-55.
    [30]Garvey, M., Flocculation of sterically stabilized dispersions under better-than-theta conditions[J], Journal of colloid and interface science,1977,61:194-196.
    [31]Lewis, J. A., Colloidal processing of ceramics[J], Journal of the American Ceramic Society,2000,83:2341-2359.
    [32]Liang, Y.; Hilal, N.; Langston, P.; Starov, V., Interaction forces between colloidal particles in liquid:Theory and experiment[J], Advances in Colloid and Interface Science,2007,134:151-166.
    [33]Tadros, T., Interaction forces between particles containing grafted or adsorbed polymer layers[J], Advances in Colloid and Interface Science,2003,104:191-226.
    [34]Russel, W.; Saville, D.; Schowalter, W., Colloidal Suspensions [J], Table,1989, 5:148.
    [35]Russel, W., Review of the role of colloidal forces in the rheology of suspensions[J], Journal ofRheology (1978-present),1980,24:287-317.
    [36]Shay, J. S.; Raghavan, S. R.; Khan, S. A., Thermoreversible gelation in aqueous dispersions of colloidal particles bearing grafted poly (ethylene oxide) chains [J], Journal of Rheology (1978-present),2001,45:913-927.
    [37]Blanks, R. F.; Prausnitz, J., Thermodynamics of polymer solubility in polar and nonpolar systems[J], Industrial & Engineering Chemistry Fundamentals,1964,3:1-8.
    [38]Patterson, D.; Robard, A., Thermodynamics of polymer compatibility[J], Macromolecules,1978,11:690-695.
    [39]Raghavan, S. R.; Hou, J.; Baker, G. L.; Khan, S. A., Colloidal interactions between particles with tethered nonpolar chains dispersed in polar media:direct correlation between dynamic rheology and interaction parameters [J], Langmuir,2000, 16:1066-1077.
    [40]Bjoerling, M., Interaction between surfaces with attached poly (ethylene oxide) chains[J], Macromolecules,1992,25:3956-3970.
    [41]Cosgrove, T.; Heath, T.; Van Lent, B.; Leermakers, F.; Scheutjens, J., Configuration of terminally attached chains at the solid/solvent interface:self-consistent field theory and a Monte Carlo model[J], Macromolecules,1987,20:1692-1696.
    [42]Cowell, C.; Vincent, B., Temperature-particle concentration phase diagrams for dispersions of weakly interacting particles[J], Journal of colloid and interface science, 1982,87:518-526.
    [43]Bergstrom, L.; Sjostrom, E., Temperature induced gelation of concentrated ceramic suspensions:rheological properties [J], Journal of the European Ceramic Society,1999,19:2117-2123.
    [1]周金葵,钻井液工艺技术,石油工业出版社,2009.
    [2]Darley, H. C.; Gray, G. R., Composition and properties of drilling and completion fluids, Gulf Professional Publishing,1988.
    [3]Caenn, R.; Darley, H. C.; Gray, G. R., Composition and properties of drilling and completion fluids, Gulf Professional Publishing,2011.
    [4]Fujii, S.; Cai, Y.; Weaver, J. V.; Armes, S. P., Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers[J], Journal of the American Chemical Society,2005,127: 7304-7305.
    [5]Weaver, J. V.; Tang, Y.; Liu, S.; Iddon, P. D.; Grigg, R.; Billingham, N. C.; Armes, S. P.; Hunter, R.; Rannard, S. P., Preparation of shell cross-linked micelles by polyelectrolyte complexation[J], Angewandte Chemie,2004,116:1413-1416.
    [6]Ngai, T.; Behrens, S. H.; Auweter, H., Novel emulsions stabilized by pH and temperature sensitive microgels[J], Chemical communications,2005,331-333.
    [7]Brugger, B.; Rutten, S.; Phan, K. H.; Moller, M.; Richtering, W., The colloidal suprastructure of smart microgels at oil-water interfaces[J], Angewandte Chemie International Edition,2009,48:3978-3981.
    [8]Tsuji, S.; Kawaguchi, H., Thermosensitive Pickering emulsion stabilized by poly (N-isopropylacrylamide)-carrying particles[J], Langmuir,2008,24:3300-3305.
    [9]Kim, J.-W.; Fernandez-Nieves, A.; Dan, N.; Utada, A. S.; Marquez, M.; Weitz, D. A., Colloidal assembly route for responsive colloidosomes with tunable permeability[J], Nano letters,2007,7:2876-2880.
    [10]Sun, G.; Li, Z.; Ngai, T., Inversion of Particle-Stabilized Emulsions to Form High-Internal-Phase Emulsions[J], Angewandte Chemie,2010,122:2209-2212.
    [11]Fujii, S.; Armes, S. P.; Araki, T.; Ade, H., Direct imaging and spectroscopic characterization of stimulus-responsive microgels[J], Journal of the American Chemical Society,2005,127:16808-16809.
    [12]Akamatsu, K.; Shimada, M.; Tsuruoka, T.; Nawafune, H.; Fujii, S.; Nakamura, Y., Synthesis of pH-responsive nanocomposite microgels with size-controlled gold nanoparticles from ion-doped, lightly cross-linked poly (vinylpyridine)[J], Langmuir, 2009,26:1254-1259.
    [13]Binks, B. P.; Murakami, R.; Armes, S. P.; Fujii, S., Temperature-Induced Inversion of Nanoparticle-Stabilized Emulsions[J], Angewandte Chemie,2005,117: 4873-4876.
    [14]Li, Z.; Ming, T.; Wang, J.; Ngai, T., High internal phase emulsions stabilized solely by microgel particles[J], Angewandte Chemie International Edition,2009,48: 8490-8493.
    [15]Rapoport, N. Y.; Kennedy, A. M.; Shea, J. E.; Scaife, C. L.; Nam, K.-H., Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles[J], Journal of Controlled Release,2009,138:268-276.
    [16]Gautier, F.; Destribats, M.; Perrier-Cornet, R.; Dechezelles, J.-F.; Giermanska, J.; Heroguez, V.; Ravaine, S.; Leal-Calderon, F.; Schmitt, V., Pickering emulsions with stimulable particles:from highly-to weakly-covered interfaces [J], Physical Chemistry Chemical Physics,2007,9:6455-6462.
    [17]Ngai, T.; Auweter, H.; Behrens, S. H., Environmental responsiveness of microgel particles and particle-stabilized emulsions [J], Macromolecules,2006,39:8171-8177.
    [18]Yang, F.; Liu, S.; Xu, J.; Lan, Q.; Wei, F.; Sun, D., Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability[J], Journal of colloid and interface science,2006, 302:159-169.
    [19]Leal-Calderon, F.; Schmitt, V., Solid-stabilized emulsions[J], Current Opinion in Colloid & Interface Science,2008,13:217-227.
    [20]Ju, R. T.; Frank, C. W.; Gast, A. P., Contin analysis of colloidal aggregates [J], Langmuir,1992,8:2165-2171.
    [21]Heitz, C.; Francois, J., Poly (methacrylic acid)-copper ion interactions:Phase diagrams:light and X-ray scattering[J], Polymer,1999,40:3331-3344.
    [22]Axelos, M. A.; Mestdagh, M. M.; Francois, J., Phase diagrams of aqueous solutions of polycarboxylates in the presence of divalent cations[J], Macromolecules, 1994,27:6594-6602.
    [23]Sondjaja, H. R.; Hatton, T. A.; Tam, K., Self-assembly of poly (ethylene oxide)-block-poly (acrylic acid) induced by CaCl2:mechanistic study[J], Langmuir,2008,24: 8501-8506.
    [24]Peng, S.; Wu, C., Light scattering study of the formation and structure of partially hydrolyzed poly (acrylamide)/calcium (II) complexes[J], Macromolecules, 1999,32:585-589.
    [25]Zhang, Y.; Xiang, M.; Jiang, M.; Wu, C., Complexation between Poly (styrene-co-4-vinylphenol) and Poly (styrene-co-4-vinylpyridine) in Solution[J], Macromolecules,1997,30:6084-6089.
    [26]Gamier, G.; Duskova-Smrckova, M.; Vyhnalkova, R.; Van de Ven, T.; Revol, J.-F., Association in solution and adsorption at an air-water interface of alternating copolymers of maleic anhydride and styrene[J], Langmuir,2000,16:3757-3763.
    [27]Malardier-Jugroot, C.; Van de Ven, T.; Whitehead, M., Study of the water conformation around hydrophilic and hydrophobic parts of styrene-maleic anhydride[J], Journal of Molecular Structure:THEOCHEM,2004,679:171-177.
    [28]Kj(?)niksen, A.-L.; Zhu, K.; Behrens, M. A.; Pedersen, J. S.; Nystrom, B., Effects of temperature and salt concentration on the structural and dynamical features in aqueous solutions of charged triblock copolymers [J], The Journal of Physical Chemistry B,2011,115:2125-2139.
    [29]Molnar, F.; Rieger, J., "Like-Charge Attraction" between Anionic Poly electrolytes:Molecular Dynamics Simulations [J], Langmuir,2005,21:786-789.
    [30]Sinn, C. G.; Dimova, R.; Antonietti, M., Isothermal titration calorimetry of the polyelectrolyte/water interaction and binding of Ca2+:effects determining the quality of polymeric scale inhibitors[J], Macromolecules,2004,37:3444-3450.
    [31]Ge, L.; Vernon, M.; Simon, S.; Maham, Y.; Sjoblom, J.; Xu, Z., Interactions of divalent cations with tetrameric acid aggregates in aqueous solutions [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,396:238-245.
    [32]Lianos, P., Fluorescence probe study of the interaction between pyrene and microemulsion-polymerized styrene[J], The Journal of Physical Chemistry,1982,86: 1935-1937.
    [33]Gao, B.; Guo, H.; Wang, J.; Zhang, Y., Preparation of hydrophobic association polyacrylamide in a new micellar copolymerization system and its hydrophobically associative property[J], Macromolecules,2008,41:2890-2897.
    [34]Talom, R. M.; Fuks, G.; Mingotaud, C.; Gineste, S.; Gauffre, F., Investigation of the reversibility of the unimer-to-aggregate transition in block copolymers by surface tension-measurements[J], Journal of colloid and interface science,2012,387:180-186.
    [35]Burrows, H. D.; Costa, D.; Ramos, M. L.; da Graca Miguel, M.; Teixeira, M. H.; Pais, A. A.; Valente, A. J.; Bastos, M.; Bai, G., Does cation dehydration drive the binding of metal ions to polyelectrolytes in water? What we can learn from the behaviour of aluminium (iii) and chromium (iii)[J], Physical Chemistry Chemical Physics,2012,14:7950-7953.
    [36]Talom, R. M.; Fuks, G.; Mingotaud, C.; Gineste, S.; Gauffre, F., Investigation of the reversibility of the unimer-to-aggregate transition in block copolymers by surface tension-measurements[J], Journal of colloid and interface science,2012,387:180-186.
    [37]Zhang, G.; Li, X.; Jiang, M.; Wu, C., Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution[J], Langmuir,2000,16:9205-9207.
    [38]Zhang, G.; Liu, L.; Zhao, Y.; Ning, F.; Jiang, M.; Wu, C., Self-Assembly of Carboxylated Poly(styrene-b-ethylene-co-butylene-b-styrene) Triblock Copolymer Chains in Water via a Microphase Inversion[J], Macromolecules,2000,33:6340-6343.
    [39]Cauvin, S.; Colver, P. J.; Bon, S. A., Pickering stabilized miniemulsion polymerization:preparation of clay armored latexes[J], Macromolecules,2005,38: 7887-7889.
    [40]Li, Z.; Geisel, K.; Richtering, W.; Ngai, T., Poly (N-isopropylacrylamide) microgels at the oil-water interface:adsorption kinetics[J], Soft Matter,2013,9: 9939-9946.
    [41]Liu, H.; Wang, C.; Zou, S.; Wei, Z.; Tong, Z., Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification[J], Langmuir,2012,28:11017-11024.
    [42]Kralchevsky, P.; Ivanov, I.; Ananthapadmanabhan, K.; Lips, A., On the thermodynamics of particle-stabilized emulsions:curvature effects and catastrophic phase inversion[J], Langmuir,2005,21:50-63.
    [43]Brugger, B.; Rosen, B. A.; Richtering, W., Microgels as stimuli-responsive stabilizers for emulsions[J], Langmuir,2008,24:12202-12208.
    [44]Feng, X.; Mussone, P.; Gao, S.; Wang, S.; Wu, S.-Y.; Masliyah, J. H.; Xu, Z., Mechanistic study on demulsification of water-in-diluted bitumen emulsions by ethylcellulose[J], Langmuir,2009,26:3050-3057.
    [45]Tadros, T., Application of rheology for assessment and prediction of the long-term physical stability of emulsions [J], Advances in Colloid and Interface Science, 2004,108:227-258.
    [46]Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M., Nano-emulsions[J], Current Opinion in Colloid & Interface Science,2005,10:102-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700