含苯硼酸基生物粘附性材料作为胰岛素跨鼻粘膜转运载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多肽、蛋白等药物如胰岛素,因其不可替代的生物活性和良好的临床效果,成为了临床应用的首选。但因该类药物易降解、难以跨膜转运和生物利用度低,目前临床只能采用注射方式给药。但长期治疗给病人带来极大痛苦,迫切需要研究此类药物的非注射给药制剂。粘附性材料作为多肽、蛋白药物载体,能够延长药物在粘膜上的滞留时间,增加药物上皮屏障的透过性,提高药物的生物利用度。因此该类材料在多肽、蛋白药物非注射给药途径的研究中受到了研究者们的广泛关注。本文从粘膜给药体系的角度出发,以药物载体为突破口,着重解决载体的粘附性、相容性,以期为生物大分子药物鼻腔给药提供一种具有良好粘附性、能促进其跨膜转运的药物载体。
     一、基于苯硼酸的两亲性含糖共聚物作为鼻腔给药载体的性能研究
     硼酸及其衍生物能与1,2-或1,3-二醇以及多醇羟基相互作用,形成负电性的硼酯结构,而生物的细胞膜上均含有糖脂或糖蛋白等糖基化合物,这就使硼酸及其衍生物与细胞表面上的糖类物质结合成为可能,呈现粘附性。硼酸的这一特性使其在生物粘附材料方面备受关注。本文中,通过常规自由基聚合成功制备了含有苯硼酸基团和乳糖基团的两亲性共聚物p(LAMA-r-AAPBA);由于苯硼酸基团和乳糖基团之间的相互作用以及共聚物的两亲性,p(LAMA-r-AAPBA)在水溶液中易于自组装形成粒径为289~353nm的纳米粒,zeta电位为-22~-27mV;该纳米粒作为载体可对胰岛素进行有效包埋,其包封率和载药量分别高达90%和12%;体外药物释药结果显示,载药p(LAMA-r-AAPBA)纳米粒能缓慢释放胰岛素;通过MTT法测定纳米粒对Calu-3细胞的细胞毒性试验表明,p(LAMA-r-AAPBA)纳米粒的细胞相容性良好,说明乳糖基团的引入可有效改善含苯硼酸基团聚合物的生物相容性;粘蛋白吸附试验表明p(LAMA-r-AAPBA)纳米粒具有一定的粘附性;负载FITC荧光标记胰岛素的p(LAMA-r-AAPBA)纳米粒进行细胞吸收试验发现,由于纳米粒中苯硼酸基团能与细胞表面的糖类化合物结合,增强了纳米粒对细胞的粘附能力,该纳米粒能通过细胞内在化作用成功进入到细胞内。同时,内吞机理试验结果表明,p(LAMA-r-AAPBA)纳米粒可通过两种机制内化进入细胞,即通过网格蛋白介导和脂筏/胞膜窖介导的协同作用完成细胞内化;大鼠鼻腔给药实验表明,p(LAMA-r-AAPBA)内米粒能够作为胰岛素的良好载体增强胰岛素在鼻腔内的吸收,并且能控制胰岛素在大鼠体内缓慢释放,在8h内维持血糖在较低水平。因此,p(LAMA-r-AAPBA)纳米粒有望成为生物大分子药物的理想纳米载体,促进药物进行跨膜转运,增强药物吸收。
     二、生物可降解的含苯硼酸基葡聚糖作为鼻腔给药载体的性能研究
     由于常规自由基聚合的方法是采用不饱和单体进行聚合,聚合物的主链结构是由C-C键组成,不具备可降解性。为了使含苯硼酸的大分子具有可降解性,本文中合成一种具有生物可降解性的含有苯硼酸基团的高分子Dex-PBA。利用Dex-PBA的两亲性,使用自组装的方法制备了的Dex-PBA纳米粒,纳米粒粒径在300nm左右,具有良好的稳定性;通过疏水-亲水等相互作用该纳米粒成功负载胰岛素,其包封率和载药量分别高达40%和22%;粘附性试验结果表明,Dex-PBA纳米粒能够结合粘蛋白,说明纳米粒具有一点的粘附性能,同时DSC曲线证明了Dex-PBA纳米粒与粘蛋白之间存在着相互作用;细胞相容性试验表明,Dex-PBA纳米粒具有良好的细胞相容性;细胞吸收试验表明,该纳米粒能通过细胞内在化作用成功进入到细胞内;同时,内吞机理试验结果表明,p(LAMA-r-AAPBA)纳米粒可通过两种机制内化进入细胞,即通过网格蛋白介导和脂筏/胞膜窖介导的协同作用完成细胞内化;大鼠鼻腔给药试验表明,Dex-PBA纳米粒能够作为胰岛素的良好载体增强胰岛素在鼻腔内的吸收,并且能控制胰岛素在大鼠体内缓慢释放,在7h内维持血糖在较低水平;免疫组化分析结果表明,Dex-PBA纳米粒经鼻腔给药后并未诱导鼻粘膜的炎症反应,对鼻粘膜无刺激作用。因此,该纳米粒有望成为生物大分子药物鼻腔给药的良好纳米载体。
     综上所述,含苯硼酸的高分子药物载体,具有良好生物相容性和粘附性,且能对生物大分子药物进行保护,解决了生物大分子药物给药系统中出现的粘膜透过性差,生物利用率低等问题,是促进生物大分子药物传递的良好载体。
Protein and peptide drugs possess biological activities that mark them as potential therapeutics in diagnosis, medical treatment for various diseases. Therapeutic peptides and proteins are typically administered by injection due to their fragile nature and the low bioavailability. Thus, chronic treatment brings incontinences and pains to the patient. Recently, researchers have paid more attention to adhesive polymers. The polymers as carriers could prolong the retention time of drugs on the mucous membrane, improve the permeability of drug epithelial barrier and the bioavailability of drugs. In this work, we focus to offer the mucosal drugs delivery systems, in order to find the protein drug carriers with mucoadhesion which could promote the transport of drugs across the membrane
     1) Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of insulin
     Boronic acid and its derivatives are known to possess the ability to reversibly interact with diols, sugars, and glycoproteins, and transport saccharide across lipid bilayers. Since all cell membranes virtually include glycoproteins and/or glycolipids, which facilitates compounds containing boronic acid groups to bind to cell surfaces. In this work, we propose to design new drug delivery vehicles based poly (2-lactobionamidoethyl methacrylate-r-3-acrylamidophenylboronic acid). The glycopolymer could assemble into the nanoparticles with the size in the range of289~353nm, and zeta potential was-22~27mV. Insulin, as a model drug, was efficiently encapsulated within the nanoparticles, and loading capacity was up to12%. In vitro study revealed that the insulin release could be controlled by modifying the composition of glycopolymers. Cell viability test showed that p(LAMA-r-AAPBA) nanoparticles had good cytocompatibility. Moreover, the mechanism of nanoparticle internalization into Calu-3cells was a combination mechanism of clathrin-mediated endocytosis and lipid raft/caveolae-mediated endocytosis. Importantly, there was a significant decrease in the blood glucose levels after the nasal administration of p(LAMA-r-AAPBA) nanoparticles to diabetic rats. Therefore, p(LAMA-r-AAPBA) glycopolymers have a potential application as a nasal delivery systems for proteins and peptides.
     2) Biodegrable phenylboronic acid-containing Dextran as vehicles for nasal delivery of insulin
     The main chain of the p(LAMA-r-AAPBA) is made up by the C-C bonds, and it is non-degradation in the body. In order to improve the degradation of polymer with phenylboronic acid, we further synthesized phenylboronic acid-graft-Dextran (Dex-PBA). Dex-PBA could assemble into the nanoparticles with size about300nm. Insulin could be efficiently encapsulated within the nanoparticles, and loading capacity was up to22%. The mucoadhesion test show that the Dex-PBA nanoparticles could interact with mucin, and the DSC test demonstrated the interaction between the Dex-PBA nanoparticles and mucin. Cell viability test showed that Dex-PBA nanoparticles had good cytocompatibility. Moreover, the mechanism of nanoparticle internalization into Calu-3cells was a combination mechanism of clathrin-mediated endocytosis and lipid raft/caveolae-mediated endocytosis. Importantly, there was a significant decrease in the blood glucose levels after the nasal administration of Dex-PBA nanoparticles to diabetic rats. Therefore, Dex-PBA glycopolymers have a potential application as nasal carrier for proteins and peptides.
     In summary, the phenylboronic acid-contained polymer carriers possess the good biocompatibility and mucoadhesion, could protect the protein drugs from being degraded and deliver them into cells or tissues with high bioavailability.
引文
[1]Longer M A, Robinson J R. Fundamental aspects of bioadhesion. Pharm Int,1986,7: 114-117.
    [2]Mathiowitz E, Chickering D E I, Lehr C M. Bioadhesive drug delivery systems.1999. Marcel Dekker, New York.
    [3]Robinson J R, Mlynek G M. Bioadhesive and phase-change polymers for ocular drug-delivery. Adv Drug Deliver. Rev,1995,16:45-50.
    [4]Lehr C M, Bouwstra J A, Schacht E H, et al, In vitro evaluation of mucoadhesive properties of chitosan and other natural polymers. Int. J. Pharm,1992,78:43-48.
    [5]鲁念慈,谭天伟.透明质酸的制备及其应用.功能高分子学报,2001,9(14):370-376.
    [6]吕洛.透明质酸与创面愈合.国外医学创伤与外科基本问题分册,1997,18(2):86-89.
    [7]Liao Y H,. Jones S A, Forbes B, et al. Hyaluronan:pharmaceutical characterization and drug delivery. Drug Deliv,2005,12:327-342.
    [8]Prestwich G D, Vercruysse K P. Therapeutic application of hyaluronic acid and hyaluronan derivatives. Pharm Sci Technol Today,1998,1:42-43.
    [9]Richardson J L, Ramires P A, Miglietta M R, et al. Novel vaginal delivery systems for calcitonin:1. Evaluation of HYAFF/calcitonin microspheres in rats. Int J Pharm,1995,115:9-15.
    [10]Bonucci E, Ballanti P, Ramires P A, et al. Prevention of ovariectomy osteopenia in rats after vaginal administration of HYAFFR 11 micro-spheres contain-ing salmon calcitonin. Calcif Tissue Int,1995,56:274-279.
    [11]Greaves J L, Wilson C G. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv Drug Deliv Rev,1993,11:349-383.
    [12]Sintzel M B, Bernatchez S F, Tabatabay C, et al. Biomaterials in ophthalmic drug delivery, Eur J Pharm Biopharm,1996,42:358-374.
    [13]Madsen F, Eberth K, Smart J D. A rheological examination of the mucoadhesive/mucus interaction:the effect of mucoadhesive type and concentration. J Control Release,1998,50: 167-178.
    [14]Meseguer G, Gurny R, Buri P, et al. Gamma scintigraphic study of precorneal drainage and assessment of miotic response in rabbits of various ophthalmic formulations containing pilocarpine. Int J Pharmaceut,1993,95:229-234.
    [15]Burgalassi S, Chetoni P, Saettone M F. Hydrogels for ocular delivery of pilocarpine: preliminary evaluation in rabbits of the influence of viscosity and of drug solubility. Eur J Pharm, 1996,42:385-392.
    [16]Miyazaki Y, Ogihara K, Yakou S, et al. In vitro and in vivo evaluation of mucoadhesive microspheres consisting of dextran derivatives and cellulose acetate butyrate. Int J Pharmaceut, 2003,258:21-29.
    [17]Suvannasara P, Juntapram K, Praphairaksit N, et al. Mucoadhesive 4-carboxybenzene sulfonamide-chitosan with antibacterial properties. Carbohyd Polym,2013,94:244-252.
    [18]Abruzzo A, Bigucci F, Cerchiara T, et al. Chitosan/alginate complexes for vaginal delivery of chlorhexidine digluconate. Carbohyd Polym,2013,91:651-658.
    [19]Venter J P, Kotz'e A F, Auz'ely-Velty R, et al.. Synthesis and evaluation of the mucoadhesivity of a CD-chitosan derivative. Int J Pharmaceut,2006,313:36-42.
    [20]Chaleawlert-umpon S, Nuchuchua O, Saesoo S, et al. Effect of citrate spacer on mucoadhesive properties of a novel water-soluble cationic β-cyclodextrin-conjugated chitosan. Carbohyd Polym,2011,84:186-194.
    [21]Sajomsang W, Nuchuchua O, Saesoo S, et al. A comparison of spacer on water-soluble cyclodextrin grafted chitosan inclusion complex as carrier of eugenol to mucosae. Carbohyd Polym,2013,92:321-327.
    [22]Ding J, He R, Zhou G, et al. Multilayered mucoadhesive hydrogel films based on thiolated hyaluronic acid and polyvinylalcohol for insulin delivery. Acta Biomaterialia,2012,8: 3643-3651.
    [23]Kafedjiiski K, Jetti R K R, Foger F, et al. Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. Int J Pharmaceut,2007,343:48-58.
    [24]Davidovich-Pinhas M, Bianco-Peled H. Alginate-PEGAc:A new mucoadhesive polymer. Acta Biomaterialia,2011,7:625-633.
    [25]Bernkop-Schnfirch A, Dundalek K. Novel bioadhesive drug delivery system protecting (poly)peptides from gastric enzymatic degradation. Int J Pharmaceut 1996,138:75-83.
    [26]Rahmat D, Muller C, Barthelmes J, et al. Thiolated hydroxyethyl cellulose:Design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles. Eur J Pharm Biopharm,2013,83:149-155.
    [27]Leung S S, Robinson J R. The contribution of anionic polymer structural features to mucoadhesion. J Control Release,1988,5:223-231.
    [28]Le Bourlais C A, Treupel-Acar L, Rhodes C T, et al. New ophthalmic drug delivery systems. Drug Dev Ind Pharm,1995,21:19-59.
    [29]Mortazavi S A. An in vitro assessment of mucus/mucoadhesive interactions. Int J Pharmaceut, 1995,124:173-182.
    [30]Ceulemans J, Ludwig A. Optimisation of carbomer viscous eye drops:an in vitro experimental design approach using rheological techniques. Eur J Pharm Biopharm,2002,54: 41-50.
    [31]Setiawan K, Davies N, Tucker I, Patent WO98/47536.
    [32]Valenta C, Kast C, Harich I, et al. Development and in vitro evaluation of a mucoadhesive vaginal delivery system for progesterone. J Control Release,2001,77:323-332.
    [33]El-Hameed M D, Kellaway I W. Preparation and in vitro characterisation of mucoadhesive polymeric microspheres as intra-nasal delivery systems. Eur J Pharm Biopharm,1997,44:53-60.
    [34]Chun M K, Cho C S, Choi H K. Mucoadhesive drug carrier based on interpolymer complex of poly(vinyl pyrrolidone) and poly(acrylic acid) prepared by template polymerization. J Control Release,2002,81:327-334.
    [35]Shojaei A H, Paulson J, Honary S. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery:factors affecting the force of mucoadhesion. J Control Release,2000,67:223-232.
    [36]Bernkop-Schnurch A. Thiomers:A new generation of mucoadhesive polymers. Adv Drug Deliv Rev,2005,57:1569-1582.
    [37]Marschutz M K, Bernkop-Schnurch A. Thiolated polymers:self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion. Eur J Pharm Sci,2002, 15(4):387-394.
    [38]Bernkop-Schnurch A, Egger C, Imam E M, et al. Preparation and in vitro characterization of poly(acrylic acid)-cysteine microparticles. J Control Release,2003,93:29-38.
    [39]Hornof M, Weyenberg W, A Ludwig, et al. Mucoadhesive ocular insert based on thiolated poly(acrylic acid):development and in vivo evaluation in humans. J Control Release,2003,89: 419-428.
    [40]Leitner V M, Marschiitz M K, Bernkop-Schnurch A, et al. Mucoadhesive and cohesive properties of poly(acrylic acid)-cysteine conjugates with regard to their molecular mass. Eur J Pharm Sci,2003,18:89-96.
    [41]Bernkop-Schnurch A, M Hornof, T Zoidl, et al. Thiolated polymers-thiomers:synthesis and in vitro evaluation of chitosan-2-irninothiolane conjugates. Int J Pharmaceut,2003,260:229-237
    [42]Roldo M, Hornof M, P Caliceti, et al. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery:synthesis and in vitro evaluation. Eur J Pharm Biopharm,2004,57: 115-121.
    [43]Krauland A H, D Guggi, Bernkop-Schnurch A. Thiolated chitosan microparticles:A vehicle for nasal peptide drug delivery. Int J Pharmaceut,2006,307:270-277.
    [44]Yin L, Ding J, He C, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials,2009,30:5691-5700.
    [45]Marschutz M K, Puttipipatkhachom S, Bernkop-Schnrch A. Designand in vitro evaluation of a mucoadhesive oral delivery system for amodel polypeptide antigen. Pharmazie,2001,56:724.
    [46]Hall D G Structure, properties, and preparation of boronic acid derivatives. Overview of their reactions and applications. In:Hall DG, editor. Boronic acids:preparation and applications in organic synthesis and medicine. Weinheim:Wiley-VCH; 2005. p.1-99.
    [47]Yan J, Springsteen G, Deeter S, et al. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols-it is not as simple as it appears. Tetrahedron 2004,60:11205-11209.
    [48]Yang W, Gao X, Wang B. Biological and medicinal applications of boronic acids. In:Hall DG, editor. Boronic acids:preparation, applications, in organic synthesis and medicine. Weinheim: Wiley-VCH; 2005. p.481-512.
    [49]Angyal S J, Greeves D, PicklesV A. The stereochemistry of complex formation of polyols with borate and peridate anions, and with metal cations. Carbohydr Res,1974,35:165-173.
    [50]Greg S-, Binghe W. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002,58:5291-5300.
    [51]Kazunori K, Hiroaki M. Sensitive glucose-induced change of the lower critical solutiontemperature of poly[N,N-(dimethylacrylamide)-co-3(acrylamido)-phenylboronic acid]. Macromolecules,1994,27:1061-1062.
    [52]Vainio P, Virtanen J A, Kinnunen P K J. Biochim Biophys Acta 1982;711 (3):386-390.
    [53]Leinhard GE, Koehler KA.2-Phenylethaneboronic acid, a possible transition-state analog for chymotrypsin. Biochemistry,1971,10:2477-2483.
    [54]Jakle F. Advances in the Synthesis of Organoborane Polymers for Optical, Electronic, and Sensory Applications, Chem Rev,2010,110:3985-4022.
    [55]James T D. Boronic acid-based receptors and sensors for saccharides. In:Hall DG, editor. Boronic acids:preparation, applications in organic synthesis, and medicine. Weinheim: Wiley-VCH; 2005. p.441-479.
    [56]Wang W, Gao X, Wang B. Curr Org Chem 2002,6:1285-1317.
    [57]Lapeyre V, Gosse I, Chevreux S, et al. Monodispersed Glucose-Responsive Microgels Operating at Physiological Salinity. Biomacromolecules,2006,7:3356-3363.
    [58]Matsumoto A, Kurata T, Shiino D, et al. Swelling and Shrinking Kinetics of Totally Synthetic, Glucose-Responsive Polymer Gel Bearing Phenylborate Derivative as a Glucose-Sensing Moiety. Macromolecules,2004,37:1502-1510.
    [59]Winblade N D, Schmokel H, Baumann M, et al. Sterically blocking adhesion of cells to biological surfaces with a surface-active copolymer containing poly(ethylene glycol) and phenylboronic acid. J Biomed Mater Res,2002,59:618-631.
    [60]Saito A, Konno T, Ikake H, et al. Control of cell function on a phospholipid polymer having phenylboronic acid moiety. Biomed. Mater,2010,5:1-7.
    [61]Hidenori O, Eiichiro U, Hiroyuki K, et al. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J Am Chem Soc, 2003,125:3493-3502S.
    [62]Uchimura E, Otsuka H, Okano T, et al. Totally synthetic polymer with lectin-like function: induction of killer cells by the copolymer of 3-acrylamidophenylboronic acid with N,N-dimethylacrylamide. Biotechn Bioeng,2001,72:307-314.
    [63]Chen J L, Cyr G N. Compositions producing adhesion through hydration, in:R.S. Manly (Ed.), Adhesion in Biological Systems, Academic Press, New York,1970, pp.163-180.
    [64]Tiwari D, Goldman D, Sause R, et al, Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations. AAPS PharmSci 1 (1999) E13.
    [65]Huang Y, Leobandung W, Foss A, et al. Molecular aspects of muco-and bioadhesion: tethered structures and site-specific surfaces. J Control Release,2000,65:63-71.
    [66]Gu J M, Robinson J R, Leung S H S. Binding of acrylic polymers to mucin/epithelial surfaces:structure-property relationships. Crit Rev Ther Drug Carr Sys,1998,5:21-67.
    [67]Park H, Robinson J R. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm. Res,1987,4:457-464.
    [68]Peppas N A, Buri P A. Surface, interfacial and molecular spects of polymer bioadhesion on soft tissues. J Control Release,1985,2:257-275.
    [69]Flory P J, Principle of Polymer Chemistry, Cornell University Press, Ithaca, New York,1953, p.541.
    [70]Park H, Amiji M, Park K. Mucoadhesive hydrogels effective at neutral pH. Proc Int Symp Control Release Bioact Mater,1989,16:217-218.
    [71]Lehr C M, Bouwstra J A, Schacht E H, et al. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm,1992,78:43-48.
    [72]Solomonidou D, Cremer K, Krumme M, et al. Effect of carbomer concentration and degree of neutralization on the mucoadhesive properties of polymer films, J Biomater Sci, Polym. Ed. 2001,12:1191-1205.
    [73]Takeuchi H, Yamamoto H, Niwa T, et al. Mucoadhesion of polymer-coated liposomes to rat intestine in vitro. Chem Pharm Bull, (Tokyo),1994,42:1954-1956.
    [74]Lin W C, Yu D G, Yang M C. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate:swelling kinetics and drug delivery properties. Colloids Surfaces B:Biointerfaces,2005,44:143-151.
    [75]Quan J S, Jiang H L, Kim E M, et al. pH-sensitive and mucoadhesive thiolated Eudragit-coated chitosan microspheres. Int J Pharmaceut,2008,359:205-210.
    [76]Valente J F A, Gaspar V M, Antunes B P, et al. Microencapsulated chitosanedextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. Polymer,2013,54:5-15.
    [77]Wong J Y; Leach J B; Brown X Q. Balance of chemistry, topography, and mechanics at the cell-biomaterial interface:Issues and challenges for assessing the role of substrate mechanics on cell response. Surf Sci.2004,570:119-133.
    [78]Damge C, Michel C, Aprahamian M, et al. Nanocapsules as carriers for oral peptide delivery. J Contr Rel,1990,13:233-239.
    [79]Yan S, Rao S, Zhu J, et al. Nanoporous multilayer poly(L-glutamic acid)/chitosan micro-capsules for drug delivery. Int J Pharm,2012,427:443-451.
    [80]Szarpak A, Cui D, Dubreuil F, et al. Designing hyaluronic acid-based layer-by-layer capsules as a carrier for intracellular drug delivery. Biomacromolecules,2010,11:713-720.
    [81]Shu S J, Zhang X G, Wu Z M, et al. Gradient cross-linked biodegradable polyelectrolyte nanocapsules for intracellular protein drug delivery. Biomaterials,2010,31:6039-6049.
    [82]Halstenberg S, Panitch A, Rizzi S, et al. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels:a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules,2002,3:710-723.
    [83]Liu, V.A, Bhatia S N. Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices,2002,4:257-266.
    [84]Chen S C, Wu Y C, Mi F L, et al. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked bygenipin for protein drug delivery. J Control Release,2004,96:285-300.
    [85]Radhakumary C, Antonty M, Sreenivasan K. Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing. Carbohyd Polym,2011, 83:705-713.
    [86]Wu J, Wei W, Wang L Y, et al. A thermosensitive hydrogel based on quaternized chitosan and polyethylene glycol) for nasal drug delivery system. Biomaterials,2007,28:2220-2232.
    [87]Kusi-Appiah A E, Vafai N, Cranfill P J, et al. Lipid multilayer microarrays for in vitro liposomal drug delivery and screening. Biomaterials,2012,33:4187-4194.
    [88]Gregoriadis G, Florence AT. Liposomes in drug delivery:Clinical, diagnostic and ophthalmic potential. Drugs,1993,45:15-28.
    [89]Zaru M, Manca M L, Fadda A M, et al. Chitosan-coated liposomes for delivery to lungs by nebulisation. Colloids Surfaces B:Biointerfaces,2009,71:88-95.
    [90]Qiang F, Shin H J, Lee B J, et al. Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome. Inte J Pharmaceuti,2012,430:161-166.
    [91]Norris D A, Puri N, Sinko P J. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deli Rev,1998,34:135-154.
    [92]Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides:is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm,2000,50: 147-160.
    [93]Peppa N A, Huang Y. Nanoscale technology of mucoadhesive interactions. Adv Drug Deli Rev,2004,56:1675-1687.
    [94]黄红娜,张丹参,张力等.纳米药物载体系统的研究.河北北方学院学报,2010,27:69-71.
    [95]Cui Z R, Mumper R J. Chitosan-based nanoparticles for topical genetic immunization. J Control Release,2001,75:409-419.
    [96]Charlton S T, Davis S S, Ilium L. Evaluation of bioadhesive polymers as delivery systems for nose to brain delivery:in vitro characterisation studies. J Control Release,2007,118:225-234.
    [97]Motwani S K, Chopra S, Talegaonkar S, et al. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery:Formulation, optimization and in vitro characterization. Eur J Pharm Biopharm,2008,68:513-525.
    [98]Zhang X G, Zhang H J, Wu Z M, et al. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm.2008,68:526-534.
    [99]Cheng C, Zhang X G, Xiang J X, et al. Development of novel self-assembled poly(3-acrylamidophenylboronic acid)/poly(2-lactobionamidoethyl methacrylate) hybrid nanoparticles for improving nasal adsorption of insulin. Soft Matter.2012,8:765-773.
    [100]郝燕生.粘弹性物质的特性及其在眼科的应用.中国生化药物杂志,1998,19(5):285.
    [101]凌沛学,贺艳丽,张天民等.眼科药物的临床应用与研究.北京:中国医药科技出版社,2000,20-44.
    [102]Kast C E,-Frick W, losert U,et al. Chitosan-thioglycolic acid conjugate:a-new scaffold material for tissue engineering? Int J Pharmaceut,2003,256:183-189.
    [103]夏万尧,刘伟,崔磊等.壳聚糖-明胶多孔复合支架构建自体组织工程化软骨组织的实验研究.中华医学杂志,2003,83(7):577-579.
    [104]李瑞欣,关静,高怀生等.急救烧伤敷料理化性能及其临床应用.中国急救医学,2002,22(8):479-480.
    [105]Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res,2008,14:1310-1316.
    [106]Rhyner M N, Smith A M, Gao X, et al. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine,2006,1:209-217.
    [107]Janib S M, Moses A S, Mackay J A. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev,2010,62:1052-1063.
    [108]Iversen T G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today,2011,6:176-185.
    [109]Sahay G, Alakhova D Y, Kabanov A V. Endocytosis of nanomedicines. J Control Release, 2010,145:182-195.
    [110]Doherty G J, McMahon H T, Mechanisms of endocytosis. Annu Rev Biochem,2009,78: 3131-314.
    [111]Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem.2010, 79:803-833.
    [112]Sandvig K, Spilsberg B, Lauvraka S U, et al. Pathways followed by protein toxins into cells, Int J Med Microbiol,2004,293:483-490.
    [113]Swanson J A, Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol, 2008,9:639-649.
    [114]Aderem A, Underhill D M. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol,1999,17:593-623.
    [115]Luzio J P, Pryor P R, Bright N A. Lysosomes:fusion and function. Nat Rev Mol Cell Biol, 2007,8:622-632.
    [116]Rabinovitch M. Professional and nonprofessional phagocytes-an introduction. Trends Cell Biol,1995,5:85-87.
    [117]Jones A T. Macropinocytosis:searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med,2007,11:670-684.
    [118]Kerr M C, Teasdale R D. Defining macropinocytosis and others. Traffic,2009,10:364-371
    [119]Kaplan I M, Wadia J S, Dowdy S F. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release,2005,102:247-253.
    [120]Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol,2009,11:510-520.
    [121]Maxfield F R, McGraw T E. Endocytic recycling. Nat Rev Mol Cell Biol,2004,5: 121-132.
    [122]Howes M T, Kirkham M, Riches J, et al. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Cell Biol,2010,190:675-691.
    [123]Mayor S, Pagano R E. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol,2007,8:603-612.
    [124]Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic,2002,3:311-320.
    [125]Glebov O O, Bright N A, Nichols B J. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol,2006,8:46-54.
    [126]Doherty G J, Lundmark R, GRAF 1-dependent endocytosis. Biochem Soc Trans,2009,37: 1061-1065.
    [127]Radhakrishna H, Donaldson J G. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol,1997,139:49-61.
    [128]Hansen C G, Nichols B J. Molecular mechanisms of clathrin-independent endocytosis. J Cell Sc,2009,122:1713-1721.
    [129]Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem,2010, 79:803-833.
    [130]Thomsen P, Roepstorff K, Stahlhut M, et al. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell,2002,13:238-250.
    [131]Sharma D K, Brown J C, Choudhury A, et al, Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell,2004,15:3114-3122.
    [132]Hayer A, Stoeber M, Ritz D, et al. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol,2010,191:615-629.
    [133]Vercauteren D, Vandenbroucke R E, Jones A T, et al. The use of inhibitors to study endocytic pathways of gene carriers:optimization and pitfalls. Mol Ther,2010,18:561-569.
    [134]IIvanov A, Pharmacological inhibition of endocytic pathways:is it specific enough to be useful? Methods Mol Biol,2008,440:15-33.
    [135]Sheppard D. Dominant negative mutants:tools for the study of protein function in vitro and in vivo. Am J Respir Cell Mol Biol,1994,11:1-6.
    [136]Wang L H, Rothberg K G, Anderson R G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol,1993,123:1107-1117.
    [137]Orlandi P A, Fishman P H. Filipin-dependent inhibition of cholera toxin:evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol,1998,141:905-915.
    [138]Rodal S K, Skretting G, Garred O, et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999,10:961-974.
    [139]Cinar H, Barnes E M. Clathrin-independent endocytosis of GABA(A) receptors in HEK 293 cells. Biochemistry,2001,40:14030-14036.
    [140]Benmerah A, Bayrou M, Cerf-Bensussan N, er al. Inhibition of clathrin-coated pit assembly by an Esp15 mutant. J Cell Sci,1999,112:1303-1311.
    [141]Simons K, Ikonen E. Functional rafts in cell membranes. Nature,1997,434:569-572.
    [142]Vlahos C J, Matter W F, Hui K Y, et al. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzofu-ran-4-one (LY294002). J Biol Chem,1994,269: 5241-5248.
    [143]Arcaro A, Wymann M P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor:the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J,1993,296: 297-301.
    [144]Torgersen M L, Skretting G, van Deurs B, et al. Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci,2001,114:3737-3747.
    [145]Kessner S, Krause A, Rothe U,et al. Investigation of the cellular uptake of E-selectin-targeted immunoliposomes by activated human endothelial cells. Biochim Biophys Acta,2001,1514:177-190.
    [146]Torchilin V P. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev,2005,57:95-109.
    [147]Shaner N C, Steinbach P A, Tsien R Y. A guide to choosing fluorescent proteins. Nat Methods,2005,2:905-909.
    [148]Watson P, Jones A T, Stephens D J. Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev,2005,57:43-61.
    [149]Roberts R L, Barbieri M A, Pryse K M, et al. Endosome fusion in living cells overexpressing GFP-rab5. J Cell Sci,1999,112:3667-3675.
    [150]Lisenbee C S, Karnik S K, Trelease R N. Overexpression and mislocalization of a tailanchored GFP redefines the identity of peroxisomal ER, Traffic,2003,4:491-501.
    [151]Goldfine ID, Smith G J, Wong K Y, et al Cellular uptake and nuclear binding of insulin in human cultured lymphocytes:evidence for potential intracellular sites of insulin action. Proc Natl Acad Sci U S A,1977,74:1368-1372.
    [152]Thanou M, Verhoef J C, Junginger H E Oral drug absorption enhancement by chitosan and its derivatives Adv Drug Deliv Rev,2001,52:117-126.
    [153]Alpar H O, Somavarapu S, Atuah K N, et al Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery Adv Drug Deli Rev,2005,57:411-430.
    [154]Smolensky M H, Lemmer B, Reinberg A E Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma Adv Drug Deli Rev,2007,59:852-882.
    [155]Ohkubo K, Baraniuk J N, Hohman R, et al Aminopeptidase activity in human nasal mucosa J Allergy Clin Immunol,1998,102:741-750.
    [156]Wang Y, Chalagalla S, Li T, et al Multivalent interaction-based carbohydrate biosensors for signal amplification Biosens Bioelectron,2010,26:996-1001.
    [157]Djanashvili K, Koning G A, van der Meer A J G M, et al Phenylboronate 160Tb complexes for molecular recognition of glycoproteins expressed on tumor cells Contrast Med Mol Imaging, 2007,2:35-41.
    [158]Ivanov A E, Galaev I Y, Mattiasson B Interaction of sugars, polysaccharides and cells with boronate-containing copolymers:from solution to polymer brushes J Mol Recognit,2006,19: 322-331.
    [159]Achanta G, Modzelewska A, Feng L, et al A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome Mol Pharmacol,2006,70:426-433.
    [160]Qureshi S, Al-Shabanah O A, Al-Harbi M M, et al Boric acid enhances in vivo Ehrlich ascites carcinoma cell proliferation in Swiss albino mice Toxicology,2001,165:1-11.
    [161]Sahay G, Alakhova D Y, Kabanov A V. Endocytosis of nanomedicines. J Control Release 2010,145:182-195.
    [162]Hillaireau H, Couvreur P. Nanocarrier's entry into the cell:relevance to drug delivery. Cell Mol Life Sci,2009,66:2873-2896.
    [1]Goldfine I D, Smith G J, Wong K Y, et al. Cellular uptake and nuclear binding of insulin in human cultured lymphocytes:evidence for potential intracellular sites of insulin action. Proc Natl Acad Sci U S A,1977,74:1368-1372.
    [2]Thanou M, Verhoef J C, Junginger H E. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev,2001,52:117-126.
    [3]Mygind N, Dahl R... Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev.1998,29:3-12.
    [4]Duan X P, Mao S R., New strategies to improve the intranasal absorption of insulin. Drug Discov Today.2010,15:416-427.
    [5]Cambre J N, Sumerlin B S. Biomedical applications of boronic acid polymers. Polymer.2011, 52:4631-4643.
    [6]Nicholls J M, Bourne A J, Chen H, et al. Sialic acid receptor detection in the human respiratory tract:evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Resp. Res.2007,8:1-10.
    [7]Smoum R, Rubinstein A, Srebnik M. A study of the effect on nucleophilic hydrolytic activity of pancreatic elastase, trypsin, chymotrypsin, and leucine aminopeptidase by boronic acids in the presence of arabinogalactan:a subsequent study on the hydrolytic activity of chymotrypsin by boronic acids in the presence of mono-, di-, and trisaccharides. Bioorg Chem.2003,31: 464-474.
    [8]Achanta G, Modzelewska A, Feng L, et al. A boronic-chalcone derivative exhibits potent anticancer activity through Inhibition of the proteasome. Pharmacology.2006,70:426-433.
    [9]Qureshi S, Al-Shabanah O A, Al-Harbi M M, et al. Boric acid enhances in vivo Ehrlich ascites carcinoma cell proliferation in Swiss albino mice. Toxicology.2001,165:1-11.
    [10]Jin X J, Zhang X G, Wu Z M, et al. Amphiphilic random glycopolymer based on phenylboronic acid:synthesis, characterization, and potential as glucose-sensitive matrix. Biomacromolecules.2009,10:1337-1345.
    [11]Harush-Frenkel O, Altschuler Y, Benita S. Nanoparticle-cell interactions:drug delivery implications. Crit. Rev. Ther. Drug Carrier Syst.2008,25:485-544.
    [12]Sahay G, Alakhova D Y, Kabanov A V. Endocytosis of nanomedicines, J Control Release, 2010,145:182-195.
    [13]Hillaireau H, Couvreur P. Nanocarrier's entry into the cell:relevance to drug delivery, Cell. Mol. Life Sci.2009,66:2873-2896.
    [14]Gullotti E, Yeo Y. Extracellular activated nanocarriers:a new paradigm of tumor targeted drug delivery. Mol. Pharm.2009,6:1041-1051.
    [15]Chen H, Kim S, Li L, et al. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging, Proc. Natl. Acad. Sci. U. S. A.2008,105:6596-6601.
    [16]Deshayes S, Morris M C, Divita G, et al. Cell-penetrating peptides:tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci.2005,62:1839-1849.
    [17]Deshayes S, Morris M, Heitz F, et al. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv. Drug Deliv. Rev.2008,60:537-547.
    [18]Lee M C, Kabilan S, Hussain A, et al. Glucose-Sensitive Holographic Sensors for Monitoring Bacterial Growth. Anal. Chem.2004,76:5748-5755.
    [19]Narain R, Armes S P. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers. Biomacromolecules,2003,4: 1746-1758.
    [20]Peroche S, Degobert G, Putaux J L, et al. Synthesis and characterisation of novel nanospheres made from amphiphilic perfluoroalkylthio-β-cyclodextrins Eur. J. Pharm. Biopharm.2005,60: 123-131.
    [21]Bes L, Angot S, Limer A, et al. Sugar-coated amphiphilic block copolymer micelles from living radical polymerization:recognition by immobilized lectins macromolecules.2003,36: 2493-2499.
    [22]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteinedye binding. Anal Biochem.1976,72:248-254.
    [23]Yin L C, Ding J Y, He C B, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials.2009,30:5691-5700
    [24]Tripathi S K, Goyal R, Kashyap M P, et al. Depolymerized chitosans functionalized with bPEI as carriers of nucleic acids and tuftsin-tethered conjugate for macrophage targeting. Biomaterials.2012,33:4204-4219.
    [25]Wang M Y, Yu S N, Wang C, et al. Tracking the endocytic pathway of recombinant protein toxin delivered by multiwalled carbon nanotubes. ACS Nano.2010,4:6483-6490.
    [26]Huth U S, Schubert R, Peschka-Suss R. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Control Release.2006,110: 490-504.
    [27]Mo R, Jin X, Li N, et al. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials.2011,32:4609-4620.
    [28]Peng S F, Tseng M T, Ho Y C, et al. Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(γ-glutamic acid) complexes as a gene delivery vector. Biomaterials.2011,32:239-248.
    [29]Zelikin A N, Breheney K, Robert R, et al. Cytotoxicity and Internalization of Polymer Hydrogel Capsules by Mammalian Cells. Biomacromolecules.2010,11:2123-2129.
    [30]Wang J, Tabata Y, Morimoto K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs:Evaluation of in vitro release and in vivo insulin absorption in rats. J.Control. Release 2006,113:31-37,
    [31]Ballister E R, Lai A H, Zuckennann R N, et al. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A,2008,105:3733-3738.
    [32]Miller R A, Presley A D, Francis M B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc.2007,129: 3104-3109.
    [33]Yao Y, Zhao L Y, Yang J J, et al. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH. Biomacromolecules.2012,13:1837-1844.
    [34]McGil S L, Smyth H D C. Disruption of the mucus barrier by topically applied exogenous particles. Mol. pharmaceut.2010,7:2280-2288.
    [35]Porfire A S, Zabaleta V, Gamazo C, et al. Influence of dextran on the bioadhesive properties of poly(anhydride) nanoparticles. Int. J. Pharm.2010,390:37-44.
    [36]Qureshi S, Al-Shabanah O A, Al-Harbi M M, et al. Boric acid enhances in vivo Ehrlich ascites carcinoma cell proliferation in Swiss albino mice. Toxicology.2001,165:1-11.
    [37]Macvinish L J, Cope G, Ropenga A, et al. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibros is transmembrane conductance regulator, CFTR. Br J P harmacol,2007,150:1055-1065.
    [38]Cryan S, Devocelle M, Moran P J, et al. Increased intracellular targeting to airway cells using octaarginine-coated liposomes:in vitro assessment of theirsuitability for inhalation. Mol Pharmacol.2006,2:104-112.
    [39]Verma A., Uzun, O, Hu Y H, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater.2008,7:588-595.
    [40]Cheng C, Zhang X G, Xiang J X, et al. Development of novel self-assembled poly(3-acrylamidophenylboronic acid)/poly(2-lactobionamidoethyl methacrylate) hybrid nanoparticles for improving nasal adsorption of insulin. Soft Matter.2012,8:765-773.
    [41]Ivanov A I. Pharmacological inhibition of endocytic pathways:Is it specific enough to be useful? In:Ivanov A.I. (Eds), Methods in Molecular Biology. Humana Press:Totowa, NJ, Vol. 440, pp.2008,15-33.
    [42]Araki N, Johnson M T, Swanson J A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell Biol.1996,135:1249-1260.
    [43]Hewlett L J, Prescott A R, Watts C. The Coated Pit and Macropinocytic Pathways Serve Distinct Endosome Populations. J Cell Biol.1994,124:689-703.
    [44]Rejman J, Oberle V, Zuhorn I S, et al. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem. J.2004,377:159-169.
    [45]Schnitzer J E, Oh P, Pinney E, et al. Filipin-sensitive caveolae-mediated transport in endothelium:reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol.1994,127:1217-1232.
    [46]Rodal S K, Skretting G, Garred O, et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell. 1999,10:961-974.
    [47]Subtil A, Gaidarov I, Kobylarz K, et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl. Acad. Sci. U. S. A.1999,96:6775-6780.
    [48]Thomsen P, Roepstorff K, Stahlhut M, et al. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking, Mol. Biol. Cell,2002, 13:238-250.
    [49]Westerink M A J, Smithson S L, Srivastava N, et al. ProjuvantTM (Pluronic F127(?))/chitosan) enhances the immune response to intranasally administered tetanus toxoid. Vaccine.2001,20: 711-723.
    [50]Bravo-Osuna I, Vauthier C, Farabollini A, et al. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials.2007,28: 2233-2243.
    [1]Sidebotham R L. Dextrans. Adv Carbohydr Chem Biochem.1974,30:371-444.
    [2]Leckband D, Sheth S, Halperin A J. Biomater. Sci., Polym. Ed.10 (1999)1125.
    [3]Osterberg E, Bergstrom K, Holmberg K, et al. Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations:comparison to PEG J. Biomed. Mater. Res.1995, 29:741-747.
    [4]Rouzes C, Gref R, Leonard M, et al. Surface modification of poly(lactic acid) nanospheres using hydrophobically modified dextrans as stabilizers in an o/w emulsion/evaporation technique. J. Biomed. Mater. Res.2000,50:557-565.
    [5]Aumelas A, Serrero A, Durand A, et al. Nanoparticles of hydrophobically modified dextransas potential drug carrier systems. Colloids and Surfaces B:Biointerfaces.2007,59:74-80.
    [6]Kakizawa Y, Nishio R., Hiran T, et al. Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles. J Control Release.2010,142:8-13.
    [7]Pan X Y, Yao P, Jiang M. Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene. J Colloid Inter Sci.2007,315: 456-463.
    [8]Yang J H, Liu Y, Wang H B, et al. The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector. Biomaterials.2012,33:604-613.
    [9]Betancor L, Fuentes M, Dellamora-Ortiz G, et al. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. J Molecular Catalysis B:Enzymatic.2005,32:97-101.
    [10]Peroche S; Degobert G Putaux J L, et al. Synthesis and characterisation of novel nanospheres made from amphiphilic perfluoroalkylthio-β-cyclodextrins. Eur. J. Pharm. Biopharm.2005,60: 123-131.
    [11]Bes L, Angot S, Limer A, et al. Sugar-coated amphiphilic block copolymer micelles from living radical polymerization:recognition by immobilized lectins macromolecules.2003,36, 2493-2499.
    [12]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteinedye binding. Anal Biochem 1976,72:248-254.
    [13]Lindenbaum G M, Yakovleva M F, Mirgorodskaya O A, et al. Chemical modification of terrilytin with water-soluble oxidized dextrans. Prikl Biokhim Microbiol.1982,18:212-220.
    [14]Wang Z, Lee T Y, Ho P C. A novel dextran-oleate-cRGDfK conjugate for self-assembly of nanodrug. Nanomed-nanotechnol.2012,8:194-203.
    [15]Domb A J, Linden C, Polacheck I, et al. Nystatin-Dextran Conjugates:Synthesis and Characterization. J Polymer Science:Parr A:Polymer Chemistry.1996,34:1229-1236.
    [16]Jennifer N. Cambre, Brent S. Sumerlin. Biomedical applications of boronic acid polymers. Polymer.2011,52:4631-4643.
    [17]Hansen J S, Christensen J B, Fabritius J, et al. PetersenArylboronic acids:A diabetic eye on glucose sensing. Sensor Acruat B:2012,161:45-79.
    [18]Badug R, Lakowic J R, Geddes C D. A wavelength-ratiometric pH sensitive probe based on the boronic acid moiety and suppressed sugar response. Dyes Pigments.2004,61:227-234.
    [19]Ballister E R, Lai A H, Zuckermann R N, et al. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A.2008,105:3733-3738.
    [20]Miller R A, Presley A D, Francis M B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc.2007,129: 3104-3109.
    [21]Yao Y, Zhao L Y, Yang J J, et al. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH. Biomacromolecules.2012,13:1837-1844.
    [22]Smoum R., Rubinstein A., Srebnik M.. A study of the effect on nucleophilic hydrolytic activity of pancreatic elastase, trypsin, chymotrypsin, and leucine aminopeptidase by boronic acids in the presence of arabinogalactan:a subsequent study on the hydrolytic activity of chymotrypsin by boronic acids in the presence of mono-, di-, and trisaccharides. Bioorg Chem. 2003,31:464-474.
    [23]Zhu G Z, Mallery S R, Schwendeman S P. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nat Biotechnol,2000,18:52-57.
    [24]Hinds K, Koh J J, Joss L, et al. Synthesis and characterization of poly(ethylene glycol)-insulin conjugates. Bioconjugate Chem,2000,11:195-201.
    [25]Lee S, Kim K, Kumar T S, et al. Synthesis and Biological Properties of Insulin-Deoxycholic Acid Chemical Conjugates. Bioconjugate Chem,2005,16:615-620.
    [1]Norris D A, Puri N, Sinko P J. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deli Rev,1998,34:135-154.
    [2]Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides:is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm,2000,50: 147-160.
    [3]Peppa N A, Huang Y. Nanoscale technology of mucoadhesive interactions. Adv Drug Deli Rev, 2004,56:1675-1687.
    [4]Cui Z R, Mumper R J. Chitosan-based nanoparticles for topical genetic immunization. J Control Release,2001,75:409-419.
    [5]Charlton S T, Davis S S, Ilium L. Evaluation of bioadhesive polymers as delivery systems for nose to brain delivery:in vitro characterisation studies. J Control Release,2007,118:225-234.
    [6]Motwani S K, Chopra S, Talegaonkar S, et al. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery:Formulation, optimization and in vitro characterization. Eur J Pharm Biopharm,2008,68:513-525.
    [7]Harush-Frenkel O, Altschuler Y, Benita S. Nanoparticle-cell interactions:drug delivery implications. Crit. Rev. Ther. Drug Carrier Syst.2008,25:485-544.
    [8]Sahay G, Alakhova D Y, Kabanov A V. Endocytosis of nanomedicines, J Control Release, 2010,145:182-195.
    [9]Hillaireau H, Couvreur P, Nanocarrier's entry into the cell:relevance to drug delivery, Cell. Mol. Life Sci.2009,66:2873-2896.
    [10]Gullotti E, Yeo Y. Extracellular activated nanocarriers:a new paradigm of tumor targeted drug delivery, Mol. Pharm.2009,6:1041-1051.
    [11]Chen H, Kim S, Li L, et al. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging, Proc. Natl. Acad. Sci. U. S. A.2008,105:6596-6601.
    [12]Deshayes S, Morris M C, Divita G, et al. Cell-penetrating peptides:tools for intracellular delivery of therapeutics, Cell. Mol. Life Sci.2005,62:1839-1849.
    [13]Deshayes S, Morris M, Heitz F, et al. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv. Drug Deliv. Rev.2008,60:537-547.
    [14]Peroche S, Degobert G, Putaux J L. et al. Synthesis and characterisation of novel nanospheres made from amphiphilic perfluoroalkylthio-β-cyclodextrins Eur. J. Pharm. Biopharm. 2005,60:123-131.
    [15]Bes L, Angot S, Limer A, et al. Sugar-coated amphiphilic block copolymer micelles from living radical polymerization:recognition by immobilized lectins macromolecules.2003,36, 2493-2499.
    [16]Yin L C, Ding J Y, He C B, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials.2009; 30:5691-5700.
    [17]Tripathi S K, Goyal R, Kashyap M P, et al. Depolymerized chitosans functionalized with bPEI as carriers of nucleic acids and tuftsin-tethered conjugate for macrophage targeting. Biomaterials.2012,33:4204-4219.
    [18]Wang M Y, Yu S N, Wang C, et al. Tracking the endocytic pathway of recombinant protein toxin delivered by multiwalled carbon nanotubes. ACS Nano.2010,4:6483-6490.
    [19]Huth U S, Schubert R, Peschka-Suss R. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J. Control. Release.2006, 110:490-504.
    [20]Mo R, Jin X, Li N, et al. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials.2011,32:4609-4620.
    [21]Peng S F, Tseng M T, Ho Y C, et al. Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(y-glutamic acid) complexes as a gene delivery vector. Biomaterials.2011,32:239-248.
    [22]Zelikin A N, Breheney K, Robert R, et al. Cytotoxicity and Internalization of Polymer Hydrogel Capsules by Mammalian Cells. Biomacromolecules.2010,11:2123-2129.
    [23]Wang J, Tabata Y, Morimoto K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs:Evaluation of in vitro release and in vivo insulin absorption in rats. J.Control. Release 2006,113:31-37.
    [24]McGil S L, Smyth H D C. Disruption of the mucus barrier by topically applied exogenous particles. Mol. pharmaceut.2010,7:2280-2288.
    [25]Porfire A S, Zabaleta V, Gamazo C, et al. Influence of dextran on the bioadhesive properties of poly(anhydride) nanoparticles. Int. J. Pharm.2010,390:37-44.
    [26]Builders P F, Kunle O O, Adikwu M U. Preparation and characterization of mucinated agarose:A mucin-agarose physical crosslink. Int J Pharmaceut.2008,356:174-180.
    [27]Yin L C, Ding J Y, He C B, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials.2009,30:5691-5700.
    [28]Achanta G, Modzelewska A, Feng L, et al. A Boronic-Chalcone Derivative Exhibits Potent Anticancer Activity through Inhibition of the Proteasome. Mol. Pharmacol.2006,70:426-433.
    [29]Macvinish L J, Cope G, Ropenga A, et al. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibros is transmembrane conductance regulator.
    [30]Cryan S, Devocelle M, Moran P J, et al. Increased intracellular targeting to airway cells using octaarginine-coated liposomes:in vitro assessment of theirsuitability for inhalation. Mol. Pharmacol.2006,2:104-112.
    [31]Cryan S, Devocelle M, Moran P J, et al. Increased intracellular targeting to airway cells using octaarginine-coated liposomes:in vitro assessment of theirsuitability for inhalation. Mol. Pharmacol.2006,2:104-112.
    [32]Verma A., Uzun, O, Hu Y H, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater.2008,7:588-595.
    [33]Ivanov A I. Pharmacological inhibition of endocytic pathways:Is it specific enough to be useful? In:Ivanov A.I. (Eds), Methods in Molecular Biology. Humana Press:Totowa, NJ, Vol. 440, pp.2008,15-33.
    [34]Araki N, Johnson M T, Swanson J A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell Biol.1996,135:1249-1260.
    [35]Hewlett L J, Prescott A R, Watts C. The Coated Pit and Macropinocytic Pathways Serve Distinct Endosome Populations. J Cell Biol.1994,124:689-703.
    [36]Rejman J, Oberle V, Zuhorn I S, et al. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem. J.-2004,377:159-169.
    [37]Schnitzer J E, Oh P, Pinney E, et al. Filipin-sensitive caveolae -mediated transport in endothelium:reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol.1994,127:1217-1232.
    [38]Rodal S K., Skretting G, Garred O, et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell. 1999,10:961-974.
    [39]Subtil A, Gaidarov I, Kobylarz K, et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl. Acad. Sci. U. S. A.1999,96:6775-6780.
    [40]Thomsen P, Roepstorff K, Stahlhut M, et al. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking, Mol. Biol. Cell,2002, 13(1):238-250.
    [41]Westerink M A J, Smithson S L, Srivastava N, et al. ProjuvantTM (Pluronic F127(?))/chitosan) enhances the immune response to intranasally administered tetanus toxoid. Vaccine,2001,20: 711-723.
    [42]Marttin E, Verhoef J C, Romejin S G, et al. Effect of absorption enhancers on rats nasal epithelium in vivo:release of marker compounds in the nasal cavity. Pharm Res,1995,12: 1151-1157.
    [43]李听,王晖.药物吸收促进剂的毒性研究进展.中国医药工业杂志,2005,36:51-55.
    [1]Longer M A, Robinson J R. Fundamental aspects of bioadhesion. Pharm Int,1986,7: 114-117.
    [2]Mathiowitz E, Chickering D E I, Lehr C M. Bioadhesive drug delivery systems.1999. Marcel Dekker, New York.
    [3]Robinson J R, Mlynek G M. Bioadhesive and phase-change polymers for ocular drug-delivery. Adv Drug Deliver. Rev,1995,16:45-50.
    [4]Lehr C M, Bouwstra J A, Schacht E H, et al, In vitro evaluation of mucoadhesive properties of chitosan and other natural polymers. Int. J. Pharm,1992,78:43-48.
    [5]鲁念慈,谭天伟.透明质酸的制备及其应用.功能高分子学报,2001,9(14):370-376.
    [6]吕洛.透明质酸与创面愈合.国外医学创伤与外科基本问题分册,1997,18(2):86-89.
    [7]Liao Y H,. Jones S A, Forbes B, et al. Hyaluronan:pharmaceutical characterization and drug delivery. Drug Deliv,2005,12:327-342.
    [8]Prestwich G D, Vercruysse K P. Therapeutic application of hyaluronic acid and hyaluronan derivatives. Pharm Sci Technol Today,1998,1:42-43.
    [9]Richardson J L, Ramires P A, Miglietta M R, et al. Novel vaginal delivery systems for calcitonin:1. Evaluation of HYAFF/calcitonin microspheres in rats. Int J Pharm,1995,115:9-15.
    [10]Bonucci E, Ballanti P, Ramires P A, et al. Prevention of ovariectomy osteopenia in rats after vaginal administration of HYAFFR 11 micro-spheres contain-ing salmon calcitonin. Calcif Tissue Int,1995,56:274-279.
    [11]Greaves J L, Wilson C G. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv Drug Deliv Rev,1993,11:349-383.
    [12]Sintzel M B, Bernatchez S F, Tabatabay C, et al. Biomaterials in ophthalmic drug delivery, Eur J Pharm Biopharm,1996,42:358-374.
    [13]Madsen F, Eberth K, Smart J D. A rheological examination of the mucoadhesive/mucus interaction:the effect of mucoadhesive type and concentration. J Control Release,1998,50: 167-178.
    [14]Meseguer G, Gurny R, Buri P, et al. Gamma scintigraphic study of precorneal drainage and assessment of miotic response in rabbits of various ophthalmic formulations containing pilocarpine. Int J Pharmaceut,1993,95:229-234.
    [15]Burgalassi S, Chetoni P, Saettone M F. Hydrogels for ocular delivery of pilocarpine: preliminary evaluation in rabbits of the influence of viscosity and of drug solubility. Eur J Pharm, 1996,42:385-392.
    [16]Miyazaki Y, Ogihara K, Yakou S, et al. In vitro and in vivo evaluation of mucoadhesive microspheres consisting of dextran derivatives and cellulose acetate butyrate. Int J Pharmaceut, 2003,258:21-29.
    [17]Suvannasara P, Juntapram K, Praphairaksit N, et al. Mucoadhesive 4-carboxybenzene sulfonamide-chitosan with antibacterial properties. Carbohyd Polym,2013,94:244-252.
    [18]Abruzzo A, Bigucci F, Cerchiara T, et al. Chitosan/alginate complexes for vaginal delivery of chlorhexidine digluconate. Carbohyd Polym,2013,91:651-658.
    [19]Venter J P, Kotz'e A F, Auz'ely-Velty R, et al.. Synthesis and evaluation of the mucoadhesivity of a CD-chitosan derivative. Int J Pharmaceut,2006,313:36-42.
    [20]Chaleawlert-umpon S, Nuchuchua O, Saesoo S, et al. Effect of citrate spacer on mucoadhesive properties of a novel water-soluble cationic β-cyclodextrin-conjugated chitosan. Carbohyd Polym,2011,84:186-194.
    [21]Sajomsang W, Nuchuchua O, Saesoo S, et al. A comparison of spacer on water-soluble cyclodextrin grafted chitosan inclusion complex as carrier of eugenol to mucosae. Carbohyd Polym,2013,92:321-327.
    [22]Ding J, He R, Zhou G, et al. Multilayered mucoadhesive hydrogel films based on thiolated hyaluronic acid and polyvinylalcohol for insulin delivery. Acta Biomaterialia,2012,8: 3643-3651.
    [23]Kafedjiiski K, Jetti R K R, F'oger F, et al. Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. Int J Pharmaceut,2007,343:48-58.
    [24]Davidovich-Pinhas M, Bianco-Peled H. Alginate-PEGAc:A new mucoadhesive polymer. Acta Biomaterialia,2011,7:625-633.
    [25]Bernkop-Schnfirch A, Dundalek K. Novel bioadhesive drug delivery system protecting (poly)peptides from gastric enzymatic degradation. Int J Pharmaceut 1996,138:75-83.
    [26]Rahmat D, Muller C, Barthelmes J, et al. Thiolated hydroxyethyl cellulose:Design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles. Eur J Pharm Biopharm,2013,83:149-155.
    [27]Leung S S, Robinson J R. The contribution of anionic polymer structural features to mucoadhesion. J Control Release,1988,5:223-231.
    [28]Le Bourlais C A, Treupel-Acar L, Rhodes C T, et al. New ophthalmic drug delivery systems. Drug Dev Ind Pharm,1995,21:19-59.
    [29]Mortazavi S A. An in vitro assessment of mucus/mucoadhesive interactions. Int J Pharmaceut, 1995,124:173-182.
    [30]Ceulemans J, Ludwig A. Optimisation of carbomer viscous eye drops:an in vitro experimental design approach using rheological techniques. Eur J Pharm Biopharm,2002,54:' 41-50.
    [31]Setiawan K, Davies N, Tucker I, Patent WO98/47536.
    [32]Valenta C, Kast C, Harich I, et al. Development and in vitro evaluation of a mucoadhesive vaginal delivery system for progesterone. J Control Release,2001,77:323-332.
    [33]El-Hameed M D, Kellaway I W. Preparation and in vitro characterisation of mucoadhesive polymeric microspheres as intra-nasal delivery systems. Eur J Pharm Biopharm,1997,44:53-60.
    [34]Chun M K, Cho C S, Choi H K. Mucoadhesive drug carrier based on interpolymer complex of poly(vinyl pyrrolidone) and poly(acrylic acid) prepared by template polymerization. J Control Release,2002,81:327-334.
    [35]Shojaei A H, Paulson J, Honary S. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery:factors affecting the force of mucoadhesion. J Control Release,2000,67:223-232.
    [36]Bemkop-Schnurch A. Thiomers:A new generation of mucoadhesive polymers. Adv Drug Deliv Rev,2005,57:1569-1582.
    [37]Marschiitz M K, Bemkop-Schnurch A. Thiolated polymers:self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion. Eur J Pharm Sci,2002, 15(4):387-394.
    [38]Bemkop-Schnurch A, Egger C, Imam E M, et al. Preparation and in vitro characterization of poly(acrylic acid)-cysteine microparticles. J Control Release,2003,93:29-38.
    [39]Hornof M, Weyenberg W, A Ludwig, et al. Mucoadhesive ocular insert based on thiolated poly(acrylic acid):development and in vivo evaluation in humans. J Control Release,2003,89: 419-428.
    [40]Leitner V M, Marschiitz M K, Bernkop-Schnurch A, et al. Mucoadhesive and cohesive properties of poly(acrylic acid)-cysteine conjugates with regard to their molecular mass. Eur J Pharm Sci,2003,18:89-96.
    [41]Bernkop-Schnurch A, M Hornof, T Zoidl, et al. Thiolated polymers-thiomers:synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int J Pharmaceut,2003,260:229-237
    [42]Roldo M, Hornof M, P Caliceti, et al. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery:synthesis and in vitro evaluation. Eur J Pharm Biopharm,2004,57: 115-121.
    [43]Krauland A H, D Guggi, Bernkop-Schnurch A. Thiolated chitosan microparticles:A vehicle for nasal peptide drug delivery. Int J Pharmaceut,2006,307:270-277.
    [44]Yin L, Ding J, He C, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials,2009,30:5691-5700.
    [45]Marschutz M K, Puttipipatkhachom S, Bernkop-Schnrch A. Designand in vitro evaluation of a mucoadhesive oral delivery system for amodel polypeptide antigen. Pharmazie,2001,56:724.
    [46]Hall D G Structure, properties, and preparation of boronic acid derivatives. Overview of their reactions and applications. In:Hall DG, editor. Boronic acids:preparation and applications in organic synthesis and medicine. Weinheim:Wiley-VCH; 2005. p.1-99.
    [47]Yan J, Springsteen G, Deeter S, et al. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols-it is not as simple as it appears. Tetrahedron 2004,60:11205-11209.
    [48]Yang W, Gao X, Wang B. Biological and medicinal applications of boronic acids. In:Hall DG, editor. Boronic acids:preparation, applications, in organic synthesis and medicine. Weinheim: Wiley-VCH; 2005. p.481-512.
    [49]Angyal S J, Greeves D, PicklesV A. The stereochemistry of complex formation of polyols with borate and peridate anions, and with metal cations. Carbohydr Res,1974,35:165-173.
    [50]Greg S, Binghe W. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002,58:5291-5300.
    [51]Kazunori K, Hiroaki M. Sensitive glucose-induced change of the lower critical solutiontemperature of poly[N,N-(dimethylacrylamide)-co-3(acrylamido)-phenylboronic acid]. Macromolecules,1994,27:1061-1062.
    [52]Vainio P, Virtanen J A, Kinnunen P K J. Biochim Biophys Acta 1982;711(3):386-390.
    [53]Leinhard GE, Koehler KA.2-Phenylethaneboronic acid, a possible transition-state analog for chymotrypsin. Biochemistry,1971,10:2477-2483.
    [54]Jakle F. Advances in the Synthesis of Organoborane Polymers for Optical, Electronic, and Sensory Applications, Chem Rev,2010,110:3985-4022.
    [55]James T D, Boronic acid-based receptors and sensors for saccharides. In:Hall DG, editor. Boronic acids:preparation, applications in organic synthesis, and medicine. Weinheim: Wiley-VCH; 2005. p.441-479.
    [56]Wang W, Gao X, Wang B. Curr Org Chem 2002,6:1285-1317.
    [57]Lapeyre V, Gosse I, Chevreux S, et al. Monodispersed Glucose-Responsive Microgels Operating at Physiological Salinity. Biomacromolecules,2006,7:3356-3363.
    [58]Matsumoto A, Kurata T, Shiino D, et al. Swelling and Shrinking Kinetics of Totally Synthetic, Glucose-Responsive Polymer Gel Bearing Phenylborate Derivative as a Glucose-Sensing Moiety. Macromolecules,2004,37:1502-1510.
    [59]Winblade N D, Schmokel H, Baumann M, et al. Sterically blocking adhesion of cells to biological surfaces with a surface-active copolymer containing poly(ethylene glycol) and phenylboronic acid. J Biomed Mater Res,2002,59:618-631.
    [60]Saito A, Konno T, Ikake H, et al. Control of cell function on a phospholipid polymer having phenylboronic acid moiety. Biomed. Mater,2010,5:1-7.
    [61]Hidenori O, Eiichiro U, Hiroyuki K, et al. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J Am Chem Soc, 2003,125:3493-3502S.
    [62]Uchimura E, Otsuka H, Okano T, et al. Totally synthetic polymer with lectin-like function: induction of killer cells by the copolymer of 3-acrylamidophenylboronic acid with N,N-dimethylacrylamide. Biotechn Bioeng,2001,72:307-314.
    [63]Chen J L, Cyr G N. Compositions producing adhesion through hydration, in:R.S. Manly (Ed.), Adhesion in Biological Systems, Academic Press, New York,1970, pp.163-180.
    [64]Tiwari D, Goldman D, Sause R, et al, Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations. A APS PhannSci 1 (1999) E13.
    [65]Huang Y, Leobandung W, Foss A, et al. Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J Control Release,2000,65:63-71.
    [66]Gu J M, Robinson J R, Leung S H S. Binding of acrylic polymers to mucin/epithelial surfaces:structure-property relationships. Crit Rev Ther Drug Carr Sys,1998,5:21-67.
    [67]Park H, Robinson J R. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm. Res,1987,4:457-464.
    [68]Peppas N A, Buri P A. Surface, interfacial and molecular spects of polymer bioadhesion on soft tissues. J Control Release,1985,2:257-275.
    [69]Flory P J, Principle of Polymer Chemistry, Cornell University Press, Ithaca, New York,1953, p.541.
    [70]Park H, Amiji M, Park K. Mucoadhesive hydrogels effective at neutral pH. Proc Int Symp Control Release Bioact Mater,1989,16:217-218.
    [71]Lehr C M, Bouwstra J A, Schacht E H, et al. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm,1992,78:43-48.
    [72]Solomonidou D, Cremer K, Krumme M, et al. Effect of carbomer concentration and degree of neutralization on the mucoadhesive properties of polymer films, J Biomater Sci, Polym. Ed. 2001,12:1191-1205.
    [73]Takeuchi H, Yamamoto H, Niwa T, et al. Mucoadhesion of polymer-coated liposomes to rat intestine in vitro. Chem Pharm Bull, (Tokyo),1994,42:1954-1956.
    [74]Lin W C, Yu D G, Yang M C. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate:swelling kinetics and drug delivery properties. Colloids Surfaces B:Biointerfaces,2005,44:143-151.
    [75]Quan J S, Jiang H L, Kim E M, et al. pH-sensitive and mucoadhesive thiolated Eudragit-coated chitosan microspheres. Int J Pharmaceut,2008,359:205-210.
    [76]Valente J F A, Gaspar V M, Antunes B P, et al. Microencapsulated chitosanedextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. Polymer,2013,54:5-15.
    [77]Wong J Y; Leach J B; Brown X Q. Balance of chemistry, topography, and mechanics at the cell-biomaterial interface:Issues and challenges for assessing the role of substrate mechanics on cell response. Surf Sci.2004,570:119-133.
    [78]Damge C, Michel C, Aprahamian M, et al. Nanocapsules as carriers for oral peptide delivery. J Contr Rel,1990,13:233-239.
    [79]Yan S, Rao S, Zhu J, et al. Nanoporous multilayer poly(L-glutamic acid)/chitosan micro-capsules for drug delivery. Int J Pharm,2012,427:443-451.
    [80]Szarpak A, Cui D, Dubreuil F, et al. Designing hyaluronic acid-based layer-by-layer capsules as a carrier for intracellular drug delivery. Biomacromolecules,2010,11:713-720.
    [81]Shu S J, Zhang X G, Wu Z M, et al. Gradient cross-linked biodegradable polyelectrolyte nanocapsules for intracellular protein drug delivery. Biomaterials,2010,31:6039-6049.
    [82]Halstenberg S, Panitch A, Rizzi S, et al. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels:a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules,2002,3:710-723.
    [83]Liu, V.A, Bhatia S N. Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices,2002,4:257-266.
    [84]Chen S C, Wu Y C, Mi F L, et al. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release,2004,96:285-300.
    [85]Radhakumary C, Antonty M, Sreenivasan K. Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing. Carbohyd Polym,2011, 83:705-713.
    [86]Wu J, Wei W, Wang L Y, et al. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials,2007,28:2220-2232.
    [87]Kusi-Appiah A E, Vafai N, Cranfill P J, et al. Lipid multilayer microarrays for in vitro liposomal drug delivery and screening. Biomaterials,2012,33:4187-4194.
    [88]Gregoriadis Q Florence A T. Liposomes in drug delivery:Clinical, diagnostic and ophthalmic potential. Drugs,1993,45:15-28.
    [89]Zaru M, Manca M L, Fadda A M, et al. Chitosan-coated liposomes for delivery to lungs by nebulisation. Colloids Surfaces B:Biointerfaces,2009,71:88-95.
    [90]Qiang F, Shin H J, Lee B J, et al. Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome. Inte J Pharmaceuti,2012,430:161-166.
    [91]Norris D A, Puri N, Sinko P J. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deli Rev,1998,34:135-154.
    [92]Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides:is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm,2000,50: 147-160.
    [93]Peppa N A, Huang Y. Nanoscale technology of mucoadhesive interactions. Adv Drug Deli Rev,2004,56:1675-1687.
    [94]黄红娜,张丹参,张力等.纳米药物载体系统的研究.河北北方学院学报,2010,27:69-71.
    [95]Cui Z R, Mumper R J. Chitosan-based nanoparticles for topical genetic immunization. J Control Release,2001,75:409-419.
    [96]Charlton S T, Davis S S, Ilium L. Evaluation of bioadhesive polymers as delivery systems for nose to brain delivery:in vitro characterisation studies. J Control Release,2007,118:225-234.
    [97]Motwani S K, Chopra S, Talegaonkar S, et al. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery:Formulation, optimization and in vitro characterization. Eur J Pharm Biopharm,2008,68:513-525.
    [98]Zhang X G, Zhang H J, Wu Z M, et al. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm.2008,68:526-534.
    [99]Cheng C, Zhang X G, Xiang J X, et al. Development of novel self-assembled poly(3-acrylamidophenylboronic acid)/poly(2-lactobionamidoethyl methacrylate) hybrid nanoparticles for improving nasal adsorption of insulin. Soft Matter.2012,8:765-773.
    [1001郝燕生.粘弹性物质的特性及其在眼科的应用.中国生化药物杂志,1998,19(5):285.
    [101]凌沛学,贺艳丽,张天民等.眼科药物的临床应用与研究.北京:中国医药科技出版社,2000,20-44.
    [102]Kast C E, Frick W, losert U,et al. Chitosan-thioglycolic acid conjugate:a new scaffold material for tissue engineering? Int J Pharmaceut,2003,256:183-189.
    [103]夏万尧,刘伟,崔磊等.壳聚糖-明胶多孔复合支架构建自体组织工程化软骨组织的实验研究.中华医学杂志,2003,83(7):577-579.
    [104]李瑞欣,关静,高怀生等.急救烧伤敷料理化性能及其临床应用.中国急救医学,2002,22(8):479-480.
    [105]Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res,2008,14:1310-1316.
    [106]Rhyner M N, Smith A M, Gao X, et al. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine,2006,1:209-217.
    [107]Janib S M, Moses A S, Mackay J A. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev,2010,62:1052-1063.
    [108]Iversen T G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today,2011,6:176-185.
    [109]Sahay G, Alakhova D Y, Kabanov A V. Endocytosis of nanomedicines. J Control Release, 2010,145:182-195.
    [110]Doherty G J, McMahon H T, Mechanisms of endocytosis. Annu Rev Biochem,2009,78: 3131-314.
    [111]Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem.2010, 79:803-833.
    [112]Sandvig K, Spilsberg B, Lauvraka S U, et al. Pathways followed by protein toxins into cells, Int J Med Microbiol,2004,293:483-490.
    [113]Swanson J A, Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol, 2008,9:639-649.
    [114]Aderem A, Underhill D M. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol,1999,17:'593-623.
    [115]Luzio J P, Pryor P R, Bright N A. Lysosomes:fusion and function. Nat Rev Mol Cell Biol, 2007,8:622-632.
    [116]Rabinovitch M. Professional and nonprofessional phagocytes-an introduction. Trends Cell Biol,1995,5:85-87.
    [117]Jones A T. Macropinocytosis:searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med,2007,11:670-684.
    [118]Kerr M C, Teasdale R D. Defining macropinocytosis and others. Traffic,2009,10:364-371
    [119]Kaplan I M, Wadia J S, Dowdy S F. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release,2005,102:247-253.
    [120]Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol,2009,11:510-520.
    [121]Maxfield F R, McGraw T E. Endocytic recycling. Nat Rev Mol Cell Biol,2004,5: 121-132.
    [122]Howes M T, Kirkham M, Riches J, et al. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Cell Biol,2010,190:675-691.
    [123]Mayor S, Pagano R E. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol,2007,8:603-612.
    [124]Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic,2002,3:311-320.
    [125]Glebov O O, Bright N A, Nichols B J. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol,2006,8:46-54.
    [126]Doherty G J, Lundmark R, GRAF 1-dependent endocytosis. Biochem Soc Trans,2009,37: 1061-1065.
    [127]Radhakrishna H, Donaldson J G. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol,1997,139:49-61.
    [128]Hansen C G, Nichols B J. Molecular mechanisms of clathrin-independent endocytosis. J Cell Sc,2009,122:1713-1721.
    [129]Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem,2010, 79:803-833.
    [130]Thomsen P, Roepstorff K, Stahlhut M, et al. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell,2002,13:238-250.
    [131]Sharma D K, Brown J C, Choudhury A, et al, Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell,2004,15:3114-3122.
    [132]Hayer A, Stoeber M, Ritz D, et al. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol,2010,191:615-629.
    [133]Vercauteren D, Vandenbroucke R E, Jones A T, et al. The use of inhibitors to study endocytic pathways of gene carriers:optimization and pitfalls. Mol Ther,2010,18:561-569.
    [134]IIvanov A, Pharmacological inhibition of endocytic pathways:is it specific enough to be useful? Methods Mol Biol,2008,440:15-33.
    [135]Sheppard D. Dominant negative mutants:tools for the study of protein function in vitro and in vivo. Am J Respir Cell Mol Biol,1994,11:1-6.
    [136]Wang L H, Rothberg K G, Anderson R G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol,1993,123:1107-1117.
    [137]Orlandi P A, Fishman P H. Filipin-dependent inhibition of cholera toxin:evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol,1998,141:905-915.
    [138]Rodal S K, Skretting G, Garred O, et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999,10:961-974.
    [139]Cinar H, Barnes E M. Clathrin-independent endocytosis of GABA(A) receptors in HEK 293 cells. Biochemistry,2001,40:14030-14036.
    [140]Benmerah A, Bayrou M, Cerf-Bensussan N, er al. Inhibition of clathrin-coated pit assembly by an Esp15 mutant. J Cell Sci,1999,112:1303-1311.
    [141]Simons K, Ikonen E. Functional rafts in cell membranes. Nature,1997,434:569-572.
    [142]Vlahos C J, Matter W F, Hui K Y, et al. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-pheny1-4H-1-benzofu-ran-4-one (LY294002). J Biol Chem,1994,269: 5241-5248.
    [143]Arcaro A, Wymann M P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor:the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J,1993,296: 297-301.
    [144]Torgersen M L, Skretting G, van Deurs B, et al. Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci,2001,114:3737-3747.
    [145]Kessner S, Krause A, Rothe U,et al. Investigation of the cellular uptake of E-selectin-targeted immunoliposomes by activated human endothelial cells. Biochim Biophys Acta,2001,1514:177-190.
    [146]Torchilin V P. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev,2005,57:95-109.
    [147]Shaner N C, Steinbach P A, Tsien R Y. A guide to choosing fluorescent proteins. Nat Methods,2005,2:905-909.
    [148]Watson P, Jones A T, Stephens D J. Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev,2005,57:43-61.
    [149]Roberts R L, Barbieri M A, Pryse K M, et al. Endosome fusion in living cells overexpressing GFP-rab5. J Cell Sci,1999,112:3667-3675.
    [150]Lisenbee C S, Karnik S K, Trelease R N. Overexpression and mislocalization of a tailanchored GFP redefines the identity of peroxisomal ER, Traffic,2003,4:491-501.
    [151]Goldfine I D, Smith G J, Wong K Y, et al Cellular uptake and nuclear binding of insulin in human cultured lymphocytes:evidence for potential intracellular sites of insulin action. Proc Natl Acad Sci U S A,1977,74:1368-1372.
    [152]Thanou M, Verhoef J C, Junginger H E Oral drug absorption enhancement by chitosan and its derivatives Adv Drug Deliv Rev,2001,52:117-126.
    [153]Alpar H O, Somavarapu S, Atuah K N, et al Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery Adv Drug Deli Rev,2005,57:411-430.
    [154]Smolensky M H, Lemmer B, Reinberg A E Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma Adv Drug Deli Rev,2007,59:852-882.
    [155]Ohkubo K, Baraniuk J N, Hohman R, et al Aminopeptidase activity in human nasal mucosa J Allergy Clin Immunol,1998,102:741-750.
    [156]Wang Y, Chalagalla S, Li T, et al Multivalent interaction-based carbohydrate biosensors for signal amplification Biosens Bioelectron,2010,26:996-1001.
    [157]Djanashvili K, Koning G A, van der Meer A J G M, et al Phenylboronate 160Tb complexes for molecular recognition of glycoproteins expressed on tumor cells Contrast Med Mol Imaging, 2007,2:35-41.
    [158]Ivanov A E, Galaev I Y, Mattiasson B Interaction of sugars, polysaccharides and cells with boronate-containing copolymers:from solution to polymer brushes J Mol Recognit,2006,19: 322-331.
    [159]Achanta G, Modzelewska A, Feng L, et al A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome Mol Pharmacol,2006,70:426-433.
    [160]Qureshi S, Al-Shabanah O A, Al-Harbi M M, et al Boric acid enhances in vivo Ehrlich ascites carcinoma cell proliferation in Swiss albino mice Toxicology,2001,165:1-11.
    [161]Sahay G, Alakhova D Y, Kabanov A V. Endocytosis of nanomedicines. J Control Release 2010,145:182-195.
    [162]Hillaireau H, Couvreur P. Nanocarrier's entry into the cell:relevance to drug delivery. Cell Mol Life Sci,2009,66:2873-2896.
    [163]Goldfine I D, Smith G J, Wong K Y, et al. Cellular uptake and nuclear binding of insulin in human cultured lymphocytes:evidence for potential intracellular sites of insulin action. Proc Natl Acad Sci U S A,1977,74:1368-1372.
    [164]Thanou M, Verhoef J C, Junginger H E. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev,2001,52:117-126.
    [165]Mygind N, Dahl R.. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev.1998,29:3-12.
    [166]Duan X P, Mao S R., New strategies to improve the intranasal absorption of insulin. Drug Discov Today.2010,15:416-427.
    [167]Cambre J N, Sumerlin B S. Biomedical applications of boronic acid polymers. Polymer. 2011,52:4631-4643.
    [168]Nicholls J M, Bourne A J, Chen H, et al. Sialic acid receptor detection in the human respiratory tract:evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Resp. Res.2007,8:1-10.
    [169]Smoum R, Rubinstein A, Srebnik M. A study of the effect on nucleophilic hydrolytic activity of pancreatic elastase, trypsin, chymotrypsin, and leucine aminopeptidase by boronic acids in the presence of arabinogalactan:a subsequent study on the hydrolytic activity of chymotrypsin by boronic acids in the presence of mono-, di-, and trisaccharides. Bioorg Chem. 2003,31:464-474.
    [170]Achanta G, Modzelewska A, Feng L, et al. A boronic-chalcone derivative exhibits potent anticancer activity through Inhibition of the proteasome. Pharmacology.2006,70:426-433.
    [171]Qureshi S, Al-Shabanah O A, Al-Harbi M M, et al. Boric acid enhances in vivo Ehrlich ascites carcinoma cell proliferation in Swiss albino mice. Toxicology.2001,165:1-11.
    [172]Jin X J, Zhang X G, Wu Z M, et al. Amphiphilic random glycopolymer based on phenylboronic acid:synthesis, characterization, and potential as glucose-sensitive matrix. Biomacromolecules.2009,10:1337-1345.
    [173]Harush-Frenkel O, Altschuler Y, Benita S. Nanoparticle-cell interactions:drug delivery implications. Crit. Rev. Ther. Drug Carrier Syst.2008,25:485-544.
    [174]Sahay G, Alakhova D Y, Kabanov A V. Endocytosis of nanomedicines, J Control Release, 2010,145:182-195.
    [175]Hillaireau H, Couvreur P. Nanocarrier's entry into the cell:relevance to drug delivery, Cell. Mol. Life Sci.2009,66:2873-2896.
    [176]Gullotti E, Yeo Y. Extracellular activated nanocarriers:a new paradigm of tumor targeted drug delivery. Mol. Pharm.2009,6:1041-1051.
    [177]Chen H, Kim S, Li L, et al. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging, Proc. Natl. Acad. Sci. U. S. A.2008,105:6596-6601.
    [178]Deshayes S, Morris M C, Divita G, et al. Cell-penetrating peptides:tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci.2005,62:1839-1849.
    [179]Deshayes S, Morris M, Heitz F, et al. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv. Drug Deliv. Rev.2008,60:537-547.
    [180]Lee M C, Kabilan S, Hussain A, et al. Glucose-Sensitive Holographic Sensors for Monitoring Bacterial Growth. Anal. Chem.2004,76:5748-5755.
    [181]Narain R, Armes S P. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers. Biomacromolecules,2003,4: 1746-1758.
    [182]Peroche S, Degobert G, Putaux J L, et al. Synthesis and characterisation of novel nanospheres made from amphiphilic perfluoroalkylthio-β-cyclodextrins Eur. J. Pharm. Biopharm. 2005,60:123-131.
    [183]Bes L, Angot S, Limer A, et al. Sugar-coated amphiphilic block copolymer micelles from living radical polymerization:recognition by immobilized lectins macromolecules.2003,36: 2493-2499.
    [184]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteinedye binding. Anal Biochem.1976,72:248-254.
    [185]Yin L C, Ding J Y, He C B, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials.2009,30: 5691-5700
    [186]Tripathi S K, Goyal R, Kashyap M P, et al. Depolymerized chitosans functionalized with bPEI as carriers of nucleic acids and tuftsin-tethered conjugate for macrophage targeting. Biomaterials.2012,33:4204-4219.
    [187]Wang M Y, Yu S N, Wang C, et al. Tracking the endocytic pathway of recombinant protein toxin delivered by multiwalled carbon nanotubes. ACS Nano.2010,4:6483-6490.
    [188]Huth U S, Schubert R, Peschka-Suss R. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Control Release.2006,110: 490-504.
    [189]Mo R, Jin X, Li N, et al. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials.2011,32:4609-4620.
    [190]Peng S F, Tseng M T, Ho Y C, et al. Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(y-glutamic acid) complexes as a gene delivery vector. Biomaterials.2011,32:239-248.
    [191]Zelikin A N, Breheney K, Robert R, et al. Cytotoxicity and Internalization of Polymer Hydrogel Capsules by Mammalian Cells. Biomacromolecules.2010,11:2123-2129.
    [192]Wang J, Tabata Y, Morimoto K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs:Evaluation of in vitro release and in vivo insulin absorption in rats. J.Control. Release 2006,113:31-37.
    [193]Ballister E R, Lai A H, Zuckermann R N, et al. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A,2008,105: 3733-3738.
    [194]Miller R A, Presley A D, Francis M B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc.2007,129: 3104-3109.
    [195]Yao Y, Zhao L Y, Yang J J, et al. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH. Biomacromolecules.2012,13:1837-1844.
    [196]McGil S L, Smyth H D C. Disruption of the mucus barrier by topically applied exogenous particles. Mol. pharmaceut.2010,7:2280-2288.
    [197]Porfire A S, Zabaleta V, Gamazo C, et al. Influence of dextran on the bioadhesive properties of poly(anhydride) nanoparticles. Int. J. Pharm.2010,390:37-44.
    [198]Qureshi S, Al-Shabanah O A, Al-Harbi M M, et al. Boric acid enhances in vivo Ehrlich ascites carcinoma cell proliferation in Swiss albino mice. Toxicology.2001,165:1-11.
    [199]Macvinish L J, Cope G, Ropenga A, et al. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibros is transmembrane conductance regulator, CFTR. Br J P hannacol,2007,150:1055-1065.
    [200]Cryan S, Devocelle M, Moran P J, et al. Increased intracellular targeting to airway cells using octaarginine-coated liposomes:in vitro assessment of theirsuitability for inhalation. Mol Pharmacol.2006,2:104-112.
    [201]Verma A., Uzun, O, Hu Y H, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater.2008,7:588-595.
    [202]Cheng C, Zhang X G, Xiang J X, et al. Development of novel self-assembled poly(3-acrylamidophenylboronic acid)/poly(2-lactobionamidoethyl methacrylate) hybrid nanoparticles for improving nasal adsorption of insulin. Soft Matter.2012,8:765-773.
    [203]Ivanov A I. Pharmacological inhibition of endocytic pathways:Is it specific enough to be useful? In:Ivanov A.I. (Eds), Methods in Molecular Biology. Humana Press:Totowa, NJ, Vol. 440, pp.2008,15-33.
    [204]Araki N, Johnson M T, Swanson J A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell Biol.1996,135:1249-1260.
    [205]Hewlett L J, Prescott A R, Watts C. The Coated Pit and Macropinocytic Pathways Serve Distinct Endosome Populations. J Cell Biol.1994,124:689-703.
    [206]Rejman J, Oberle V, Zuhorn I S, et al. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem. J.2004,377:159-169.
    [207]Schnitzer J E, Oh P, Pinney E, et al. Filipin-sensitive caveolae -mediated transport in endothelium. reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol.1994,127:1217-1232.
    [208]Rodal S K, Skretting G, Garred O, et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell. 1999,10:961-974.
    [209]Subtil A, Gaidarov I, Kobylarz K, et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl. Acad. Sci. U. S. A.1999,96:6775-6780.
    [210]Thomsen P, Roepstorff K, Stahlhut M, et al. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking, Mol. Biol. Cell,2002,13:238-250.
    [211]Westerink M A J, Smithson S L, Srivastava N, et al. ProjuvantTM (Pluronic F127(?))/chitosan) enhances the immune response to intranasally administered tetanus toxoid. Vaccine.2001,20:711-723.
    [212]Bravo-Osuna I, Vauthier C, Farabollini A, et al. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials.2007,28: 2233-2243.
    [213]Sidebotham R L. Dextrans. Adv Carbohydr Chem Biochem.1974,30:371-444.
    [214]Leckband D, Sheth S, Halperin A J. Biomater. Sci., Polym. Ed.10 (1999)1125.
    [215]Osterberg E, Bergstrom K, Holmberg K, et al. Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations:comparison to PEG. J. Biomed. Mater. Res.1995, 29:741-747.
    [216]Rouzes C, Gref R, Leonard M, et al. Surface modification of poly(lactic acid) nanospheres using hydrophobically modified dextrans as stabilizers in an o/w emulsion/evaporation technique. J. Biomed. Mater. Res.2000,50:557-565.
    [217]Aumelas A, Serrero A, Durand A, et al. Nanoparticles of hydrophobically modified dextransas potential drug carrier systems. Colloids and Surfaces B:Biointerfaces.2007,59: 74-80.
    [218]Kakizawa Y, Nishio R., Hiran T, et al. Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles. J Control Release.2010,142:8-13.
    [219]Pan X Y, Yao P, Jiang M. Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene. J Colloid Inter Sci.2007,315: 456-463.
    [220]Yang J H, Liu Y, Wang H B, et al. The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector. Biomaterials.2012,33:604-613.
    [221]Betancor L, Fuentes M, Dellamora-Ortiz G., et al. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. J Molecular Catalysis B:Enzymatic.2005,32:97-101.
    [222]Peroche S; Degobert G. Putaux J L, et al. Synthesis and characterisation of novel nanospheres made from amphiphilic perfluoroalkylthio-β-cyclodextrins. Eur. J. Pharm. Biopharm. 2005,60:123-131.
    [223]Bes L, Angot S, Limer A, et al. Sugar-coated amphiphilic block copolymer micelles from living radical polymerization:recognition by immobilized lectins macromolecules.2003,36, 2493-2499.
    [224]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteinedye binding. Anal Biochem 1976,72:248-254.
    [225]Lindenbaum G M, Yakovleva M F, Mirgorodskaya O A, et al. Chemical modification of terrilytin with water-soluble oxidized dextrans. Prikl Biokhim Microbiol.1982,18:212-220.
    [226]Wang Z, Lee T Y, Ho P C. A novel dextran-oleate-cRGDfK conjugate for self-assembly of nanodrug. Nanomed-nanotechnol.2012,8:194-203.
    [227]Domb A J, Linden C, Polacheck I, et al. Nystatin-Dextran Conjugates:Synthesis and Characterization. J Polymer Science:Parr A:Polymer Chemistry.1996,34:1229-1236.
    [228]Jennifer N. Cambre, Brent S. Sumerlin. Biomedical applications of boronic acid polymers. Polymer.2011,52:4631-4643.
    [229]Hansen J S, Christensen J B, Fabritius J, et al. PetersenArylboronic acids:A diabetic eye on glucose sensing. Sensor Actuat B:2012,161:45-79.
    [230]Badug R, Lakowic J R, Geddes C D. A wavelength-ratiometric pH sensitive probe based on the boronic acid moiety and suppressed sugar response. Dyes Pigments.2004,61:227-234.
    [231]Ballister E R, Lai A H, Zuckermann R N, et al. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A.2008,105: 3733-3738.
    [232]Miller R A, Presley A D, Francis M B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc.2007,129: 3104-3109.
    [233]Yao Y, Zhao L Y, Yang J J, et al. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH. Biomacromolecules.2012,13:1837-1844.
    [234]Smoum R., Rubinstein A., Srebnik M.. A study of the effect on nucleophilic hydrolytic activity of pancreatic elastase, trypsin, chymotrypsin, and leucine aminopeptidase by boronic acids in the presence of arabinogalactan:a subsequent study on the hydrolytic activity of chymotrypsin by boronic acids in the presence of mono-, di-, and trisaccharides. Bioorg Chem. 2003,31:464-474.
    [235]Zhu G Z, Mallery S R, Schwendeman S P. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nat Biotechnol,2000,18:52-57.
    [236]Hinds K, Koh J J, Joss L, et al. Synthesis and characterization of poly(ethylene glycol)-insulin conjugates. Bioconjugate Chem,2000,11:195-201.
    [237]Lee S, Kim K, Kumar T S, et al. Synthesis and Biological Properties of Insulin-Deoxycholic Acid Chemical Conjugates. Bioconjugate Chem,2005,16:615-620.
    [238]Norris D A, Puri N, Sinko P J. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deli Rev,1998,34:135-154.
    [239]Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides:is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm,2000,50: 147-160.
    [240]Peppa N A, Huang Y. Nanoscale technology of mucoadhesive interactions. Adv Drug Deli Rev,2004,56:1675-1687.
    [241]Cui Z R, Mumper R J. Chitosan-based nanoparticles for topical genetic immunization. J Control Release,2001,75:409-419.
    [242]Charlton S T, Davis S S, Ilium L. Evaluation of bioadhesive polymers as delivery systems for nose to brain delivery:in vitro characterisation studies. J Control Release,2007,118: 225-234.
    [243]Motwani S K, Chopra S, Talegaonkar S, et al. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery:Formulation, optimization and in vitro characterization. Eur J Pharm Biopharm,2008,68:513-525.
    [244]Harush-Frenkel O, Altschuler Y, Benita S. Nanoparticle-cell interactions:drug delivery implications. Crit. Rev. Ther. Drug Carrier Syst.2008,25:485-544.
    [245]Sahay G, Alakhova D Y, Kabanov A V. Endocytosis of nanomedicines, J Control Release, 2010,145:182-195.
    [246]Hillaireau H, Couvreur P, Nanocarrier's entry into the cell:relevance to drug delivery, Cell. Mol. Life Sci.2009,66:2873-2896.
    [247]Gullotti E, Yeo Y. Extracellular activated nanocarriers:a new paradigm of tumor targeted drug delivery, Mol. Pharm.2009,6:1041-1051.
    [248]Chen H, Kim S, Li L, et al. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging, Proc. Natl. Acad. Sci. U. S. A.2008,105:6596-6601.
    [249]Deshayes S, Morris M C, Divita G, et al. Cell-penetrating peptides:tools for intracellular delivery of therapeutics, Cell. Mol. Life Sci.2005,62:1839-1849.
    [250]Deshayes S, Morris M, Heitz F, et al. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv. Drug Deliv. Rev.2008,60:537-547.
    [251]Peroche S, Degobert G, Putaux J L. et al. Synthesis and characterisation of novel nanospheres made from amphiphilic perfluoroalkylthio-β-cyclodextrins Eur. J. Pharm. Biopharm. 2005,60:123-131.
    [252]Bes L, Angot S, Limer A, et al. Sugar-coated amphiphilic block copolymer micelles from living radical polymerization:recognition by immobilized lectins macromolecules.2003,36, 2493-2499.
    [253]Yin L C, Ding J Y, He C B, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials.2009; 30: 5691-5700.
    [254]Tripathi S K, Goyal R, Kashyap M P, et al. Depolymerized chitosans functionalized with bPEI as carriers of nucleic acids and tuftsin-tethered conjugate for macrophage targeting. Biomaterials.2012,33:4204-4219.
    [255]Wang M Y, Yu S N, Wang C, et al. Tracking the endocytic pathway of recombinant protein toxin delivered by multiwalled carbon nanotubes. ACS Nano.2010,4:6483-6490.
    [256]Huth U S, Schubert R, Peschka-Suss R. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J. Control. Release.2006, 110:490-504.
    [257]Mo R, Jin X, Li N, et al. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials.2011,32:4609-4620.
    [258]Peng S F, Tseng M T, Ho Y C, et al. Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(γ-glutamic acid) complexes as a gene delivery vector. Biomaterials.2011,32:239-248.
    [259]Zelikin A N, Breheney K, Robert R, et al. Cytotoxicity and Internalization of Polymer Hydrogel Capsules by Mammalian Cells. Biomacromolecules.2010,11:2123-2129.
    [260]Wang J, Tabata Y, Morimoto K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs:Evaluation of in vitro release and in vivo insulin absorption in rats. J.Control. Release 2006,113:31-37.
    [261]McGil S L, Smyth H D C. Disruption of the mucus barrier by topically applied exogenous particles. Mol. pharmaceut.2010,7:2280-2288.
    [262]Porfire A S, Zabaleta V, Gamazo C, et al. Influence of dextran on the bioadhesive properties of poly(anhydride) nanoparticles. Int. J. Pharm.2010,390:37-44.
    [263]Builders P F, Runle O O, Adikwu M U. Preparation and characterization of mucinated agarose:A mucin-agarose physical crosslink. Int J Pharmaceut.2008,356:174-180.
    [264]Yin L C, Ding J Y, He C B, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials.2009,30: 5691-5700.
    [265]Achanta G, Modzelewska A, Feng L, et al. A Boronic-Chalcone Derivative Exhibits Potent Anticancer Activity through Inhibition of the Proteasome. Mol. Pharmacol.2006,70:426-433.
    [266]Macvinish L J, Cope G, Ropenga A, et al. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibros is transmembrane conductance regulator.
    [267]Cryan S, Devocelle M, Moran P J, et al. Increased intracellular targeting to airway cells using octaarginine-coated liposomes:in vitro assessment of theirsuitability for inhalation. Mol. Pharmacol.2006,2:104-112.
    [268]Cryan S, Devocelle M, Moran P J, et al. Increased intracellular targeting to airway cells using octaarginine-coated liposomes:in vitro assessment of theirsuitability for inhalation. Mol. Pharmacol.2006,2:104-112.
    [269]Verma A., Uzun, O, Hu Y H, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater.2008,7:588-595.
    [270]Ivanov A I. Pharmacological inhibition of endocytic pathways:Is it specific enough to be useful? In:Ivanov A.I. (Eds), Methods in Molecular Biology. Humana Press:Totowa, NJ, Vol. 440, pp.2008,15-33.
    [271]Araki N, Johnson M T, Swanson J A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell Biol.1996,135:1249-1260.
    [272]Hewlett L J, Prescott A R, Watts C. The Coated Pit and Macropinocytic Pathways Serve Distinct Endosome Populations. J Cell Biol.1994,124:689-703.
    [273]Rejman J, Oberle V, Zuhorn I S, et al. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem. J.2004,377:159-169.
    [274]Schnitzer J E, Oh P, Pinney E, et al. Filipin-sensitive caveolae-mediated transport in endothelium:reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol.1994,127:1217-1232.
    [275]Rodal S K, Skretting G, Garred O, et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell. 1999,10:961-974.
    [276]Subtil A, Gaidarov I, Kobylarz K, et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl. Acad. Sci. U. S. A.1999,96:6775-6780.
    [277]Thomsen P, Roepstorff K, Stahlhut M, et al. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking, Mol. Biol. Cell,2002,13(1):238-250.
    [278]Westerink M A J, Smithson S L, Srivastava N, et al. ProjuvantTM (Pluronic F127(?))/chitosan) enhances the immune response to intranasally administered tetanus toxoid. Vaccine,2001,20:711-723.
    [279]Marttin E, Verhoef J C, Romejin S G, et al. Effect of absorption enhancers on rats nasal epithelium in vivo:release of marker compounds in the nasal cavity. Pharm Res,1995,12: 1151-1157.
    [280]李昕,王晖.药物吸收促进剂的毒性研究进展.中国医药工业杂志,2005,36:51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700