Cu-H_2O二元系及Cu-Cl-H_2O三元系反应球磨研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用机械力化学原理,通过高能行星球磨机,在蒸馏水中球磨金属活动顺序表中排在氢以前的金属粉末(Zn、Mn等)可直接制备相应的纳米级氧化物,并得到副产物氢气。而关于排在氢以后的金属在水溶液球磨的现象及规律尚无研究。本文以排在氢之后的铜为实验对象,研究Cu-H2O二元系以及Cu-Cl-H2O三元系反应球磨的现象及规律,并通过XRD、SEM及TEM等分析手段分析产物特征。实验得到了如下结果:
     (1) Cu在纯蒸馏水中球磨时,Cu与溶解于水中的氧气反应生成Cu2O,但因罐中氧气量及溶解在水中的氧气量有限因而所得Cu2O的量有限。在机械合金化结果中,Cu粉与干燥空气中的氧气反应较难发生,因而在球磨110h后也仅得到极少量Cu2O,较水溶液条件下的量少。
     (2) Cu在蒸馏水中球磨,当体系氧压较高时(充氧条件下),Cu粉与氧气之间的反应被不断激发。由于体系氧气充足,Cu粉能被完全氧化为CuO。球磨110h后所得纯的CuO粉末较为均匀,颗粒尺寸分布在100-200nm之间。
     (3)在pH=2的HCl溶液中球磨金属Cu粉,球磨3h后快速得到了大量的Cu2O粉末,但同时含有少量Cu2(OH)3Cl和CuCl。球磨70h后得到纯度较高的Cu2O粉末,未检测到其它物相。所得Cu2O颗粒尺寸均为50-100nm之间,球磨70h所得Cu2O颗粒尺寸较球磨3h时的略小。
     (4)在CuCl2溶液中球磨纯铜粉末,当[Cl-]=1.5×10-2mol/L和7.5×10-2mol/L时,分别球磨25h和80h后得到完全的Cu2O,颗粒多为规则的立方状、六方状,尺寸约为50-150nm;在[Cl-]=0.3mol/L时,得到纯Cu2O粉末所需时间为100h,颗粒尺寸明显偏大且出现大量不规则形貌;在[Cl-]=0.75×10-2mol/L以及0.3×10-2mol/L时,体系较难在某一时段得到纯的Cu2O。由此可知,不同氯离子浓度将影响球磨各阶段反应、得到纯的Cu2O所需时间及所得Cu2O的颗粒大小和形貌。
     (5)将CuCl在水溶液球磨,球磨80h后得到绝大多数的Cu2O。所得Cu2O颗粒大多为不规则形貌,有部分立方状及六方状颗粒,尺寸为20-80nm。
Based on the principle of mechanochemistry, nanosized oxides and H2 as the side product can be obtained by ball milling metal powders (Zn, Mn etc.) in water solution using high-energy ball mill. The metal powders used rank before H in the list of metal activity sequence. However, the study on ball milling metal powders which rank after H in water solution is not available. The Cu powder which ranks after H was selected as the raw material in this experiment to study the phenomenon and principles of Cu-H2O binary and Cu-Cl-H2O trinary reaction ball milling. XRD、SEM and TEM were employed to examine the phase composition、microstructure of the final products. The experimental results were as follows:
     (1) By ball milling Cu powder in pure distilled water solution, Cu2O was formed by the reaction between Cu and oxygen which was dissolved in water. But the amount of Cu2O was quite limited due to the limited amount of oxygen in the ball milling system. While in the results of mechanical alloying, the reaction between Cu and oxygen was hard to occur, little amount of Cu2O was gained after 110h ball milling, which was less than in the former experiment.
     (2) By ball milling Cu powder in distilled water solution with a high oxygen pressure, the reaction between Cu powder and oxygen would be activated continuously. The Cu powder can be oxidized to CuO completely due to the sufficient oxygen in system. The pure CuO obtained after 110h ball milling was uniform with the particle size of 100-200nm.
     (3) By ball milling Cu powder in HCl solution with pH value of 2, a large amount of Cu2O was obtained after 3h milling, together with a little amount of Cu2(OH)3Cl and CuCl. While high purity Cu2O was formed after 70h milling. No other phases were examined. The particle size of Cu2O was 50-100nm.
     (4) Ball milling Cu powder in CuCl2 solution with [Cl-] of 1.5×10-2mol/L and 7.5×10-2mol/L, complete Cu2O were gained after 25h and 80h milling respectively. Most of the particles were cubic or hexagonal in shape and 50-150nm in size. When the [Cl-] was adjusted to 0.3mol/L, the milling time needed for forming pure Cu2O was 100h. And the particles were apparently larger in size and more abnormal in shape than the former results. When the [Cl-] reached 0.75×10-2mol/L and 0.3×10-2mol/L, pure Cu2O was hard to form in a certain period. It can be concluded that different concentration of Chloride ion would affect the reactions in different milling periods, the needed time for forming pure Cu2O and the size、shape of Cu2O particles.
     (5) A large amount of Cu2O was obtained after 80h ball milling CuCl in water solution. Most of the Cu2O particles were abnomal in shape and 20-80nm in size. There were also partial particles of cubic and hexagonal shapes.
引文
[1] Ostwald W. Handbuch der allgemeine Chemie Band I Ambrosius Barth[M], Germany: Leipzig ,1919,70.
    [2] Peters k. Mechanochemische[M] Frankfurt:Peaktionen, 1962,78-79.
    [3] Heinicke G. Tribochemistry[M]. Berlin:Akademie-Verlag, 1984,19.
    [4] Bertran F. Mechanochemistry:an overview[J]. Pure Appl Chem, 1999, 71(4): 581-586.
    [5] Takacs L. Quicksilver from cinnabar: the first documented mechanochemical reaction[J], JOM, 2000, 52(1):12-13.
    [6] Saito F. Change in Physicochemical Properties and Synthesis of Inorganic Materials with an Aid Mechanochemical effect[J].粉体および粉末冶金,1993,25(4):27-37.
    [7] Urakaev F K, Boldyrev V V. Mechanism and Kinetics of Mechanochemical Processes in Comminuting Devices 1 Theory, Experiment[J]. Powder Technology, 2000,107(4):93-107.
    [8] Boldyrev V V. Reactivity of solids. Journal of Thermal Analysis[J], 1993, 40(3): 1041-1062.
    [9] Milosevie S, Ristic M M. Thermodynamics and Kentics of Mechanical Activation of Materials[J]. Science of Sinering,1998,30(1):29-38.
    [10]森诚之,七尾英孝.固体新生面的化学活性[J].金属(日),1999,69(12):1025-1030.
    [11]中山景次.トライボケミストリーと摩擦電磁気现象[J].金属(日),1999, 69(12):1037-1046.
    [12] Urakaev F K, Boldyrev V V. Mechanism and Kinetics of Mechanochemical Processes in Comminuting Devices 2 Application of the Theory, Experiment[J]. Powder Technology,2000,107(2):197-206.
    [13] Schaffer G B, Mccormick P G. Displacement reactions during mechanical alloying[J]. Metall.Trans, 1990,A21:2789-2794.
    [14] Suryanarayana C.MA&MM[J]. Prog.in Mater.Sci, 2001,46(1):1-20.
    [15]德满和人.机械合金化的化学反应及其应用[J].金属,1995,65(12):1129-11361.
    [16]沈同德,全明秀,王景唐.机械合金化合成新材料(二)弥散强化合金,磁性材料,超导合金,金属间化合物及机械化学效应[J].材料科学与工程,1993,11(3):17-22.
    [17]陆厚根,粉体工程导论(第二版)[M].上海:同济大学出版社,1998,56-65.
    [18] Suzuki T S, Nagumo M. Mechanochemical reaction of Ti-Al with hydrocarbon during mechanical alloying[J]. Scripta Metall MATER,1992, 27 (1):1413-1417.
    [19] Ivanov E. Prepartion of CuxHg1-x Solid solutions by Mechanical alloying[J]. Materials Science Forum,1992,(88-90):475-480.
    [20] Zhang F . Kaczmarek W Lu. L etal, Formation of titanium nitrides via wet reaction ball milling [J].J of Alloy and compounds,2000, 307 (1):249-253.
    [21] Goya G F. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling[J],solid state communications,2004, 130 (4):783-789.
    [22]李永绣,尹继先,周雪珍等.湿固相机械化学法制备蓝粉前驱体过程中物相的转变[J].功能材料,2002,33(5):555-558.
    [23]李运姣,李洪桂,赵中伟等.机械活化-湿化学合成LiMn2O4的组成、结构与表征[J].中国有色金属学报,2004,(5):112-117.
    [24]汤晓壮,谭柱中,潘其经.用金属锰粉湿发制取四氧化三锰的理论和实践[J].中国锰业,1997,15(1):42.
    [25] Janot R Guerard D, One step synthesis of maghemite nanometric powders by ball-milling[J]. J of Alloys and Compounds,2002, 333 (1):302-306.
    [26] Tschakarov C G, Gospodinov G G and Bontschev Z. On the mechanism of mechanochemical synthesis of inorganic compounds[J]. Journal of Solid State Chemistry,(in Germany) 1982,41(3): 244-252.
    [27] Murry B S, Ranganathan S. Novel materials sysnthesis by mechanical alloying/milling[J]. Inter. Mater. Rev, 1998, 43(3):101-141.
    [28]曾凡,胡永平.矿物加工颗粒学[M].北京:中国矿业大学出版社, 1995,255-256.
    [29] Inguchi Y, Senna M. Mechanochemical polymorphic transformation and its sationary state between aragonite and calcite[J]. Powder Tchnology, 1985, 43(2):155-162.
    [30] Boldyrev V V. Mechanochemistry and mechanical activation[J]. Materials Science Forum, 1995,(255-257):511-520.
    [31] Tkacova K, Sepelak V, Stevulova N et al. Structure-Reactivity Study of Mechanically Activated Zinc Ferrite[J]. Journal of Solid State Chemistry, 1996, 123(1):100.
    [32] Okada K, Kikuchi S, Ban T et al. Difference of mechanochemical factor for Al2O3 powders upon dry and wet grinding[J]. Journal of Materials Science Letters, 1992,11(2):862-864.
    [33] Mccormick P G, Fores F H. The fundamentals of mechanochemical processing[J].JOM, 1998, 50(11):61-65
    [34]陆厚根,粉体工程导论(第二版)[M].上海:同济大学出版社,1998,108-109.
    [35]久保輝一朗.メカノクミストリ概論[M].东京:東京化学同人,1971,37.
    [36] Juha′sz A. Zolta′n. Aspects of mechanochemical activation in terms of comminution theory[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 141 (3):449–462.
    [37]杨南如.机械力化学过程及效应(I)[J].建筑材料学报,2000,3(1):19-25.
    [38]杨南如.机械力化学过程及效应(II)[J].建筑材料学报,2000,3(2):93-97.
    [39] Filio J, Sugiyama K, Kasai E et al. Effect of Dry Mixted Grinding of Talc Koalinite and Gibbsite on Preparation of Cordierite ceramics[J]. Journal of Chem Eng Jpn, 1993, 26(5):565-569.
    [40] Mccormick P G, Tuszuki T. Recent developments in mechanochemical nanoparticle[J]. Materials Science Forum, 2001,(386-388):377-386.
    [41] Aaron C, Dodel, Paul G, McCormick. Synthesis of Fe-Cu Nanoparticulate Zirconium by mechanochemistry[J]. Scripta Mater, 2001, 44 (2):1725.
    [42] Moelle C H, Fecht H J. Thermal stability of nanocrystalline iron prepared by mechanical attrition[J]. Nanostructured Materials, 1994,6(1-4):421-424.
    [43] Malow T R, Koch C C. Grain growth in nanocrystalline iron prepared by mechanical attrition[J]. Acta Materialia, 1997, 45 (5) :2177-2186.
    [44]严红革,陈振华.反应球磨技术原理及其在材料制备中的应用[J].功能材料,1997,28(1):15-18.
    [45] Baburai E G, Hubert K T, Froes F H. Preparation of Ni powder by mechanochemical process[J]. Journal of Alloys and Compounds, 1997, 257(1-2): 146-149.
    [46]齊藤文良.メカノケミストリーと資源?廃棄物処理[J].金属(日),1999, 69(12):65-69.
    [47]Vasiliu-oprea C.Mechanochemically synthesized polymers with special properties [J].Polymer-plastics technology and engineering,1989,28(9):1025-1058.
    [48]陈鼎,陈振华,陈刚等.固液球磨制备Fe-Sn金属间化合物粉末[J].中国有色金属学报,2003,13(3):579-583.
    [49]陈鼎,陈振华,陈刚.固液反应球磨制备TiAl,NiAl和FeAl金属间化合物[J].湖南大学学报,2003,(2):20.
    [50]陈鼎,黄培云.固液反应球磨制备Al-Cu-Fe与Al-Si-Fe三元合金[J].中南大学学报,2004,35(4):537-542.
    [51]陈鼎,陈振华,黄培云.固液反应球磨制备Fe-Zn与Fe-Sb系金属间化合物[J].湖南大学学报,2004,31(1):12-16.
    [52] Raphael Janot, Daniel Guerard.Ball-milling in liquid media Applications to the preparation of anodic materials for lithium-ion batteries[J].Progress in Materials Science, 2005, 50 (1) :1-92.
    [53] Ivanov E. Prepartion of CuxHg1-x Solid solutions by Mechanical alloying[J]. Materials Science Forum,1992,(88-90):475-480.
    [54] Ahniyaz A, Fujiwara T, Wan Song S, et al. Low temperature preparation ofβ- LiFe5O8 fine particles by hydrothermal ball milling[J]. Solid state ionics, 2002, 151 (1):419-421.
    [55]魏宝明.金属腐蚀理论及应用(第一版)[M].北京:化学工业出版社. 2001,26.
    [56] Morgana Scariot, Maria Suzana P.Francisco, Maura H, et al. An investigation of the activation process of high temperature shift catalyst [J]. Catalysis Today, 2008, (133-135):174-180.
    [57]曾小巍,张玉红. PEG还原Cu(II)制备Cu2O纳米立方晶[J].无机化学学报,2005,21(10):1515-1519.
    [58] Ha-Chul Song, Yong-Sik Cho. Morphology-controlled synthesis of Cu2O microcrystal [J]. Materials letters, 2008, 62 (1):1734-1736.
    [59] Jayewardena C, Hewaparakrama K. Fabrication of n-Cu2O electrodes vith higher energy conversion efficiency in a photoelectrochemical cell[J].Solar Energy Materials & Solar Cells, 1998,56(1): 29-33.
    [60]朱红飞,陈乾旺,牛和林等.在酸性条件下合成氧化亚铜纳米立方体[J].无机化学学报, 2004, 20(10):1172-1176.
    [61]陈寿椿.重要无机化学反应(第二版)[M].上海科学技术出版社. 1982:313.
    [62]КорецКорΓB.ЦветнбыеМеталлы[J].Металл, 1981, 2(4):28.
    [63] Wang Ling, Zhang Xiaoxia, Yuan Hongming, et al. Preparation of Cu2O from CuCl[J]. Chem. Res. Chinese Universities,2008,24(1):1-3.
    [64] S. Sathiyanarayanan, M. Sahre, W. Kautek. In-situ grazing incidence X-ray diffractometry observation of pitting corrosion of copper in chloride solutions[J]. Corrosion Science, 1999, 41 (1):1899-1909.
    [65]元如林,施尔畏,夏泰等.水热条件下钛酸钡晶粒生长基元模型研究[J].物理学报,1996,45(12):2082-2088.
    [66]施尔陧,元如林,夏长泰等.水热条件下钛酸钡晶生长基元模型研究(Ⅱ)生长基元稳定能计算及晶粒的成核与生长[J].物理学报,1997,46(1):1-4.
    [67]仲维卓,华素坤.负离子配位多面体生长基元与晶体的结晶习性[J].硅酸盐学报,1995,23(4):1464-1466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700