氮掺杂纳米ZnO的制备及其抗菌防紫外性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶体材料的电、磁、声、光、热和力学性能,都具有结构敏感性。晶体缺陷对晶体结构具有巨大的影响,掺杂是获得晶体缺陷的有效手段。
     通过特殊元素完成对纳米晶氧化物的掺杂取代、促进晶体材料的结构敏感性的研究近来已被广泛关注。如何控制缺陷的形成、类型及变化已成为晶体材料领域研究的重要课题。
     本文以Zn(NO_3)_2·6H_2O、尿素为原料,通过燃烧法,实现纳米ZnO的瞬态氮掺杂。在此基础上对晶体缺陷化学—热力学公式和晶体化学原理进行理论上研究,计算理论绝热燃烧火焰温度,完成了氮掺杂纳米氧化锌的优化设计。
     通过X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、红外光谱(IR)、光电子能谱(XPS)对粉体进行表征,研究制备过程中影响纳米氮掺杂ZnO性能的各种因素,借助差热分析对制备机理进行探讨。在此基础上,通过对氮掺杂纳米ZnO的偶联剂改性,获得稳定的氮掺杂纳米ZnO分散乳液。参照FZ/T 73023—2006中国人民共和国纺织行业标准——抗菌针织品及AATCC 183-2004紫外辐射通过织物的透射或阻挡性能,系统研究了氮掺杂纳米ZnO对纺织品的抗菌、防紫外性能。
     主要研究工作和成果如下:
     ①瞬态氮掺杂过程中,尿素既是燃料为掺杂反应提供能量,又是氮源。同时分解所释放气体的膨胀效应,实现了微晶间的有效阻聚。完成了传统工艺中制备、陈化、洗涤、干燥、煅烧、研磨等多道工序的减并,制备出高性能氮掺杂纳米级粉色ZnO粉体。
     ②利用热力学公式对理论绝热燃烧火焰温度进行了计算,得到最佳工艺优化:燃料与物料摩尔比4.920;环境温度800℃;Zn(NO_3)_2·6H_2O水溶液的浓度60g/L。通过此种工艺所得到的粉体综合性能最好,平均粒度为30nm,氮掺量为1.02%,晶相与标准立方相ZnO衍射峰完全一致,没有其他杂相出现,颜色为均匀的粉色。
     ③改性过程中,以多羟基化合物三乙醇胺为桥基,对氮掺杂纳米ZnO进行表面预修饰,增加纳米粒子表面的羟基基团,在水介质中采用球磨工艺实施硅烷偶联剂改性,减少分散过程的软团聚,获得高浓度氮掺杂纳米ZnO水性分散浆料。
     ④经氮掺杂纳米ZnO整理过的棉织物,紫外防护因子测试结果表明:UPF指数从4.5提升至52,并具有较好的水洗牢度,水洗20次仍然保持同样的抗紫外性。
     ⑤抗菌性不受环境影响,即使在无光情况下也表现出极好的抗菌性能,且抑菌圈、抑菌率实验及氮掺杂纳米氧化锌整理后的织物抑菌率达到99%。并结合琼脂球面扩散动力学理论,指导抑菌圈实际测试,解释氮掺杂纳米ZnO抑菌机理。
     本文首次提出利用燃烧法完成纳米ZnO的瞬态氮掺杂,实现传统工艺中制备、陈化、洗涤、干燥、煅烧、研磨等多道工序的减并,具有节能、降耗、减排的优点。氮掺杂纳米ZnO在纺织领域的应用填补了该产品在纺织领域的应用空白,为纺织用抗菌、抗紫外功能剂提供了新品种。
Recently, much attention has been focused on the modification of nanocrystallite metal oxide by doping or substituting with special atom. With such modification, it is possible to improve the electrical and optical properties of materials by changing the surface properties, such as electronic band gap, O vacancies, crystal deficiencies and specific surface area (SSA).
     In the paper, N-doped ZnO (ZNO) nanocrystalline were synthesized by deflagration method using urea as main fuel, surfactant as assistant fuel and zinc nitrate as oxidant. The variation of adiabatic flame temperature (Tad) with the various fuel-to-oxidizer molar ratios value was calculated theoretically according to the thermodynamic concept. The effects of environment temperature, molar ratio of urea-to-zinc nitrate and combustion time on the properties of nanopowder were investigated. XRD, FTIR, SEM, TEM and XPS were used to characterize the properties of the as-synthesized samples. The ultraviolet prevention and antimicrobial properties on cotton fabrics treated by N-doped nano-ZnO were studied.
     The main research work and results are as follows:
     (1) During preparing N-doped nano-ZnO, The action of urea not only offered the energy, but also was the source of nitrogen. The effective inhibition effect between crystallites was realized by the expansion effect of gas released by urea. The combustion is a simplification of multi-procedures, such as traditional preparation, aging, dryinh, calcinating processes and rubbing. The N-doped ZnO (ZNO) nanocrystalline with excellent performance were synthesized by this method.
     (2) The variation of adiabatic flame temperature (Tad) with the various fuel-to-oxidizer molar ratios value was calculated theoretically according to the thermodynamic concept. The experimental results show that perfect pink powders with standard cubic ZnO crystal phase are obtained under 800℃when the urea-to-zinc nitrate molar ratio is 4.920 and the concentration of the zinc nitrate is 60g/L.The average primary granularity of the as-synthsized sample is about 30 nm estimated according to Scherrer Equation. The analysises of XPS indicates that the concentrantion of N-doped in the sample is 1.02%.
     (3) In this paper, well-dispersed N-doped ZnO (ZNO) nanocrystalline slurry in water medium with high concentration was prepared through the coordination action using silane coupling agent and multi-hydroxy compound. The results reveal that the N-doped ZnO (ZNO) nanocrystalline modified by multi-hydroxy compound in advance has strong combination ability with silane couple agent. Modified N-doped ZnO (ZNO) nanocrystalline has small size, even distribution and well-disperse stability.
     (4) UPF test results indicate the perfect ultraviolet prevention, A high washing fastness is also attained. The index of UPF is from 4.5 to 52.
     (5) The antibacterium-circle test indicate the broad-spectrum antibacterial activities. Specially, the antibacterial activities are very good even without light irradiation.
     In this paper, the N-doped ZnO (ZNO) nanocrystalline with excellent performance were synthesized by combustion for the first time. The combustion is a simplification of multi-procedures, such as traditional preparation, aging, drying, calcinating processes and rubbing. Moreover, the systemic research about the antibacterium and ultraviolet prevention of the N-doped ZnO on textile was for the first. The excellent antibacterium and ultraviolet prevention properties will make N-doped ZnO nanocrystallites become a replaceable and cheap functional agent for textile.
引文
[1]白春礼.《纳米科学与技术》[M].云南出版社, 1995
    [2]张伟,王凤琼.利用立式振动磨制超细粉的研究[J].功能材料, 1997 , 28(5): 511 - 513.
    [3]张永康,刘建本,易保华等.常温固相反应合成纳米氧化锌[J].精细化工, 2000, 17(6): 343 - 355.
    [4]石晓波,李春根,汪德先等.纳米氧化锌的制备与表征[J].江西师范大学报, 2002 , 26(1): 53 - 55.
    [5]刘建本,易保华,肖卓炳等.液相法制备纳米氧化锌的研究[J].吉首大学学报, 2000, 21(2): 9-11.
    [6]徐华军,朱振中,陈烨璞.沉淀法制备纳米ZnO超细粉体[J].无锡轻工大学学报, 2001, 20(2): 174-177.
    [7]祖庸,李晓娥,樊安等.沉淀法制备纳米氧化锌的研究[J].西北大学学报, 2001, 31(3): 232 - 234.
    [8]张绍岩,丁士文,刘淑娟等.均相沉淀法合成纳米氧化锌及其光催化性能研究[J ] .化学学报, 2002 , 60(7): 1225 - 1229.
    [9]李东升,史振民.溶胶—凝胶前体法制备纳米ZnO[J].吉首大学学报, 2001, 22(1): 15 - 17.
    [10]陈怀杰,李明伟,刘春梅.溶胶—凝胶法制备纳米氧化锌[J].重庆大学学报, 2006, 29(12): 37-40.
    [11]EI-shall MS, slackW, Vann W, et al. [J] Jphys chen.1994, 98(12): 3067 - 3070.
    [12]赵新宇,郑柏存,李春忠.喷雾热解合成ZnO超细粒子工艺及机理研究[J].无机材料学报, 1996, 11(4): 611-616.
    [13]祖庸,雷闫盈,王训等.纳米ZnO的奇妙用途[J].化工新型材料, 1999 , 27(3) : 14 -16
    [14]刘吉平,田军.纺织科学中的纳米技术[M].北京:中国纺织出版社, 2003
    [15]杨红英,潘宁,朱苏康.无机紫外线屏蔽剂的功能机理研究[J].东华大学学报(自然科学版), 2003, 29(6): 8-14
    [16]张立德,牟其美.纳米材料和纳米结构[M].北京:科技出版社, 2001: 84
    [17]陈英,张永文.纳米ZnO抗紫外整理剂的应用研究[J].印染, 2005, 17: 4-6
    [18] Li D, Saito N, Ohashi N, et al. Synthesis of nanosized nitrogen-containing MOX- ZnO(M= W,V ,Fe) composite powders by spray pyrolysisand their photocatalysis in the gasphase acetaldehyde decomposition[A]. In :Li C. The 3rd Asia-Pacific Congress on Catalysis[C]. Dalian: Dalian Institute of Chemical Physics Press, 2003: 589 - 590.
    [19]叶志镇,张银珠,徐伟中等. ZnO薄膜P型掺杂的研究进展[J].无机材料学报, 2003, 18(1): 11-18
    [20]方佑龄,赵文宽.肤色超微粉末氧化锌的制备[J].涂料工业, 1991, (4), 4-7.
    [21]顾达,顾燕芳.超细肤色ZnO制备的新工艺研究[J].粉体技术, 1996, 2(3): 27-30.
    [22]李晓娥,屈宪军,韩胜等.纳米肤色氧化锌的制备新工艺研究[J].化学工程, 2002, 30(2): 41-45.
    [23]曹俊,周继承,吴建懿等.氨溶法制备肤色氧化锌的研究[J].精细化工中间体, 2004, 34(4): 60-62.
    [24]蔡意文,毋伟,陈建峰.超重力法纳米肤色氧化锌的制备与表征[J].北京化工大学学报, 2004, 31(4): 28-31.
    [25]何琴玉等.中国专利公开,CN1587059A,2005.
    [26]Sato Y,Sato S. Preparation and some properties of nitrogen-mixed ZnO thin films [J].Thin Solid Films, 1996, 281-282: 445-448.
    [27]Cheng-Shiung Lin, Chyi-Ching Hwang, Wei-Hua Lee, et al. Preparation of zinc oxide (ZnO) powders with different types of morphology by a combustion synthesis method [J]. Mater.Sci.Eng.B., 2007, 140: 31-37.
    [28]刘桂香,徐光亮,罗庆平.自蔓延燃烧法合成ZnO粉体及其压敏电阻的制备[J].硅酸盐学报, 2006,3 4(9): 1055-1059.
    [29] Kezban Ada,Murat Gokgoz, Muserref Onal, Yuksel Sarikaya. Preparation and characterization of a ZnO powder with the hexagonal plate particles[J]. Powder Technol., 2007, 179: 79-85.
    [30] KUANG Jia-cai, ZHANG Chang-rui, ZHOU Xin-gui, et a1. J.Mater. Sci., 2004, 39: 3167-3172
    [31] Chyi-Ching Hwang, Tsung-Yung Wu. Mater. Sci. Engi.. B, 2004, 111: 197-202
    [32]陈松林,杨筠,林志明等.控温活化燃烧合成α-Si3N4的动力学研究[J].无机材料学报, 2004, 19, 1231
    [33] Pathak L C, Singh T B, Das S, et a1. Mater. Lett, 2002, 57: 380-386
    [34]刘中清,周艳平,葛昌纯.稀有金属材料与工程, 2006, 35: 105
    [35] ZHANG J R,GAO L.Inorg. Chem. Commun, 2004,39:2249-2253
    [36]Pampach R, Haberkc K. Ceramic powders [M]. Amsterda: Elserier Scientific Pub. Company, 1983, 623-627
    [37]Zarzycki J, Prassas M, Phalippou J. Synthesis of glasses from gels: the problem of monolithic gels[J]. J. Mater. Sci., 1982, 17: 33-71
    [38]崔洪梅,刘宏,王继扬等.纳米粉体的团聚与分散[J].机械工程材料, 2004, 28(8): 38-39
    [39]唐浩林,潘牧,赵修建等.溶胶凝胶法制备a-Al2O3纳米材料团聚控制研究新进展[J].材料导报, 2002, 16(9): 44-55
    [40]王剑华.超细粉制备方法及其团聚问题[J].昆明理工大学学报, 2002, 22(1): 71-77.
    [41]Say imato T. Preparation of Monodispered colloidal Particle[J]. Adv. Incolloid An interfac Sci., 1987, 28: 65-108
    [42]Kaliszewski M S. Heuer A H. Alcohol interaction with zirconia powders[J]. J.Am. Ceram. Soc., 1990, 73(6): 1504-1509
    [43]董国利,高荫本,陈诵英等.不同干燥过程对超细TiO2粉体性质的影响[J].物理化学学报, 1998,14(2): 142-146
    [44]仇海波,高濂,冯楚德等.纳米氧化锆粉体的共蒸馏法制备及研究[J].无机材料学报, 1994, 9(3): 365-371
    [45]曾健青,张镜澄.用超临界流体干燥法制备纳米级二氧化锆[J].广州化学, 1997, 3: 9-12
    [46]林振汉,张玲秀.喷雾干燥法制备PSZ—3Y粉末的粒度研究[J].稀有金属, 2001, 25(5): 336~339
    [47]张喜梅,李琳.用溶胶—凝胶法制备纳米粉体时聚集现象的探讨[J].化学工业与工程, 2000, 17(3): 155-159
    [48]Shirai Y, Tsubokawa N. Grafting of polymers onto ultrafine inorganic particle surface: graft polymerization of vinylmonomers initiated by the system consisting of trichloroacetyl groups on the surface and molybdenum hexacarbonyl [J]. Functional Polymers, 1997( 32):153-160.
    [49] Watson S, Beydoun D and Amal R.Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148: 303-413.
    [50]毋伟,邵磊,卢寿慈.机械力化学在高分子合成中的应用[J].化工新型材料, 2000(2): l0-14
    [51]张喜梅,季琳等.用溶胶凝胶法制备纳米粉体时聚集现象的探讨[J].化学工业与工程, 2000, 17(3): l55-159
    [52]郑水林.粉体表面改性[M].北京:建材工业出版社, 1995
    [53]徐国财,张立德等.纳米复合材料[M].北京:化学工业出版社. 2000
    [54]王相田,胡黎明等.超细颗粒分散过程[J].化学通报, l995(5): l3-16
    [55]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社. 2001
    [56]周祖康,顾惕人,马季铭.胶体化学基础[M ].北京:北京大学出版社, 1996
    [57]裘丙毅.化妆品化学与工艺技术大全[M].化学出版社, 1999
    [58]杨锦钊.日本紫外线屏蔽整理与产品开发综述[J].国际纺织品动态, 1992, 6: 44-51
    [59]薛迪庚.织物的功能整理[M].北京:中国纺织工业出版社, 2000: 60
    [60]徐英莲,许红燕.纺织品的紫外线防护性能研究.丝绸, 2002, (10): 5-9
    [61]宋心远,沈煜如.新型染整技术[M].北京:中国纺织出版社, 1999: 271
    [62]汪苏南.抗紫外线技术及其产品效果测试[J].北京纺织, 1996, 17(3): 30-33
    [63]李全明,王崇礴,王浩.防紫外线织物的研究[J].高科技纤维及应用, 2002, 27(3): 19-23
    [64]汪山,程继健,陈奇.载银型无机缓释抗菌材料的研究与应用[J].中国陶瓷, 2000, 36(2): 7-11
    [65]张文钲,张羽天.载银抗菌材料及其制品.贵金属, 1998, 19(4): 50
    [66]李毕忠.抗菌塑料的发展和应用.化工新型材料, 2000, 28(6): 8
    [67]隆泉,郑保忠,周应揆等.新型纳米无机抗菌剂的抗菌性能研究[J].功能材料, 2006, 37(2): 274—276
    [68]俞波,王芳.复合金属离子抗菌沸石的制备及研究[J].无机材料学报, 2005, 20(4): 921-927
    [69]涂启梁,付时雨,李红剑.纳米二氧化钛在物体表面的抗菌作用[J].广州化工, 2006, 34(2): 35-36.
    [70]刘雪峰,涂铭旌.稀土负载型纳米二氧化钛抗菌剂的研制[J].现代化工, 2005, 25: 145-147.
    [71]祖庸,雷闰盈,王训等.纳米ZnO的奇妙用途[J].化工新型材料, 1999, 27 (3): 14-17.
    [72]R.H. Perry, C.H. Chilton. Chemical Engineering Handbook[M], seventhed., McGraw-Hill, New York, 1997.
    [73]J.A. Dean (Ed.). Lange’s Handbook of Chemistry[M], 15th ed., McGraw-Hill, New York, 1998.
    [74]张国青,孙萍,熊波等.[J]材料科学与工程学报, 2006, 24(2): 286-273.
    [75]Xiaobo Chen, Yongbing Lou, Anna C.S. Samia, et al. [J]Adv. Funct. Mater. 2005, 15(1): 41-49.
    [76] J iang R C, Kunz H R, Fenton J M. [J ]. J Membr Sci, 2006, 272: 116-124.
    [77] Baglio V, Blasi A D, Blasi A D, et al. [J]. J Elec trochem Soc, 2005, 152(7): 1373-1377.
    [78]季光明,陶杰,汪涛,杨斌鹏.纳米TiO2填充改性PP的力学性能研究[J].复合材料学报, 2005, 22(5): 100-106.
    [79]中华人民共和国纺织工业部GB8629-2001,纺织品试验时采用的家庭洗涤及干燥程序[S].
    [80]Hashimoto K, Toda Y. Evaluation method of antibacterial activity of ceramics materials with antimicrobial characteristics and its application to phosphate compounds [J]. Inorganic Materials,1996, 3(9): 452-459.
    [81]胡昌勤,刘炜.抗生素生物检定法及其标准操作[S]. 2004.
    [82]郑敏,朱亚伟,胡韵等.纳米级再生型复合抗菌整理剂QP-NK的制备研究[J].毛纺科技, 2007, 3: 30-33.
    [83]周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700