直接甲醇燃料电池用电解质膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)具有结构简单、燃料补充方便、体积和质量比能量密度高等特点,有望成为未来理想动力源之一,用作移动动力电源和便携式电源。DMFC能否顺利地实现商业化和民用化,其电解质膜、电极材料和催化剂起着关键的作用。通用的Nafion?电解质膜和Pt或Pt合金催化剂价格昂贵,且膜存在甲醇“穿透”问题。为此,本文从非贵金属在碱性介质中具有高活性这一点出发,寻找合适的电解质膜。
    碳酸盐(如K2CO3)系中强碱盐,其作为DMFC电解质时,一可放宽电极催化剂的选择范围;二可抑制CO2进入电解质溶液中。我们提出了将碳酸盐聚合物膜用于DMFC的新思路并采取三种方法制备出K2CO3掺杂型电解质膜。第一,在聚丙烯酰胺凝胶中嵌入K2CO3,利用凝胶中的水分子来保证碳酸盐发生电离,制备出K2CO3掺杂聚丙烯酰胺凝胶电解质膜。第二,为提高K2CO3掺杂聚丙烯酰胺凝胶电解质膜的强度,选择聚醚砜微孔膜作增强材料,让聚合在膜微孔内发生,制成增强型K2CO3掺杂聚丙烯酰胺凝胶电解质膜。第三,分两种途径直接掺杂高聚物,一是选择水溶性聚丙烯酰胺或聚四氟乙烯水乳液,使K2CO3在其水相中溶解后制成复合膜;二是K2CO3颗粒直接掺杂热塑性聚氨酯弹性体或尼龙6和聚己内酰胺负载K2CO3掺杂聚砜制备出复合膜。研究发现,K2CO3掺杂型电解质膜的电导率均比较高,且随温度的升高而增加,增加幅度大于Nafion膜;增强型K2CO3掺杂聚丙烯酰胺凝胶电解质膜和支撑型K2CO3掺杂水溶性聚丙烯酰胺复合膜在甲醇液态进料的DMFC中应用时,电池放电性能比较稳定,并具有一定的阻醇作用。此外,K2CO3掺杂高聚物制备复合膜的方法为制备其它的离子传导性电解质膜提供了有益的借鉴。
    从碳酸盐水溶液与CO2平衡的开放体系入手,考察了温度对碳酸盐体系中各组分浓度的影响;阐明了为什么碳酸盐电解质体系具有抑制甲醇氧化产物CO2进入溶液的功能;在对碳酸盐体系中负离子浓度分析的基础上,探讨了DMFC中使用碳酸盐电解质时电极反应机理。
Direct methanol fuel cells (DMFC) are characterized by simple structure, convenient fuel supply and high energy density. DMFC will be one of the ideal power sources in the future for mobile, portable and stationary applications. Present electrolyte membrane, electrode materials and catalysts in DMFC are not satisfactory. Commercial Nafion? electrolyte membrane, Pt or Pt alloy catalysts are expensive, and methanol crossover in Nafion? electrolyte membrane leads to not only a waste of fuel but also poor fuel cell performance. The aim of this study is to explore alternative membranes based on the fact that catalyst of non-noble metals shows high activity in alkaline media.
     Metal carbonate is an alkali salt with moderate basicity. When a metal carbonate, e. g. K2CO3 is used as electrolyte in DMFC, the potential advantage is both widened selection of catalysts and resistance of CO2 uptake in the electrolyte. We initiated the idea of using membrane composed of polymer matrix and embedded metal carbonate as the electrolyte in DMFC and K2CO3 electrolyte membranes have been prepared through three methods. Firstly, the gel electrolyte membrane of K2CO3 doped polyacrylamide is prepared by dispersing ionic species, K2CO3, to a solution of acrylamide and bisacrylamide followed by polymerization and gelation. Their ambient temperature conductivity is in the range 10-2 to 10-1S/cm. Secondly, to enhance the strength of the above-mentioned gel electrolyte, microporous membrane of polyethersulfone (PES) is used as supporting material and gelation takes place in the micropore of PES membrane. The reinforced gel electrolyte membrane of K2CO3 doped polyacrylamide is thus obtained. The third method is to K2CO3 powder directly dispersed in polymer. In this method, we use two ways. In one way, casting membranes are prepared by using K2CO3 in aqueous PAA solution or PTFE emulsion. In the other, membranes are prepared by K2CO3 directly being doped with thermoplastic polyurethane elastomer (TPU) and nylon 6, respectively, and that a composite membrane is prepared by polycaprolactam loading K2CO3 prior to K2CO3 being doped with polysulfone (PSF). The results show that K2CO3 doped solid electrolyte membranes have rather high electricity at ambient temperature and electricity increase with the increasing of temperature. The stable performance of the membranes used in DMFC can be maintained.
    
     The component concentration in an equilibrium system of aqueous carbonate solution and CO2 under varying temperature is analyzed. The equilibrium relation in such a system determines the exclusion of CO2 by an aqueous metal carbonate electrolyte. On the basis of the above analysis, the mechanism of a DMFC with carbonate electrolyte is discussed.
引文
[1] 史美伦,固体电解质,重庆:科学技术文献出版社重庆分社,1982.
    [2] 衣宝廉,燃料电池—高效、环境友好的发电方式,北京,化学工业出版社,2000.
    [3] 黄倬,屠海令,张翼强,等,质子交换膜燃料电池的研究开发与应用,北京,冶金工业出版社,2000.
    [4] 宋文顺,化学电源工艺学,北京,中国轻工业出版社,1998.
    [5] 雷永泉,万群,石永康,新能源材料,天津,天津大学出版社,2000.
    [6] Brian C. H. Steele and Angelika Heinzel, Materials for fuel-cell technologies, Nature, 2000, 414(15): 345~352.
    [7] Erich Gülzow, Alkaline fuel cells: a critical view, Journal of Power Sources, 1996, 61: 99~104.
    [8] 宋文生,李磊,王宇新,燃料电池汽车研发现状及发展前景,天津汽车,2003,1:5~7, 40.
    [9] Bauen A. and Hart J., Assessment of the environmental benefits of transport and stationary fuel cells, Journal of Power Sources, 2000, 86: 482~494.
    [10] 宋文生,李磊,王宇新,燃料电池汽车氢源,汽车工程,2003,25(4):415~417, 388.
    [11] Huijsmans J. P. P., Kraaij G. J., Makkus R. C., et al, An analysis of endurance issues for MCFC, Journal of Power Sources, 2000, 86: 117~121.
    [12] Ohno Y., Nagata S., Sato H., Effect of electrode materials on the properties of high-temperature solid electrolyte fuel cells, Solid State Ionics, 1980, 3-4: 439~442.
    [13] Kosek J. A., Cropley C. C., Wilson G., et al, A direct methanol oxidation fuel cell, Proc. Intersoc. Energy Convers. Eng. Conf. (IECEC), 1993, 28th(vol.1): 11209~11214.
    [14] 陈延禧,黄成德,孙燕宝,聚合物燃料电池的研究和开发,电池,1999,29(6):243~248.
    [15] Surampudi S., Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane, U. S. Patent: 5 599 638, 1997.
    [16] Hogarth M. P., and Hards G. A., Direct methanol fuel cells, Platinum Metal Review, 1996, 40(4): 150~159.
    
    
    [17] Jung D H,Lee C H,Kim C S,et al,Performance of a direct methanol polymer electrolyte fuel cell,Journal of Power Sources,1998,71(1-2):169~173.
    [18] Ren X, Wilson M S, and Gottesfeld S, High Performance direct methanol polymer electrolyte fuel cell, Journal of the Electrochemical Society,1996,143(1): L12~L15.
    [19] Küver A, and Vielstich W, Investigation of methanol crossover and single electrode performance during PEMDMFC operation:A study using a solid polymer electrolyte membrane fuel cell system, Journal of power sources,1998,74(2): 211~218.
    [20] Waidhas M., Drenckhahn W., Preidel W., et al, Direct-fuelled fuel cell, Journal of Power Sources, 1996, 61(1): 91~97.
    [21] Baldauf M., and Preidel W., Status of the development of a direct methanol fuel cell, Journal of Power Sources, 1999, 84(2): 161~166.
    [22] Marie S., Fuel cell test bench design and manufacture, Fuel Cells Bulletin, 2000, 20: 11~13.
    [23] Wasmus S, Küver A,Methanol oxidation and direct methanol fuel cell: a selective review,Journal of Electroanalytical Chemistry,1999,461:14~31.
    [24] Shukla A. K., Ravikumar M. K., Neergat M., et al, A 5W liquid-feed solid-polymer-electrolyte direct methanol fuel cell stack with stainless steel, Journal of Applied Electrochemistry, 1999, 29(1):129~132.
    [25] 魏昭彬,刘建国,乔亚光,等,直接甲醇燃料电池性能,电化学,2000,7(2):228~233.
    [26] Wang K, Gasteiger H A, Markovic N M, et al,On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt–Sn alloy versus Pt-Ru alloy surfaces, Electrochimica Acta,1996,41(16):2587~2593.
    [27] Ley K L, Lin R, Pu C, et al, Methanol oxidation on single-phase Pt-Ru-Os ternary alloys, Journal of the Electrochemical Society, 1997,144(5): 1543~1548.
    [28] Schmidt T J,Noeske M,Gasteiger H A,et al,Pt-Ru alloy colloids as precursors for fuel cell catalysts,Journal of the Electrochemical Society,1998,145(3):925~931.
    [29] Wei Zidong,Guo Hetong,Tang Zhiyuan,Heat treatment of carbon-based powders carrying platinum alloy catalysts for oxygen reduction:influence on corrosion resistance and particle size,Journal of Power Sources,1996,62:233~236
    
    
    [30] Edmondson C A, Stallworth P E,Wintersgill M C,et al,Electrical conductivity and NMR studies of methanol/water mixtures in Nafion membranes,Electrochimica Acta,1998,43(10-11):1295~1299
    [31] 李忠芳,模拟生物酶直接甲醇燃料电池催化剂制备及膜电极性能研究,天津大学博士学位论文,2003,7
    [32] Sundmacher K, Nowitzki O, Hiffmann U, Oxygen reduction on gas-diffusion electrodes with non- noble metal catalysts, Chemical Engineering & Technology, 1997, 69: 1143~1146
    [33] Reeve R W, Christensen P A, Dickinson A J, et al, Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation, Electrochimica Acta, 2000, 45 (25-26): 4237~4250
    [34] Zen J M, Manoharan R, Goodenough J B, Oxygen reduction on Ru-oxide pyrochlores bonded to a proton-exchange membrane, Journal of Applied Electrochemistry, 1992, 22: 140~150
    [35] Jasinski R, A new fuel cell cathode catalyst, Nature, 1964, 201: 1212~1213
    [36] Hirai T, yamaki J I, Yamaji A, Effect of method of preparation of FePc oxygen reduction catalyst on the activity of practical air electrodes, Journal of Applied Electrochemistry, 1985, 15: 77~84
    [37] Elzing A, Van Der Putten A, Visscher W, et al, The cathodic reduction of oxygen at cobalt phthalocynine influence of electrode preparation on electrocatalysts, Journal of Electroanalytical Chemistry, 1986, 200: 313~322.
    [38] Wiesener K, Ohms D, Neumann V, et al, N4 Macrocycles as electrocatalysts for the cathodic reduction of oxygen, Materials Chemistry and Physics, 1989, 22: 457~475
    [39] Gojkovic S L, Gupta S, Savinell R F, Heat-treated iron(Ⅲ) tetra-methoxyphenyl porphyin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction Part Ⅱ. Kinetics of oxygen reduction, Journal of Electroanalytical Chemistry, 1999, 462: 63~72
    [40] Kang C, Behavior of macrocyclic cobalt complex adsorbed on an electro-oxidized glassy carbon electrode for the electrocatalytic reduction of O2, Journal of Electroanalytical Chemistry, 2001, 498: 51~57
    [41] Hogareh M,Christensen P,Hamnett A,et al,The design and construction of high-performance direct methanol fuel cells,Journal of Power Sources,1997,69:125~136
    
    
    [42] Tricoli V,Proton and Methanol Transport in Poly(perfluorosulfonate) Menbranes Containing Cs+ and H+ Cations,Journal of the Electrochemical Society,1998, 145(11):3798~3801
    [43] Wasmus S, Valeriu A,Mateescu G D,et al,Characterization of H3PO4-equilibrated Nafion 117 membranes using 1H and 31P NMR spectroscopy,Solid State Ionics,1995,80:87~92
    [44] Savinell R, Yeager E, Tryk D, et al, A polymer electrolyte for operation at temperatures up to 200℃,Journal of the Electrochemical Society, 1994, 141(4): L46~L48
    [45] Pu Cong,Wenhua Huang,Kevin L Ley,et al,A methanol impermeable proton conducting composite electrolyte system,Journal of the Electrochemical Society,1995,142(7):L119~L120
    [46] Banerjee S,Cropley C C,Kosek J A,et al,Membrane and electrode assembly employing exclusion membrane for direct methanol fuel cell,U.S. Patent 5672438,1997
    [47] Banerjee S,Fuel cell incorporating reinforced polymeric ion-exchange membrane,U.S. .Patent: 5795668,1998
    [48] Jung-Chou Lin,Meng Ouyang,James M Fenton,et al,Study of blend membranes consisting of Nafion and vinglidene fluoride-hexafluoropropylene copolymer,Journal of Applied Polymer Science,1998,70:121~127
    [49] 吴洪,直接甲醇燃料电池用阻醇质子导电膜的研究,天津大学博士学位论文,2000,6
    [50] Park Y I, Kim J D, Nagai M,Increase of proton conductivity in amorphous phosphate-Nafion membranes,Journal of Materials Science Letters,2000,19:1621~1623
    [51] Nouel K M, Fedkiw P S, Nafion-based composite polymer electrolyte membranes, Electrochimica Acta, 1998, 43(16~17): 2381~2387
    [52] Tazi B, Savadogo O, Preparation and characterization of a new membane based on Nafion, silicotungstic acid and thiophene, 3rd Int. Symp. On New Materials for Electrochemical Systems, Montreal, Canada, July 1999, p.259
    [53] Tazi B, Savadogo O, Parameters of PEM fuel-cells based on new membranes fabricated from Nafion?, silicotungstic acid and thiophene, Electrochimica Acta, 2000, 45: 4329~4339
    [54] Costamagna P, Yang C, Bocarsly A B, et al., Nafion? 115/zirconium phosphate composite membranes for operation of PEMFCs above 100℃, Electrochimica Acta, 2002, 47: 1023~1033
    
    [55] Yang C, Costamagna P, Srinivasan S, et al., Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells, Journal of Power Sources, 2001, 103: 1~9
    [56] Bonnet B, Jones D J, Rozière J, et al., Hybrid organic-inorganic membranes for a medium temperature fuel cell, Journal of New Materials for Electrochemical Systems, 2000, 3: 87~92
    [57] Doyle M, Choi S K, Proulx G, High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites, Journal of the Electrochemical Society, 2000, 147(1): 34~37
    [58] Mitsushima S, Kudo K, Sakamoto R, et al., Polymer electrolyte using ionic liquid for high temperature operation PEFCs, 14th World Hydrogen Energy Conference, Canada, 2002
    [59] Antonucci P L, Aricò A S, Cretì P, et al., Investigation of a direct methanol fuel cell based on a composite Nafion?-silica electrolyte for high temperature operation, Solid State Ionics, 1999, 125: 431~437
    [60] Miyake N, Wainright J S, Savinell R F, Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications. Ⅰ. Proton conductivity and water content, Journal of the Electrochemical Society, 2001, 148: A898~A904
    [61] Miyake N, Wainright J S, Savinell R F, Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications. Ⅱ. Methanol uptake and methanol permeability, Journal of the Electrochemical Society, 2001, 148: A905~A909
    [62] Staiti P, Aricò A S, Baglio V, et al., Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells, Solid State Ionics, 2001, 145: 101~107
    [63] Jung D H , Cho S Y, Peck D H, et al., Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, Journal of Power Sources, 2002, 106: 173~177
    [64] Florjańczyk Z, Wielgus-Barry E, Poltarzewski Z, Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics, 2001, 145: 119~126
    [65] Choi W C, Kim J D, Woo S I, Modification of proton conducting membrane for reducing methanol crossover in a direct methanol fuel cell, Journal of Power Sources, 2001, 96: 411~414
    [66] Hobson L J, Ozu H, Yamaguchi M, et al., Modified Nafion 117 as an improved polymer electrolyte membrane for direct methanol fuel cells, Journal of the Electrochemical Society, 2001, 148(10): A1185~A1190
    
    
    [67] Hobson L J, Nakano Y, Ozu H, et al., Targeting improved DMFC performance, Journal of Power Sources, 2002, 104: 79~84
    [68] Jia N, Lefebvre M C, Halfyard J, et al., Modification of Nafion proton exchamge membrane to reduce methanol crossover in PEM fuel cells, Electrochemical Solid-State Letters, 2000, 3(12): 529~531
    [69] Langsdorf B L, Easton E B, Sultan J, et al., Nafion/Polypyrrole composite polymer electrolytes for use in direct methanol fuel cells, 201st Meeting of The Electrochemical Society, Philadelphia, 2002
    [70] Akita H, Iguchi M, Ichikawa M, et al, Composite polymer membrane, method for producing the same and solid polymer electrolyte membrane, EP: 1085590, 2001.
    [71] Rabago R, Noble R D,Koval C A,Effects of Incorporation of Fluorocarbon and Hydrocarbon Surfactants into Perfluorosulfonic Acid (Nafion ) Membranes,Chemistry of Materials,1994,6:947~951
    [72] 方度,杨维驿,全氟离子交换膜—制法、性能和应用,北京,化学工业出版社,1993.
    [73] 周其凤,胡汉杰,高分子化学,北京,化学工业出版社,2001,10.
    [74] Jochen A K, Development of ionomer membranes for fuel cells, Journal of Membrane Sciences, 2001, 185: 3~27.
    [75] Gupta B, B?chi F N, Scherer G G, Materials research aspects of organic solid proton conductors, Solid State Ionics, 1993, 61: 213~218.
    [76] Lehtinen T, Sundholm G, Holmberg S, et al., Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells, Electrochimica Acta, 1998, 43(12-13): 1881~1890.
    [77] Buchi F N, Gupta B, Haas O, et al., Performance of differently cross-linked, partially fluorinated proton exchange membranes in polymer electrolyte fuel cell, Journal of the Electrochemical Society, 1995, 142(9): 3044~3048.
    [78] Buchi F N, Gupta B, Haas O, et al., Study of radiation grafted FEP-g-polystyrene membranes as polymer electrolytes in fuel cells, Electrochimica Acta, 1995, 40(3): 345~353.
    [79] Nasef M M, Saidi H, Nor H M, et al., Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly(tetrafluoroethylene-co- hexafluoropropylene) films. Ⅱ. Properties of sulfonated membranes, Journal of Applied Polymer Science, 2000, 78: 2443~2453.
    
    
    [80] Scott K, Taama W M, Argyropoulos P, Performance of the direct methanol fuel cell with radiation-grafted polymer membranes, Journal of Membrane Science, 2000, 171: 119~130.
    [81] William Lee, Akio Shibasaki, Kyoichi Saito, et al., Proton transport through polyethylene-tetrafluoroethylene-copolymer-based membrane containing sulfonic acid group prepared by RIGP, Journal of the Electrochemical Society, 1996, 143(9): 2795~2799.
    [82] Rouilly M V, Kotz E R, Haas O, et al., Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto Teflon-FEP films. Synthesis and characterization, Journal of Membrance Science, 1993, 81: 89~95.
    [83] Wang H, Capuano G A, Behavior of raipore radiation-grafted polymer membranes in H2/O2 fuel cells, Journal of the Electrochemical Society, 1998, 145(3): 780~784.
    [84] Kerres J, Cui W, Eigenberger G, et al., New ionomers and their application in PEM fuel cells, Hydrogen Energy Prog. Ⅺ, Proc. World Hydrogen Energy Conf., Stuttgart, Germany, June 23-28, 1996, p: 1951~1956.
    [85] Mattsson B, Ericson H, Torell L M, et al., Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy, Electrochimica Acta, 2000, 45: 1405~1408.
    [86] Hübner G, Roduner E, EPR investigation of HO. radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes, Journal of Materials Chemistry, 1999, 9: 409~418.
    [87] 王振堃,离子交换膜─制备、性能及应用,北京,化学工业出版社,1986,11:90~92.
    [88] General Electric Co., Sulfonated poly(α,β,β-trifluorostyrene) and ion-exchange membranes therefrom, Netherlands Patent: 6510859, 1966, pp: 40.
    [89] Hodgdon R B, Polyelectrolytes prepared from perfluoroalkylaryl macromolecules, Journal of Polymer Science, 1968, 6(1): 171~191.
    [90] Savadogo O, Emerging membranes for electrochemical systems (Ⅰ) Solid polymer electrolyte membranes for fuel cell systems, Journal of New Materials for Electrochemical Systems, 1998, 1: 47~65.
    [91] Wei J, Stone C, Steck A E, Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom, Ballard Power Systems, WO: 95/08581, 1995.
    
    
    
    [92] Stone C, Hu L Q, Daynard T, et al, Phosphonic acid functionalized proton exchange membranes for fuel cells, Extended Abstracts of the 3rd International Symposium on New Materials for Electrochemical Systems, Montreal, Canada, 4-8 July 1999, p: 238~239.
    [93] Steck A, Stone C, Development of BAM Membranes for Fuel Cell Applications, Proceedings of the 2nd International Symposium on New Materials for Fuel Cell and Modern Battery Systems, Montreal, Canada, 6-10 July 1997, p: 792.
    [94] Beattie P D, Orfino F P, Basura V I, et al., Ionic conductivity of proton exchange membranes, Journal of Electroanalytical Chemistry, 2001, 503: 45~56.
    [95] Basura V I, Chuy C, Beattie P D, et al., Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated α,α,β-trifluorostyrene (BAM?) and sulfonated styrene-(ethylene-butylene)-styene triblock (DAIS-analytical) copolymers, Journal of Electroanalytical Chemistry, 2001, 501: 77~88.
    [96] Livingston D I, Kamath P M, Corley R S, Poly-α,α,β-trifluorostyrene, Journal of Polymer Science, 1956, 20: 485~490.
    [97] Assink R A, Arnold Jr C, Hollandsworth R P, Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens, Journal of Membrane Science, 1991, 56: 143~151.
    [98] Hūbner G, Roduner E, EPR investigation of HO radical initiated degradation reaction of sulfonated aromatics as model compounds for fuel cell proton conducting membranes, Journal of Materials Chemistry, 1999, 9: 409~418.
    [99] 刘朋军,张连华,聚膦腈功能材料研究进展,化学研究与应用,2001,13(1):33~38.
    [100] 贡长生,邝生鲁,童丽娜,聚膦腈的合成和应用研究进展,现代化工,1991,6:24~28.
    [101] 徐师兵,郑福安,杨永刚,β-萘酚取代聚膦腈的合成与表征,高等学校化学学报,1994,15(11):1730~1732.
    [102] Wycisk R, Pintauro P N, Sulfonated polyphosphazene ion- exchange membranes, Journal of Membrane Sciences, 1996, 119: 155~160.
    [103] Guo Q, Pintauro P N, Tang H, et al, Sulfonated and cross-linked polyphosphazene-based proton-exchange membranes, Journal of Membrane Science, 1999, 154: 175~181.
    
    
    
    [104] Tang H, Pintauro P N, Guo Q, et al, Polyphosphazene membranes: Ⅲ Solid-state characterization and properties of sulfonated poly[bis(3-methylphenoxy)phosphazene], Journal of Applied Polymer Science, 1999,71: 387~399.
    [105] Allcock H R, Hofmann M A, Ambler C M, et al., Phenyl phosphonic acid functionalized poly(aryloxyphosphazenes) as proton-conducting membranes for direct methanol fuel cells, Journal of Membrane Science, 2002, 201: 47~54.
    [106] Fedkin M V, Zhou X Y, Hofmann M A, et al., Evaluation of methanol crossover in proton-conducting polyphosphazene membranes, Materials Letters, 2002, 52: 192~196.
    [107] Hay A S, Alkaline metal-containing polyphenylene ethers, US Patent: 3432466, 1969.
    [108] Hogdon R B, Hay R B, Sulfonated aryl-substituted polyphenylene ether ion exchange membranes, US Patent: 3528858, 1970.
    [109] Nolte R, Ledjeff K, Bauer M, et al, Partially sulfonated poly(arylene ether sulfone) ─ a versatile proton conducting membrane materials for modern energy conversion technologies, Journal of Membrane Science, 1993, 83: 211~220.
    [110] Noshay A, Robeson L M, Sulfonated polysulfone, Journal of Applied Polymer Science, 1976, 20: 1885~1903.
    [111] Coplan M J, G?tz G, Heterogeneous sulfonation process for difficultly sulfonatable poly(ether sulfone), US Patent: 4413106, 1983.
    [112] Miyatake K, Iyotani H, Yamamoto K, et al, Synthesis of poly(phenylene sulfide sulfonic acid) via poly(sulfonium cation) as a thermostable proton-conducting polymer, Macromolecule, 1996, 29(21): 6969~6971.
    [113] Gieselman M B, Reynolds J R, Water-soluble polybenzimidazole-based polyelectrolytes, Macromolecule, 1992, 25:4832~4834.
    [114] Faure S, Pineri M, Aldebert P, et al, Sulphonated polyimides membranes and fuel cell, EP Patent: 897407 Al, 1999.
    [115] Gebel G, Aldebert P, Pineri M, Swelling study of perfluorosulphonated ionomer membranes, Polymer, 1993, 34(2): 333~339.
    [116] Kerres J, Zhang W, Cui W, New sulfonated engineering polymers via the metalation route. 2. Sulfinated-sulfonated poly(ethersulfone) PSU Udels? and its cross-linking, Journal of Polymer Science: Part A: Polymer Chemistry, 1998, 36: 1441~1448.
    
    
    [117] Kerres J, Cui W, Junginer M, Development and characterization of cross-linked ionomer membranes based upon sulfinated and sulfonated PSU. 2. Cross-linked PSU blend membranes by alkylation of sulfinated groups with dihalogenoalkanes, Journal of Membrane Science, 1998, 139: 227~241.
    [118] Kerres J, Ullrich A, Meier F, et al, Synthesis and characterization of novel acid-base polymer blends for the application in membrane fuel cells, Solid State Ionics, 1999, 125: 243~249.
    [119] Kerres J, Ullrich A, H?ring Th, New ionomer membranes and their fuel cell application. 1. Membrane preparation and characterization , Extended Abstracts of the 3rd International Symposium on New Materials for Electrochemical Systems, Montreal, Canada, 4-8 July 1999, pp: 231~232.
    [120] Preidel W, Baldauf M, Gebhardt U, et al, New ionomer membranes and their fuel cell application. 2. H2 Fuel Cell and Direct Methanol Fuel Cell Application, Extended Abstracts of the 3rd International Symposium on New Materials for Electrochemical Systems, Montreal, Canada, 4-8 July 1999, pp: 233~234.
    [121] Kerres J, Ullrich A, H?ring Th, et al, Preparation, characterization, and fuel cell application of new acid-base blend membranes, Journal of New Materials for Electrochemical Systems, 2000, 3: 229~239.
    [122] Guiver M D, Robertson G P, Foley S, Chemical modification of polysulfone. Ⅱ. An efficient method for introducing primary amine groups onto the aromatic chain, Macromolecules, 1995, 28: 7612~7621.
    [123] Johnson B C, Yilg?r I, Tran C, et al, Synthesis and characterization of sulfonated poly(arylene ether sulfones), Journal of Polymer Science, Polymer Chemistry Edition, 1984, 22: 721~737.
    [124] Kerres J A, Cui W, Reichle S, New sulfonated engineering polymers via the metalation route. 1. Sulfonated poly(ethersulfone) PSU Udel? via metalation-sulfination-oxidation, Journal of Polymer Science: Part A: Polymer Chemistry, 1996, 34: 2421~2438.
    [125] Kerres J A, Zyl A J, Development of new ionomer blend membranes: their characterization and their application in the perstractive separation of alkenes from alkene-alkane mixtures. 1. polymer modification, ionomer blend membrane preparation and characterization, Journal of Applied Polymer Science, 1999, 74: 428~438.
    [126] Kerres J A, Development of ionomer membranes for fuel cells, Journal of Membrane Science, 2001, 185: 3~27.
    
    
    [127] Wang J T, Wasmus S, Savinell R F, Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell, Journal of the Electrochemical Society, 1996, 143(4): 1233~1239.
    [128] Wainright J S, Wang J T, Weng D, et al, Acid-doped polybenzimidazoles: a new polymer electrolyte, J. Electrochem. Soc., 1995,142: L121~L123.
    [129] Samms S R, Wasmus S, Savinell R F, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environment. Journal of the Electrochemical Society, 1996, 143(4): 1225~1232.
    [130] Yeo S C, Eisenberg A, Physical properties and supermolecular structure of perfluorinated ion-containing (Nafion) polymers, Journal of Applied Polymer Science, 1977, 21(4): 875~898.
    [131] Petty-Weeks S, Zupancic J J, Swedo J R, Proton conducting interpenetrating polymer networks, Solid State Ionics, 1988, 31(2): 117~125.
    [132] Przyluski J, Wieczorek W, Glowinkowski S, Novel proton polymer ionic conductors, Electrochimica Acta, 1992, 37(9): 1733~1725.
    [133] Wieczorek W, Such K, Florjanczyk Z, et al, Polyether, polyacrylamide, LiClO4 composite electrolytes with enhanced conductivity, Journal of Physics and Chemistry, 1994, 98(27): 6840~6850.
    [134] Aricò A S, Creti P, Antonucci P L, et al, Comparison of ethanol and methanol oxidation in a liquid-feed solid polymer electrolyte fuel cell at high temperature, Electrochemical Solid-State Letters, 1998, 1(2): 66~68.
    [135] Mauritz K A, Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides, Materials Science and Engineering, 1998, C 6: 121~133.
    [136] Mauritz K A, Stefanithis I D, Davis S V, et al, Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction, Journal of Applied Polymer Science, 1995, 55: 181~190.
    [137] Apichatachutapan W, Moore R B, Mauritz K A, Asymmetric Nafion/(zirconium oxide) hybrid membranes via in situ sol-gel chemistry, Journal of Applied Polymer Science, 1996, 62: 417~426.
    [138] Siuzdak D A, Mauritz K A, Surlyn? [silicon oxide] hybrid materials. 2. Physical properties characterization, Journal of Polymer Science, Part B: Polymer Physics, 1999, 37: 143~154.
    
    
    [139] Gautier-Luneau I, Denoyelle A, Sanchez J Y, et al, Organic-inorganic
    
    
    proton polymer electrolytes as membranes for low-temperature fuel cell, Electrochimica Acta, 1992, 37(9): 1615~1618
    [140] Park Y I, Kim J D, Nagai M, Proton conductivity in amorphous phosphate-PTFE composite, Journal of Materials Science Letters, 2000, 19: 1591~1594
    [141] McNicol B D, Electrocatalytic problems associated with the development of direct methanol-air fuel cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981,118:71~87.
    [142] Snell K D and Keenan A G, Effact of anions and pH on ethanol electrooxidation at a platinum electride, Electrochimica Acta, 1982,27:1683.
    [143] Leiva E P M and Giordano M C, The influence of platinum electrode surface on the electroadsorption and electrooxidation of methanol in acid solutions, Journal of the Electrochemical Society, 1983,130(6):1305~1312.
    [144] Clavilier J, Lamy C and Leger J M, Electrocatalytic oxidation of methanol on single crystal platinum electrodes. Comparison with polycrystalline platinum. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981,125(1):249~254.
    [145] Leiva E P M and Giordano M C, Multiple current components for methanol electrosorption and electrooxidation at platinum in acidic solutions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983,158(1):115~130.
    [146] Adzic R R, O,Grady W E and Srinivasan S, Oxidation of formic acid and methanol on platinum modified by foreign metal adatoms in 85% phosphoric acid, Journal of the Electrochemical Society, 1981,128(9):1913~1919.
    [147] Kadirgan F, Beden B, Leger J M, et al, Synergistic effect in the electrocatalytic oxidation of methanol on platinum + palladium alloy electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 125(1): 89~103.
    [148] Beden B, Lamy C, and Bewick A, Oscillatory kinetics in the electrochemical oxidation of formate ions during the deposition of rhodium electrode. Part Ⅱ. Mechanistic considerations, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 121: 115~124.
    
    
    
    [149] Srinivasan S, Fuel cells for electric utility and transportation applications, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981,118:51~69.
    [150] Adzic R R, Avramov-Ivic M L, and Tripkovic A V, Structural effects in electrocatalysis: oxidation of formaldehyde on gold and platinum single crystal electrodes in alkaline solution, Electrochimica Acta, 1984,29(10):1353~1357.
    [151] Adzic R R and Avramov-Ivic M L, Improvements of the catalytic activity of gold by foreign metal ad-atoms. Oxidation of formaldehyde in alkaline solutions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982,134(1):177~180.
    [152] Beltowska-Brzezinska M, and Heitbaum J, On the anodic oxidation of formaldehyde on platinum, gold and platinum/gold-alloy electrodes in alkaline solution, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 183(1-2): 167~181.
    [153] Kokkinidis G,and Jannakoudakis D, Catalysis of oxidation of aliphatic alcohols on platinum by underpotential submonolayers, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 153(1-2): 185~200.
    [154] Xonoglou N, Moumtzis I, and Kokkinidis G, Catalytic influence of underpotential-deposited submonolayers of heavy metals on D-glucose oxidation on various nible metal electrodes in alkaline media, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 237(1): 93~104.
    [155] Ocon P, Beden B, and Lamy C, Electrocatalytic oxidation of 1,2-propanediol -Ⅱ. Behavior of platinum ad-atom electrodes in alkaline medium, Electrochimica Acta, 1987, 32(7): 1095~1101.
    [156] Machida K, Nishimura K,and Enyo M, Amorphous copper-palladium-zirconium ternary alloys for formaldehyde oxidation anode materials, Journal of the Electrochemical Society, 1986, 133(12):2522~2529
    [157] Tsang R W, Johnson D C, and Luecke G R, The apparent activation energy for the electrochemical oxidation of formic acid at a platinum electrode chemically modified by bismuth adatoms in 0.5M sulfuric acid, Journal of the Electrochemical Society, 1984, 131(10): 2369~2373.
    [158] Maximovitch S, and Bronoel G, Oxidation of methanol on nickel-zinc catalysts, Electrochimica Acta, 1981, 26(9): 1331~1338.
    
    [159] Beden B, Kadirgan F, Lamy C,et al, Oxidation of methanol on a platinum
    
    
    electrode in alkaline medium. Effect of metal ad-atoms on the electrocatalytic activity, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982,142(1-2):171~190.
    [160] Lamy C, Leger J M, and Clavilier J, Structural effects in the electrooxidation of methanol in alkaline medium. Comparison of platinum single crystal and polycrystalline electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982,135(2):321~328.
    [161] Hahn F, Beden B, and Lamy C, In situ infrared reflectance spectroscopic study of the adsorption of formic acid at a rhodium electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 204(1-2): 315~327.
    [162] Enyo M, Electrocatalysis by palladium + gold alloys. Part Ⅱ. Electrooxidation of formaldehyde in acidic and alkaline solutions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985,186(1-2):155~166.
    [163] Parsons R, and VanderNoot T, The oxidation of small organic molecules: A survey of recent fuel cell related research, Journal of Electroanalytical Chemistry, 1988, 257, 9~45
    [164] Zhuang Lin(庄林), Wang Yang(汪洋),Lu Jun-Tao(陆君涛). How Can Direct Methanol Fuel Cell Benefit from Carbonate Media, 电化学,2001,7(1):18~24
    [165] Glasser L, Proton Conduction and Injection in Solids. Chemical Review, 1975, 75(1): 21~65
    [166] Xing B, Savadogo O, Hydrogen/oxygen polymer electrolyte membrame fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochemistry Communications 2000, 2: 697~702
    [167] Vyas B,U.S. Pat:571038, (Bell Telephone Laboratories) (Sept.11,1984)
    [168] 顾军,隋升,李光强,等,碱性燃料电池中氢电极催化剂的研究,电源技术,1999,23(4):221~223.
    [169] 滕加伟,金丽华,唐伦成,碱性燃料电池氧电极的研究—助催化剂的添加对Ag/C催化剂活性的影响,电化学,1997,3(4):428~432.
    [170] 张富利,周琴,唐伦成,H2/O2 AFC瑞尼镍催化氢电极助催化剂的研究,船电技术,1998,1:50~51,59.
    [171] McLean G F, Niet T, Prince-Richard S, et al, An assessment of alkaline fuel cell technology, International Journal of Hydrogen Energy, 2002, 27: 507~526.
    
    
    
    [172] Rowshanzamir S, Kazemeini M, A new immobilized-alkali H2/O2 fuel cell, Journal of Power Sources, 2000, 88: 262~268.
    [173] Lee M-H, Kim H J, Kim E, et al, Effect of phase separation on ionic conductivity of poly(methyl methacrylate)-based solid polymer electrolyte, Solid State Ionics, 1996, 85: 91~98.
    [174] Zawodzinski T A, Neeman Jr M, Sillerud L O, et al, Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes, Journal of Physics and Chemistry, 1991, 95: 6040~6044.
    [175] Summer J J, Creager S E, Ma J J, et al, Proton conductivity in Nafion 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane, Journal of the Electrochemical Society, 1998, 145(1): 107~110.
    [176] Yoshitsugu S, Per E, Daniel S, Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method, Journal of the Electrochemical Society, 1996, 143(4): 1254~1259.
    [177] Gerald Pourcelly, Angeliki Oikonomou, Claude Gavach, Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes, Journal of Electroanalytical Chemistry, 1990, 287: 43~59.
    [178] Millet P, Determination of self-diffusion coefficients from conductivity measurements in perfluorinated ionomer membranes, Journal of Membrane Science, 1990, 50: 325~328.
    [179] William Y H, John R B, Paul M, Ion percolation and insulator-to-conductor transition in Nafion perfluorosulfonic acid membranes, Macromolecules, 1980, 13: 198~200.
    [180] Gardner C L, Anantaraman A V, Studies on ion-exchange membranes. II. Measurement of the anisotropic conductance of Nafion, Journal of Electroanalytical Chemistry, 1998, 449: 209~214.
    [181] Gardner C L, Anantaraman A V, Measurement of membrane conductivities using an open-ended coaxial probe, Journal of Electroanalytical Chemistry, 1995, 395: 67~73.
    [182] 曹楚南,张鉴清,电化学阻抗谱导论,北京,科学出版社,2002年7月.
    [183] 何金兰,杨克让,李小戈,仪器分析原理,北京,科学出版社,2002年8月.
    [184] 沈钟,王果庭,胶体与表面化学,北京,化学工业出版社, 1997年9月.
    
    [185] Wieczorek W, Florjanczyk Z, Stevens J R,Proton conducting polymer gels
    
    
    based on a polyacrylamide matrix,Electrochimica Acta, 1995, 40(13--14): 2327~2330.
    [186] Stevens J R, Wieczorek W, Raducha D, et al, Proton conducting gel/H3PO4 electrolytes, Solid State Ionics, 1997, 97: 47~358.
    [187] Amorim da Costa A M, Amado A M, Cation hydration in hydrogelic polyacrylamide—phosphoric acid network: A study by Raman spectroscopy, Solid State Ionics, 2001, 145: 79~84.
    [188] Wieczorek W, Stevens J R, Proton transport in polyacrylamide based hydrogels doped with H3PO4 or H2SO4, Polymer, 1997,8(9): 2057~2065.
    [189] Checkiewicz K, Zukowska G, Wieczorek W, Synthesis and characterization of the proton—conducting gels based on PVDF and PMMA matrixes doped with heteropolyacids, Chemistry of Materials, 2001, 13(2): 379~384.
    [190] 李磊,张军,吴洪,等,直接甲醇燃料电池新型聚合物膜的研究,电化学,2002,8(2):177~180.
    [191] Raymond S, Nakamichi M. Electrophoresis in synthetic gels.Ⅰ. Relation of gel structure to resolution,Analytical Biochemistry, 1962, 3: 23~30.
    [192] Fawcett J S, Morris C J O R,Molecular sieve chromatography of proteins on granulated poly(acrylamide) gels,Separation Science, 1966, 1(1): 9~26.
    [193] Rodbard D, Chrambach A,Unified theory for gel electrophoresis and gel filtrstion,Proceedings of the National Academy of Sciences of the USA, 1970, 65(4): 970~977.
    [194] 北京石油化工工程公司,氯碱工业理化常数手册(修订版),北京,化学工业出版社, 1988年11月.
    [195] 姚海文,马金石,黄骏雄,等译,有机化合物光谱鉴定(“Spectrometric identification of organic compounds” edited by Silverstein R M, Bassler G C, Morrill T C),北京,科学出版社,1982年11月.
    [196] 章燕豪,物理化学,上海,上海交通大学出版社,1988年5月.
    [197] 赵德仁,张慰盛,高聚物合成工艺学,北京,化学工业出版社,1997年6月.
    [198] 张克惠,塑料材料学,西安,西北工业大学出版社,2000年5月.
    [199] 雷燕,吴峰,陆丹,等,《实用化工材料手册》?合成材料及其助剂,广州,广东科技出版社,1994年5月.
    [200] 蒋展鹏,刘希曾,水化学,北京,中国建筑工业出版社,1990年10月.
    [201] 王凯雄,水化学,北京,化学工业出版社,2001年5月.
    [202] 姚允斌,解 涛,高英敏,物理化学手册,上海,上海科学技术出版
    
    
    社,1985年12月.
    [203] 陈延禧,电解工程,天津,天津科学技术出版社,1993年8月.
    [204] Glasser L, Proton conduction and injection in solid, Chemical Review, 1975, 75(1): 21~65.
    [205] Xing B., Savadogo O., Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochemistry Communications, 2000, 2: 697~702.
    [206] 李荻,电化学原理(修订版),北京,北京航空航天大学出版社,1999年8月.
    [207] 黄子卿,电解质溶液理论导论(修订版),北京,科学出版社,1983年8月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700