抗白内障前药双硫仑经眼给药传递系统及作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白内障是世界首位致盲眼病,由白内障导致的视力低下和眼盲是急待解决的医学和社会问题,研究白内障的发病机制和针对病因的抗白内障药物制剂的开发是解决问题的关键。双硫仑(disulfiram,DSF)为二乙基二硫代氨基甲酸(Diethyldithiocarbamate,DDC)的二聚体,DDC及其衍生物是一类具有抗白内障活性的化合物,其中DSF的活性较高,但由于溶解度较低,限制了DSF的应用。本文采用环糊精包合技术,将DSF包合于羟丙基β环糊精(HPβCD)以增加DSF的溶解度,从研究药物的角膜透过性入手,研制成适于眼部给药并符合眼用制剂质量要求的DSF—HPβCD滴眼液,并考察了DSF—HPβCD滴眼液的抗白内障效果以及家兔眼内的药动学过程。之前的研究一般将DDC及其衍生物的抗白内障机理归因于它们的抗氧化作用和对抗机体中过多的自由基。为更进一步从细胞分子水平探讨这个问题,本文首次在人晶体上皮细胞(HLEC)中诱导表达了一氧化氮合酶(inducible nitric oxide synthase,iNOS),发现DDC对iNOS的表达具有抑制作用,从一个崭新的角度解释其抗白内障机理。
     首先以相溶解度法和HPLC法研究了DSF与HPβCD形成包合物的特点。其相溶解度曲线符合Higuchi所阐述的An型,包合物的稳定常数为1772.77L·mol~(-1)(25℃)。包合过程的焓变(△H)为-25.25kJ-mol~(-1),虽然包合物形成是熵减少地过程,但是焓效应弥补了熵效应的不利作用,对包合物的形成起支配作用,综合结果是该包合反应的吉布斯自由能△G为负,表明这一反应是一个自发的过程。
     分别采用溶液搅拌法、超声波法、直接混合加热法制备DSF—HPβCD包合物,其中溶液搅拌法效果最好,包合物中DSF平均含量为7.606%(w/w)。制得的包合物以差示扫描量热法、红外光谱法和X-射线粉末衍射法鉴定。结果显示包合物的理化性质不同于纯药物及其与HPβCD的物理混合物,包合物以无定型形式存在,且水中的溶解度由0.02%提高到1.34%,完全能够满足制备DSF滴眼剂的要求。
     离体角膜透过实验和DSF在角膜匀浆中的代谢研究表明DSF为DDC的前药,应用于眼部时,在透过角膜过程中被代谢成为活性形式DDC,即首次提出这一过程具有酶促反应的特点,米氏常数(K_m)和最大反应速度(V_(max))分别为12.05±1.04μmol·L~(-1)和0.8696±0.0215μmol·min~(-1)。
     离体家兔角膜透过实验研究表明,某些高分子聚合物和渗透促进剂能够显著提高DSF的表观渗透系数,增加DDC的角膜透过量,其中0.1%HPMC和1.0%F_(68)的促渗
Cataracts are still the most important cause of blindness in the world. Cataract-induced visual dysfunction and blindness is a significant and increasing global problem. The solutions for this problem are founding out the fundamental mechanism of cataract and delay its formation by drug therapies. Diethyldithiocarbamate (DDC) and its derivates are thus a group of chemical substances. Disulfiram (DSF), the dimer of DDC, presents good anti-cataract activity. But the use of DSF in ocular treatment was limited by its poor water solubility. In the present studies, DSF was included into hydroxypropyl-8-cyclodextrin to increase its water solubility. Based on in vitro transcorneal transit studies, a DSF-HPβCD based ocular drug delivery system was formulated. The ocular pharmacokinetics of DSF—HPβCD eye drops in rabbit eyes and the pharmacology to selenite-induced cataract rats and hereditary Shumiya cataract rats (SCR) were evaluated. Because of the mechanism of cataract formation was still not clear, the explanation for DSF's anti-cataract effect was thought to be their anti-oxidation effects and the scavenging ability for free radicals. In a previous study, excessive nitric oxide (NO) production was found to be one reason for cataract. In the present study, for the first time, human lens epithelial cells (HLEC) were found to be able to express inducible nitric oxide synthase (iNOS). DDC was observed to inhibit iNOS expression in HLEC effectively, which explained the anti-cataract effect of DSF at a new point of view.
    Interaction between DSF and HPBCD was studied by means of phase solubility method and HPLC assay. The formation of DSF-HPBCD inclusion complex accorded with the A_n type described by Higuchi. The apparent stability constant of the inclusion complex was found to be 1772.77 L ? mol~(-1) HPLC assay gave out the enthalpy change(△H )of the system during the formation of DSF-HPBCD, which is -25.25 kJ·mol~(-1) The negative free energy change of this reaction demonstrated the formation of DSF-HPBCD was spontaneous.
    DSF-HPBCD inclusion complex were prepared using solution mixing method, ultrasonic method and directly mixing and heating. A best outcome was observed by using solution mixing method. DSF-HPBCD was subjected to differential scanning calorimetry analysis(DSC), infrared spectrometry (IR) and X-ray powder diffraction assay for the identification of inclusion complex formation.
    Results from in vitro permeability of DSF across isolated rabbit cornea and DSF metabolism study in cornea homogenate demonstrated that, when applied in the eye, DSF was definitely converted to its active form DDC, and the later passing through the cornea and diffusing into the aqueous humor. The metabolism process was of some characters of enzymatic reaction. The K_m and V_(max) were found to be 12.05 ± 1.04 μmol·L~(-1) and 0.8696 ± 0.0215 μmol·min~(-1) respectively.
引文
[1] Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004, 82(11): 844-51.
    [2] Thylefors B, Negrel AD, Pararajasegaram R, et al. Globle data on blindness. Bull World Health Organ. 1995, 73(1): 115-21.
    [3] Brian G, Taylor H. Cataract blindness-challenges for the 21st century. Bull World Health Organ. 2001, 79 (3): 249-56.
    [4] 张红葵,夏修龙.白内障的流行病学和临床.九江医学1994,1:70.
    [5] 张士元.我国白内障的流行病学调查资料分析[J].中华眼科杂志.1999,35(5):336-339.
    [6] 郭秉宽.中国医学百科全书—眼科学[M].上海:上海科学技术出版社,1985.9.
    [7] 张尧贞.老年性白内障的病因[J].中华眼科杂志.1995,31(3):236-8.
    [8] Ottonello S, Foroni C, Carta A, et al. Oxidative stress and age-related cataract[J]. Ophthalmologica. 2000, 214(1): 78-85.
    [9] Sasaki H, Lin LR, Yookoyama T, et al. TEMPOL protecs against lens DNA strand breaks and cataract in the X-rayed rabbit [J]. Invest Ophthalmol Vis Sci, 1998, 39(3): 544-52.
    [10] Javitt JC, Taylor HR. Cataract and latitude[J]. Doc Ophthalmol. 1994-95, 88(3-4): 307-25.
    [11] 李根林.Maillard反应与白内障[J].国外医学眼科学分册.1993,17(5):284-7.
    [12] Goswami S, Sheets NL, Zavadil J, et al. Spectrum and range of oxidative stress responses of human lens epithelial cells to H2O2 insult[J]. Invest Ophthalmol Vis Sci, 2003; 44(5):2084-93.
    [13] Li WC, Kuszak JR, Wang GM, Wu ZQ, Spector A. Calcimycin-induced lens epithelial cell apoptosis contributes to cataract formation. Exp Eye Res. 1995 Jul; 61(1): 91-8.
    [14] Buch H, Vinding T, Nielsen NV. Prevalence and causes of visual impairment according to World Health Organization and United States criteria in an aged, urban Scandinavian population: The Copenhagen city eye study[J]. Ophthalmology, 2001; 108(12): 2347-2357.
    [15] 夏小平,张晓,夏海涛.糖尿病性白内障发病的有关因素研究[J].江西医药.2000;35(4):211-212
    [16] Shearer TR, David LL, Anderson RS. Selenite cataract: a review[J]. Curr Eye Res. 1987, 6(2): 289-299.
    [17] Derham BK, Harding JJ. q-crystalline as a molecular chaperone [J]. Prog Retin Eye Res, 1999; 18(4): 463-509.
    [18] Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract[J]. FASEB J, 1999; 13(1): 23-30.
    [19] Terao M, Hyogoken, Ito J, et al. Method for treatment of cataract with radical scavenger[P]. United States Paten 5,665,770(CL US 005665770), 1997, SEP. 9
    [20] Thorn, GD, Ludwig, RA, 1962. The Dithiocarbamates and Related Compounds. Elsevier, Amsterdam.
    [21] Sunderman FW. Efficacy of sodium diethyldithiocarbamate (dithiocarb) in acute nickel carbonyl poisoning[J]. Ann Clin Lab Sci. 1979, 9(1): 1-10.
    [22] Reisinger EC, Kern P, Ernst M, Book P, Flad HD, Dietrich M. Inhibition of HIV progression by dithiocarb[J]. German DTC Study Group. Lancet. 1990, 335(8691): 679-82.
    [23] Gandara DR, Perez EA, Weibe V, De Gregorio MW. Cisplatin chemoprotectiou and rescue: pharmacologic modulation of toxicity[J]. Semin Oncol. 1991, 18: 49-55.
    [24] Moellering D, McAndrew J, Jo H, Darley-Usmar VM. Effects of pyrrolidine dithiocarbamte on endothelial cells: protection against oxidative stress[J]. Free Radio Biol Med. 1999, 26, 1138-1145.
    [25] Lauzurica, P., Martinez-Martinez, S., Marazuela, M., Gomez, D. A. P., Martinez, C., Sanchez-Madrid, F., Redondo, J. M., Pyrrolidine dithiocarbamate protects mice from lethal shock induced by LPS or TNF-α[J]. Ear J Immunol. 1999, 29: 1890-1900.
    [26] Yoshida, A., Yoshida, S., Ishibashi, T., Kuwano, M., Inomata, H., Suppression of retinal neovascularization by the NF-kB inhibitor pyrrolidine dithiocarbamate in mice[J]. Invest. Opthalmol. Visual Sci.1999, 40: 1624-29.
    [27] Ito Y, Cai H, Koizumi Y, et al. Correlation between prevention of cataract development by disulfiram and fates of selenium in selenit-treated rats. Curr Eye Res[J], 1999, 18: 292-99.
    [28] Ito Y, Cal H, Koizumi Y, et al. Effect of lipid composition on the transcorneal penetration of liposomes containing disulfiram, a potential anti-cataract agent, in rabbit[J]. Biol Pharm Bull, 2000, 23(3): 327-33.
    [29] Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Delivery Rev, 1995, 16: 39-43.
    [30] Loftssona T, Jarvinen T. Cyclodextrins in ophthalmic drug delivery[J]. Adv Drug Deliv Rev. 1999, 36(1): 59-79.
    [31] 黎洪珊,王培玉.β—环糊精衍生物的研究进展及在药剂学上的应用[J].中国药学杂志,1999,34(4):220-3.
    [32] Kristinsson J K, Fridriksdottir H, Thorisdottir S, et al. Dexamethasone cyclodextrin-polymer co-complexes in aqueous eye drops[J], Invest Opthalmol Vis Sci, 1996, 37(6): 1199-203.
    [33] Reer O, Bock TK, Muller BW. In vitro corneal permeability of diclofenac sodium in formulations containing cyclodextrins compared to the commercial product voltaren ophtha[J]. J Pharm Sci. 1994, 83(9): 1345-9.
    [34] 陆彬.药物新剂型与新技术.北京:人民卫生出版社,1998:40.
    [35] Schoenwald RD. Ocular drug delivery-pharmacokinetic considerations[J]. Clin Pharmcokinet. 1990, 18(4): 255-69.
    [36] Stromme JH, Effects of diethyldithiocarbamate and disulfiram on glucose metabolism and glutathione content of human erythrocytes[J]. Biochem Pharmacol. 1963, 12: 705-15.
    [37] Cobby J, Mayersohn M, Selliah S. The rapid reduction of disulfiram in blood and plasma[J]. J Pharmacol Exp Ther. 1977, 202(3): 724-31.
    [38] Agarwal RP, Mcpherson RA And Phillips M. Rapid degradation of disulfiram by serum albumin[J]. Res Commun Chem Pathol Pharmacol. 1983, 42: 293-310.
    [39] Agarwal RP, Phillips M, McPherson RA, Hensley P. Serum albumin and the metabolism of disulfiram[J]. Biochem Pharmacol. 1986, 35(19): 3341-7.
    [40] Pike MG, Mays DC, Macomber DW, Lipsky JJ. Metabolism of a disulfiram metabolite, S-methyl N, N-diethyldithiocarbamate, by flavin monooxygenase in human renal microsomes[J]. Drug Metab Dispos. 2001, 29(2): 127-32.
    [41] Boyle DL, Blunt DS, Takemoto LJ. Confocal microscopy of cataracts from animal model systems: relevance to human nuclear cataract[J]. Exp Eye Res. 1997, 64(4): 565-72.
    [42] Bhuyan K C, Bhuyuan K D. Molecular mechanism of cataractogenesis. Evidence of lipid peroxidation and membrane damage; in Greenwald RA, Cohen G(ed): Oxy radicals and Their Scavenger System[M]. New York, Elsevier Science Publishing, 1983.
    [43] Garberg P, Stahl A, Warholm M, Hogberg J. Studies of the role of DNA fragmentation in selenium toxicity[J]. Biochem Pharmacol. 1988, 37(18): 3401-6.
    [44] Dougherty JJ, Hoekstra WG. Stimulation of lipid peroxidation in vivo by injected selenite and lack of stimulation by selenate[J]. Proc Soc Exp Biol Med. 1982, 169(2): 209-15.
    [45] Seko Y, Imura N. Active oxygen generation as a possible mechanism of selenium toxicity[J]. Biomed Environ Sci. 1997, 10(2-3): 333-9.
    [46] Shearer T R, Ma H, Fukiage G H, et al. Selenite nuclear cataract: review of the model[J]. Mol Vis, 1997, 3: 8.
    [47] David LL, Shearer TR. State of snlfhydryl in selenite cataract[J]. Toxicol-Appl Pharmacol, 1984, 74(1): 109-15.
    [48] Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain[J]. Nature. 1988, 336(6197): 385-8.
    [49] Garthwaite J, Garthwaite G, Palmer RM, Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices[J]. Eur J Pharmacol. 1989, 172(4-5): 413-6.
    [50] Becquet F, Courtois Y, Goureau O. Nitric oxide in the eye: multifaceted roles and diverse outcomes[J]. Surv Ophthalmol. 1997, 42(1): 71-82.
    [51] Ito Y, Nabekura T, Takeda M, et al. Nitric oxide participates in cataract development in selenite-treated rats[J]. Current Eye Research. 2001, 22(3): 215-220.
    [52] 阎洪禄,刘红霞.一氧化氮及其合酶在白内障形成过程中的作用[J].中华眼科杂志,2004,40(8):561-562.
    [53] Marrem MB, Venema VJ, He H, Caldwell RB, and Venema RC. Inhibition by the JAK/STAT pathway of IFN-γ, and LPS-stimulated nitric oxide synthase induction in vascular smoth muscle cells[J]. Biochem Biophys Res Commun. 1998, 252(2): 508-512.
    [54] Salzman AL, Eaves-Pyles T, Linn SC, Denenberg AG, Szabo C. Bacterial induction of inducible nitric oxide synthase in cultured human intestinal epithefial cells[J]. Gastroenterology. 1998, 114(1): 93-102.
    [55] Cavicchi M, Whittle BJ. Regulation of induction of nitric oxide synthase and the inhibitory actions of dexamethasone in the human intestinal epithelial cell line, Caco-2: Influence of cell differentiation[J]. Br J Pharmacol. 1999, 128(3): 705-15.
    [56] Yanagita M, Shimabukuro Y, Nozaki T, et al. IL-15 up-regulates iNOS expression and NO production by gingival epithelial cells[J]. Biochemical and Biophysical Research Communications. 2002, 297(2): 329-34.
    [57] Oswald IP, Eltoum I, Wynn TA, et al. Endothelial cells are activated by cytokine treatment to kill an intravascular parasite, Schistosoma mansoni, through the production of nitric oxide[J]. Proc Nail Acad Sci USA. 1994, 91(3): 999-1003.
    [58] Cruz Mr, Duarte CB, Gonc alo M, et al. LPS induction of IκB-a degradation and iNOS expression in a skin dendritic cell line is prevented by the Janus kinase inhibitor, tyrphostin B42[J]. NITRIC OXIDE: Biology and Chemistry. 2001, 5(1): 53-61.
    [59] Guan Z, Buckman SY, Springer LD, et al. Both p38aMAPK and JNK/SAPK pathways are important for induction of nitric-oxide synthase by interleukin-1β in rat glomerular mesangial cells[J]. The Journal Of Biological Chemistry. 1999, 274(51): 36200-36206.
    [60] 秦虹.白内障病人晶状体上皮细胞DNA损伤初探[J].眼科,2001,10(4):239-42.
    [1] Higuchi T, Connors KA. Phase-solubbility techniques[J]. Adv Anal Instr. 1996, 4: 117
    [2] Martin Del Valle EM. Cyclodextrins and their uses: a review[J]. Process Biochemistry. 2004, 39: 1033-46.
    [3] Reef O, Bock TK, Muller BW. In. vitro corneal permeability of diclofenac sodium in formulations containing cyclodextrins compared to the commercial product voltaren ophtha[J]. J Pharm Sci. 1994, 83(9): 1345-9.
    [4] Loftsson T, Gudmuadsdottir TK, Fridriksdottir H. The influence of water-soluble polymers and pH on HP-β-CD complexation of drugs[J]. Drug Dev Ind Pharm, 1996, 22(5): 401-9.
    [5] Maria D Veign, Fakhrul Ahsan. Influence of suffactants (present in the dissolution medium) on the release behaviour of tolbatamide from its inclusion complex with β-hyaluronic acid[J] Ind J Pharm, 1989, 51: 203-11.
    [6] Blanco JL, Vila Jato J, Otero F, et al. Influence of method of preparation on inclufion complexes of naproxen with different cyclodextrins[J]. Drug Dev Ind Pharm, 1991, 17: 943-53.
    [7] 曹新志,金征宇.环糊精包合物的制备方法[J].食品工业科技.2003,24(10):158-60.
    [8] 梁宏,Durham DG.HPLC β-环糊精手性流动相添加剂的研究:Ⅲ-β-环糊精手性选择性包合稳定常数的简化计算及验证[J].中国药科大学学报,1997,28(4):218-21.
    [9] Kazumi F, Teruhisa U, Masashi K, et al. Reversed phase retention behavior of aromatic compounds involving β-cyclodextrin inclusion complex formation in the mobile phase[J]. Anal Chem, 1986, 58: 2668-74.
    [10] Kaneto U, Furnamoto H, Tetsumi I. The new method for determination of the stability constants of cyclodextrin prostaglangdin inclusion complexes by liquid chromatography [J]. Chem Lett, 1978, 661-4.
    [11] 吴文娟,庄礼天,林颖华等.β-环糊精与阿司匹林包合反应的热力学研究[J].广东药学院学报,1995,11(1):1-3.
    [1] Stromme JH. Effects of diethyldithiocarbamate and disulfiram on glucose metabolism and glutathione content of human erythrocytes[J]. Biochem Pharmacol. 1963,12: 705-15.
    [2] Cobby J, Mayersohn M And Selliah S. The rapid reduction of disulfiram in blood and plasma[J]. J Pharmacol Exp Ther.1977, 202: 724-31.
    [3] Agarwal RP, Mcpherson RA And Phillips M, Rapid degradation of disulfiram by serum albumin[J]. Res Commun Chem Pathol Pharmacol. 1983, 42: 293-310.
    [4] Grass GM and Robinson JR. Mechanisms of Corneal Drug Penetration Ⅰ: In Vivo and In Vitro Kinetics[J]. J Pharm Sci. 1988, 77(1): 3-14.
    [5] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem. 1976, 72: 248-54.
    [6] Ellman GL. A colorimetric method for determining low concentrations of mercaptans[J]. Arch Biochem Biophys. 1958, 74(2): 443-50.
    [7] Cappello B, Carmignani C, Iervolino M, et al. Solubilization of tropicamide by hydroxypropyl-β-cyclodextrin and water-soluble polymers: in vitro:in vivo studies[J]. Int J Pharmacol. 2001, 213: 75-81.
    [8] Loftsson T and Jarvinen T. Cyclodextrins in ophthalmic drug delivery[J]. Adv Drug Del Rev. 1999, 36: 59-79.
    [9] Loftsson T, Fridriksdottir H, Thorisdottir S, Stefansson E. The effect of hydroxypropyl methylcellulose on the release of dexamethasone from aqueous 2-hydroxypropyl-β-cyclodextrins formulations[J]. Int J Pharmacol. 1994, 104: 181-84.
    [10] Castillo JA, Palomo-Canales J, Garcia, JJ, Lastres JL, Bolas F, Torrado JJ. Preparation and characterization of albendazole beta-cyclodextrin complexes[J]. Drug Dev Ind Pharm. 1999, 25: 1241-8.
    [11] Saettone MF, Chetoni P, Cerbai R, et al. Evaluation of ocular permeation enhancers: in vitro effects on corneal transport of four β-blockers, and in vitro/in vivo toxic activity [J]. Int J Pharm, 1996, 142: 103-13.
    [12] 吴文娟,陈育珍,谭载友.水溶性高聚物对药物-环糊精包合作用的影响.[J]中国药学杂志,1999,34(2):99-101.
    [1] 中华人民共和国卫生部药政局.新药(西药)临床前研究指导原则汇编(药学 药理学 毒理学).北京:卫生部药政局:1993:115.
    [2] 张朝佑主编.人体解剖学(第二版)[M].北京:人民卫生出版社,1998:1739.
    [3] Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs [J]. Surv Ophthalmol. 1993, 37(6): 435-56.
    [4] Schoenwald RD. Ocular drug delivery-pharmacokinetic considerations [J]. Clin Pharmcokinet. 1990, 18(4): 255-69.
    [5] Miller MH, Madu A, Samathjianam G, et al. Fleroxacin pharmacokinetics in aqueous and vitreous humors determined by using complete concentration-time data from individual rabbits [J]. Antimic Agents Chemother. 1992, 36(1): 32-8.
    [6] Kristinsson J K, Fridriksdottir H, Thorisdottir S, et al. Dexamethasone-cyclodextrin -polymer cocomplexes in aqueous eye drops [J]. Inv Ophthalmol Vis Sci 1996, 37: 1199-203.
    [7] Sigurdardottir AM, Loftsson T. The effect of polyvinylpyrrolidone on the cyclodextrin complexation of hydrocortisone and its diffusion through hairless mouse skin [J]. Int J Pharm. 1995, 126: 73-82.
    [8] Brackman JC, Engberts JBFN. Polymer-micelle interactions: physical organic aspects [J]. Chem Soc Rev. 1993: 85-90.
    [9] 杨德旺等.眼科治疗学[M].北京:人民卫生出版社,1983:30.
    [1] Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues [J]. Anal Biochem. 1976, 74(1): 214-26.
    [2] Ellman GLA. Colorimetric method for determining low concentrations of mercaptans [J]. Arch Biochem Biophys. 1958, 74: 443.
    [3] Anderson WL, Wetlaufer DB. A new method for disulfide analysis of peptides [J]. Anal Biochem. 1975, 67(2): 493-502.
    [4] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction [J]. Anal Biochem. 1979, 95: 351-8.
    [5] Bunce GE, Hess JL, Batra R. Lens calcium and selenite-induced cataract [J]. Curr Eye Res. 1984, 3(2): 315-20.
    [6] Okano T, Uga S, Ishikawa S, Hara A, et al. Lens reconstruction after mature cataract in SCR rat [J]. Jpn J Ophthalmol. 1999, 43(5): 363-7.
    [7] Shumiya S. Establishment of the hereditary cataract rat strain (SCR) and genetic analysis [J]. Lab Anim Sci. 1995, 45(6): 671-3.
    [8] Okano T, Uga S, Ishikawa S and Shumiya S. Histopathological Study of Hereditary Cataractous Lenses in SCR Strain Rat [J]. Exp Eye Res. 1993, 57(5): 567-76.
    [9] Mizuno A, Shumiya S, Toshima S, Nakano T. Alteration of lens disulfide bonds in newly developed hereditary cataract rat [J]. Jpn J Ophthalmol. 1992, 36(4): 417-25.
    [10] Inomata M, Nomura K, Takehana M, Saido TC, Kawashima S, Shumiya S. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR) [J]. Biochim Biophys Acta. 1997, 1362(1): 11-23.
    [11] Aderson RS, Shearer TR, Claycomb CK, et al. Selenite-induced epithelial damage and conical cataract [J]. Curr Eye Res, 1986, 5(1): 53-61.
    [12] Anderson RS, Trune DR, Shearer TR. Histologic changes in selenite conical cataract [J]. Invest Ophthalmol Vis Sci, 1988, 9(9): 1418-27.
    [13] Huang LL, Zhang CY, Hess JL, etal. Biochemical changes and cataract formation in lens from rats receiving multiple, low doses of sodiumseelenite [J]. Exp Eye Res,1992, 55(5): 671-8.
    [14] Huang LL, Hess JL, Bunce GE. DNAdamage, repair, and replication in selenite induced cataract in rat lens [J]. Curr Eye Res,1990, 9(11): 1041-50.
    [15] Wang Z, Bunce GE, Hess JL. Selenite and Ca2+ homeostasis in the rat lens effect on Ca-ATPase and passive Ca~(2+) transport [J]. Curr Eye Res. 1993, 12(3): 213-8.
    [16] Shearer TR, Ma H, Fuldage C, Azuma M. Selenite nuclear cataract: review of the model [J]. Mol Vis. 1997, 3: 8.
    [17] 王凤翔,何守志,李楠.半乳糖性白内障晶体上皮细胞游离钙的实验研究[J].中华眼科杂志.1998,34(5):3524.
    [18] 商福.钙与白内障的形成[J].国外医学眼科学分册.1991,15(5):297-9.
    [19] Yoshida H, Murachi T, Tsukahara I. Distribution of calpain Ⅰ, calpain Ⅱ, and calpastatin in bovine lens [J]. Invest Ophthalmol Vis Sci. 1985, 26(7): 953-6
    [20] Heikkila RE, Cabbat FS, Cohen G. In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate [J]. J Biol Chem. 1976, 251(7): 2182-5.
    [1] Ito Y, Nabekura T, Takeda M, et al. Nitric oxide participates in cataract development in selenite-treated rats[J]. Curr Eye Res. 2001, 22(3): 215-20.
    [2] 阎洪禄,刘红霞.一氧化氮及其合酶在白内障形成过程中的作用[J].中华眼科杂志.2004,40(8):561-2.
    [3] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem. 1976, 72: 248-54.
    [4] Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite and [~(15)N]nitrate in biological fluids[J]. Anal. Biochem. 1982, 126: 131-8.
    [5] Lorsbach RB, Murphy WJ, Lowenstein CJ, et al. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide[J]. J Biol Chem. 1993, 268(3): 1908-13.
    [6] Gao J, Morrison DC, Parmely TJ, et al. An interferon-γ-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-γand lipopolysaccharide[J]. J Bio Chem. 1997, 272(2): 1226-30.
    [7] Schreck R, Meier B, Mannel DN, et al. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells [J]. J Exp Med. 1992, 175(5): 1181-94.
    [8] Chandrasekar B, Streitman JE, Colston JT, Freeman GL. Inhibition of nuclear factor kappa B attenuates proinflammatory cytokine and inducible nitric-oxide synthase expression in postischemic myocardium. Biochim Biophys Acta [J]. 1998, 1406(1): 91-106.
    [9] Nabekura T, Koizumia Y, Nakaoa M, et al. Delay of cataract development in hereditary cataract UPL rats by disulfiram and aminoguanidine [J]. Exp. Eye Res. 2003, 76: 169-174.
    [10] Ito Y, Cai H, Koizumi Y, etal. Correlation between prevention of cataract development by disulfiram and fates of selenium in selenite-treated rats [J]. Curr Eye Res. 1999, 18(4): 292-299.
    [11] Ishiyama H, Hoglen NC, Sipes IG Diethyldithiocarbamate enhances production of nitric oxide and TNF-alpha by lipopolysaccharide-stimulated rat Kupffer cells [J]. Toxicol Sci. 2000, 55(1): 206-14.
    [12] Kim CH, Kim JH, Moon SJ, et al. Biphasic effects of dithiocarbamates on the activity of nuclear factor-κB [J]. Eur J Pharmacol. 2000, 392(3): 133-136.
    [13] Murad F. Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? [J] Recent Prog Horm Res. 1998, 53: 43-60.
    [14] Guan Z, Buckman SY, Springer LD, et al. Both p38α~(MAPK) and JNK/SAPK pathways are important for induction of nitric-oxide synthase by interleukin-1β in rat glomerular mesangial cells[J]. J Bio Chem. 1999, 274(51): 36200-36206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700