液—液界面双亲性金纳米粒子的制备及在溶液中的自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金纳米粒子(AuNPs)是最稳定的金属纳米粒子,因其具有独特的光,电,磁,催化等性质而在生物,催化等领域得到广泛的应用。近年来含有AuNPs的高级杂化自组装结构的构筑引起了人们广泛的关注。柠檬酸钠稳定的AuNPs在油水界面上能够进一步被疏水性的带巯基的聚合物修饰,从而在界面上制备双亲性的AuNPs。在本研究中这些双亲性的AuNPs进一步组装可以得到功能性杂化乳胶粒子,胶束,囊泡和空心胶囊等结构:
     1.通过聚苯乙烯(PS)和双亲性AuNPs的自组装,成功地制备以PS为核,AuNPs为壳的乳胶粒子。带巯基的聚苯乙烯(PS-SH)溶解在甲苯中,柠檬酸钠稳定的AuNPs分散在水相中。把溶有PS的甲苯相和分散有AuNPs的水相混合并充分搅拌,在油水界面上PS-SH通过Au-S的作用接枝到AuNPs上,得到双亲性的AuNPs。这种双亲性AuNPs稳定地存在于液-液界面上,减小了界面张力,油滴尺寸变小并且尺寸分布较为均一。将乳液加入到过量的甲醇中,PS坍塌,得到以PS为核,AuNPs为壳的乳胶粒子。乳胶粒子的粒径随着PS-SH和AuNPs的质量比增加而增加。
     2.利用表面引发的可逆加成-断裂链转移自由基聚合(RAFT)在四氧化三铁纳米粒子(Fe3O4NPs)的表面制备PS分子刷,之后通过还原反应将PS末端的RAFT链转移试剂还原为巯基,制备得到HS-PS-Fe3O4NPs。亲水性的AuNPs分布在水里,HS-PS-Fe3O4NPs分布在甲苯,混合两种溶液,AuNPs通过Au-S作用接枝到疏水的Fe3O4NPs,这样双亲性的纳米粒子簇分布在液-液界面上,并起到稳定乳液的作用。将乳液加入到过量的甲醇中,制备得到以Fe3O4NPs为核,AuNPs为冠的核-壳结构。
     3.通过PS和AuNPs单体的液-液界面聚合制备侧链带有数个亲水性AuNPs的PS。这种杂化的双亲性的PS在水溶液中能够组装成特定的结构。杂化聚合物的亲水性对组装有重要的作用。亲水性的AuNPs的减少引起组装结构从胶束结构转变为囊泡结构。在聚合的AuNPs上接枝上亲水性的聚乙烯基吡咯烷酮(PVP),组装体从囊泡结构转变成核-壳-冠结构。杂化的带有AuNPs的PS与PS包裹的Fe3O4NPs能够组装成以PS和PS修饰的Fe3O4NPs为壁,AuNPs为冠的囊泡,囊泡的大小由AuNPs的数目决定。
     4.在油水界面制备表面带有双键的双亲性杂化AuNPs,并且以油滴为模板通过界面交联聚合(共聚)制备得到表面为AuNPs的(多组分)空心胶囊。这是一种简单的制备杂化纳米粒子空心胶囊的新方法。在液-液界面上亲水性的AuNPs和带有二硫键的疏水性的聚合物通过配体交换作用原位生成双亲性的AuNPs。油相甲苯与水的体积比对空心囊泡的尺寸有重要影响。囊泡的尺寸随着体积比增大而增大。利用透射电镜,扫描电镜和原子力显微镜等测试手段都被用来表征囊泡的结构。并且,通过甲基丙烯酰胺和杂化AuNPs的界面共聚可以得到多组分的空心囊泡。由于空心胶囊的亲水性的提高,在水溶液中多组分空心囊泡的尺寸比单组分的囊泡大。
     5.通过界面的配体交换制备双亲性带有蒽官能团的杂化的AuNPs,以油水乳液滴为模板,通过光二聚制备得到AuNPs空心胶囊。利用Misunobe反应制备带有蒽官能团的单体AnMA,用中间带二硫键的小分子引发剂ATRP聚合制备无规共聚物DS-PAnMA-co-PMMA。将DS-PAnMA-co-PMMA溶解在甲苯中,AuNPs分散在水中,在液-液界面上亲水性的AuNPs和带有二硫键的疏水性的聚合物通过配体交换作用原位生成双亲性反应性的AuNPs。蒽官能团被连接到AuNPs上,紫外光照射可以非常方便的得到表面为AuNPs的空心胶囊。利用透射电镜,荧光显微镜,原子力显微镜等测试手段表征空心胶囊的结构。
     以液-液界面为模板,利用Au-S作用在金表面部分接枝疏水的聚合物,可以制备得到功能性杂化乳胶粒子,胶束,囊泡和空心胶囊等组装结构,这是一种制备聚合物/无机纳米杂化材料的新颖,通用的方法。
Gold nanoparticle (AuNPs) is one of the most stable metal nanoparticles. It hasmany applications in biology and catalysis for its fanscinating size-related electronic,optic, magnetic, and catalytic properties. The structural arrangement of AuNPs playsa key role in device fabrication. In self-assembly process, designed AuNP buildingblocks spontaneously organize themselves into ordered structures througnnoncovalent interactions. Citrate-protected AuNPs allow further chemicalmodification by hydrophobic polymer chains, to obtain amphiphlic hybrid AuNPs.These amphiphlic hybrid AuNPs can segregate at the liquid-liquid interface, andassemble to colloid particles, micelles, vesicles, hollow capsules.
     1. Colloid particles with polystyrene (PS) cores and AuNPs coronae wereprepared based on self-assembly of AuNPs and PS. Citrate-stabilized AuNPs weredispersed in aqueous solution, and polystyrene with thiol terminal groups (PS-SH)was dissolved in toluene. A stable emulsion was obtained by mixing the twosolutions. Optical microscope images indicate that after grafting of PS-SH to thecitrate-stabilized AuNPs at liquid-liquid interface, the interfacial tension is reducedand the average size of toluene droplets in the emulsion decreases. Transmissionelectron microscope (TEM) results also prove the grafting of PS-SH to AuNPs andlocation of the hybrid nanoparticles at liquid-liquid interface. Colloid particles withPS cores and AuNPs coronae were prepared by addition of the emulsion into excessmethanol. The weight ratio of PS-SH to AuNPs exerts a significant effect on the sizeof colloid particles. TEM and dynamic light scattering results both indicate that thesize of colloid particles increases with the weight ratio. The application of thecore-shell structured colloid particles in protein separation was also investigated inthis research. Colloid particles with PS-coated magnetic nanoparticles in the corescan also be prepared by this strategy.
     2. PS brushes on Fe3O4nanoparticles were prepared by reversible additionfragmentation chain transfer (RAFT) polymerization, and after reduction reaction PS brushes with terminal thiol groups (HS-PS-Fe3O4NPs) were obtained.Citrate-stabilized AuNPs were dispersed in aqueous solution and HS-PS-Fe3O4NPswere dispersed in toluene. Upon mixing of the two solutions, a stable O/W emulsionwas prepared. Hydrophilic gold nanoparticles interacted with hydrophobic Fe3O4nanoparticles via Au-S interaction at liquid-liquid interface, and amphiphilicnanoparticle complexes were formed at the interface. In methanol, the nanoparticlecomplexes self-assembled into nanoparticles with Fe3O4-nanoparticle cores andgold-nanoparticle coronae. The core-shell structures were still remained in THF.
     3. PS with pendant hydrophilic AuNPs were synthesized by free radicalcopolymerization of styrene and AuNPs monomer at liquid-liquid interface. Thehybrid polymers can self-assemble into ordered structures in aqueous solutions. Thehydrophilicity of the hybrid polymers plays a key role in the self-assembly of thepolymers. A decrease in the number of hydrophilic AuNPs results in a transitionfrom micellar structure to vesicular structure. After grafting of hydrophilicpoly(N-vinyl pyrrolidone) chains to the pendant AuNPs, the self-assembly changesfrom vesilcular structure to core-shell-corona structure. The hybrid polymers andPS-coated Fe3O4nanoparticles can self-assemble into vesicles with PS andPS-coated Fe3O4nanoparticles in the walls and AuNPs in the coronae, and the sizeof vesicles is determined by the number of pendant AuNPs.
     4. Amphiphilic AuNPs were produced in situ at liquid-liquid interface via ligandexchange between hydrophilic AuNPs and disulfide-containing polymer chains. Byusing oil droplets as templates, hybrid hollow capsules with AuNPs on the surfaceswere obtained after interfacial cross-linking polymerization. The volume ratio oftoluene to water exerts an important effect on the size of capsules. The average size ofthe capsules increases with the volume ratio. TEM, scanning electron microscopy(SEM) and atomic force microscopy (AFM) were used to characterize the hollowstructures. In this research not only one-component but also multi-component hollowcapsules were prepared by copolymerization of acrylamide and hybrid AuNPs atliquid-liquid interface. Because of the improvement in hydrophilicity of the hollowcapsules, the average size of multi-component capsules is bigger than one-componentones in aqueous solution.
     5. Amphiphilic AuNPs were produced in situ at liquid-liquid interface vialigand exchange between hydrophilic AuNPs and disulfide-containing polymerchains. By using oil droplets as templates, hybrid hollow capsules with AuNPs onthe surfaces were obtained after UV cross-linking dimerization. Monomer AnMAwas synthesized by Mitsunobe reaction, DS-PAnMA-co-PMMA was prepared byATRP and disulfide initiator. Citrate-stabilized AuNPs were dispersed in aqueoussolution and DS-PAnMA-co-PMMA was dissolved in toluene. Upon mixing of thetwo solutions, reactive amphiphilic AuNPs were obtained at the liquid-liduidinterface. Anthracene groups were tethered on thesurface of AuNPs, UV light easilycrosslink the reactive amphiphilic AuNPs at liquid-liquid interface to obtain hybridhollow capsules with AuNPs on the surfaces. TEM, fluorescence microscopy andAFM were used to characterize the hollow structures. The distances between AuNPscould be adjusted by changing dispersion medium of hollow capsules.
引文
[1] Calvert P. Rough guide to the nanoworld. Nature,1996,383:300~301
    [2] Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology. Chem Rev,2004,104:293~346
    [3]柯扬船,皮特·斯壮.聚合物-无机纳米复合材料.北京:化学工业出版社,2003
    [4] Link S, El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmonelectronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B,1999,103:8410~8426
    [5] Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption ofcolloidal gold nanoparticles. J Phys Chem B,1999,103:4212~4217
    [6] Templeton A C, Pietron J J, Murray R W, et al. Solvent refractive index and core chargeinfluences on the surface plasmon absorbance of alkanethiolate monolayer-protected goldclusters. J Phys Chem B,2000,104:564~570
    [7] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse goldsuspensions. Nature (Physical Science),1973,241:20~22
    [8] Yonezawa T, Kunitake T. Practical preparation of anionic mercapto ligand-stabilized goldnanoparticles and their immobilization. Colloids and Surfaces a-Physicochemical andEngineering Aspects,1999,149:193~199
    [9] Brust M, Fink J, Bethell D, et al. Synthesis and reactions of functionalised gold nanoparticles.J Chem Soc Chem Commun,1995,1655~1656
    [10] Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in atwo-phase Liquid-Liquid system. J Chem Soc Chem Commun,1994,801~802
    [11] Hostetler M J, Templeton A C, Murray R W. Dynamics of Place-Exchange Reactions onMonolayer-Protected Gold Cluster Molecules. Langmuir,1999,15:3782~3789
    [12] Ingram R S, Hostetler M J, Murray R W. Poly-hetero-ω-functionalizedAlkanethiolate-Stabilized Gold Cluster Compounds. J Am Chem Soc,1997,119:9175~9178
    [13] Sun L, Crooks R M, Chechik V. Preparation of polycyclodextrin hollow spheres bytemplating gold nanoparticles. Chem Commun,2001,359~360
    [14] Weare W W, Reed S M, Warner M G, et al. Improved Synthesis of Small (dCORE≈1.5nm) Phosphine-Stabilized Gold Nanoparticles. J Am Chem Soc,2000,122:12890~12891
    [15] Green M, O'Brien P. A simple one phase preparation of organically capped goldnanocrystals. Chem Commun,2000,183~184
    [16] Meltzer S, Resch R, Koel B E, et al. Fabrication of Nanostructures by HydroxylamineSeeding of Gold Nanoparticle Templates. Langmuir,2001,17:1713~1718
    [17] Sau T K, Pal A, Jana N R, et al. Size controlled synthesis of gold nanoparticles usingphotochemically prepared seed particles. Journal of Nanoparticle Research,2001,3:257~261
    [18] Jana N R, Gearheart L, Murphy C J. Evidence for Seed-Mediated Nucleation in theChemical Reduction of Gold Salts to Gold Nanoparticles. Chem Mater,2001,13:2313~2322
    [19] Carrot G, Valmalette J C, Plummer C J G, et al. Gold nanoparticle synthesis in graftcopolymer micelles. Colloid and Polymer Science,1998,276:853~859
    [20] Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution.Langmuir,2004,20:6414~6420
    [21] Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles: Synthesis, assembly,and optical applications. J Phys Chem B,2005,109:13857~13870
    [22] Taleb A, Petit C, Pileni M P. Optical properties of self-assembled2D and3D superlattices ofsilver nanoparticles. J Phys Chem B,1998,102:2214~2220
    [23] Chen F X, Xu G Q, Hor T S A. Preparation and assembly of colloidal gold nanoparticles inCTAB-stabilized reverse microemulsion. Materials Letters,2003,57:3282~3286
    [24] Sohn B H, Choi J M, Yoo S I, et al. Directed self-assembly of two kinds of nanoparticlesutilizing monolayer films of diblock copolymer micelles. J Am Chem Soc,2003,125:6368~6369
    [25] Chiang C L, Hsu M B, Lai L B. Control of nucleation and growth of gold nanoparticles inAOT/Span80/isooctane mixed reverse micelles. Journal of Solid State Chemistry,2004,177:3891~3895
    [26] Ming S, Yu-kou D, Hui-lin R, et al. Preparation of hydrophobic gold nanoparticles with safeorganic solvents by microwave irradiation method. Colloids and Surfaces A(Physicochemical and Engineering Aspects),2005,257~258:
    [27] Kim S W, Kim S, Tracy J B, et al. Phosphine oxide polymer for water-soluble nanoparticles.J Am Chem Soc,2005,127:4556~4557
    [28] Zhu M Q, Wang L Q, Exarhos G J, et al. Thermosensitive gold nanoparticles. J Am ChemSoc,2004,126:2656~2657
    [29] Li B, Li C Y. Immobilizing Au Nanoparticles with Polymer Single Crystals, Patterning andAsymmetric Functionalization. J Am Chem Soc,2006,129:12~13
    [30] Shan J, Tenhu H. Recent advances in polymer protected gold nanoparticles: synthesis,properties and applications. Chem Commun,2007,4580~4598
    [31] Lowe A B, Sumerlin B S, Donovan M S, et al. Facile preparation of transition metalnanoparticles stabilized by well-defined (Co)polymers synthesized via aqueous reversibleaddition-fragmentation chain transfer polymerization. J Am Chem Soc,2002,124:11562~11563
    [32] Shan J, Nuopponen M, Jiang H, et al. Amphiphilic Gold Nanoparticles Grafted withPoly(N-isopropylacrylamide) and Polystyrene. Macromolecules,2005,38:2918~2926
    [33] Lian X, Jin J, Tian J, et al. Thermoresponsive Nanohydrogels Cross-Linked by GoldNanoparticles. Acs Appl Mat Interfaces,2010,2:2261~2268
    [34] Duan H W, Kuang M, Wang D Y, et al. Colloidally stable amphibious nanocrystals derivedfrom poly {2-(dimethylamino)ethyl methaerylate} capping. Angew Chem Int Ed,2005,44:1717~1720
    [35] Kotal A, Mandal T K, Walt D R. Synthesis of gold-poly(methyl methacrylate) core-shellnanoparticles by surface-confined atom transfer radical polymerization at elevatedtemperature. J Polym Sci Part A Polym Chem,2005,43:3631~3642
    [36] Zhao H, Kang X, Liu L. Comb Coil Polymer Brushes on the Surface of SilicaNanoparticles. Macromolecules,2005,38:10619~10622
    [37] Raula J, Shan J, Nuopponen M, et al. Synthesis of Gold Nanoparticles Grafted with aThermoresponsive Polymer by Surface-Induced Reversible-Addition-FragmentationChain-Transfer Polymerization. Langmuir,2003,19:3499~3504
    [38] Li D, He Q, Cui Y, et al. Thermosensitive copolymer networks modify gold nanoparticlesfor nanocomposite entrapment. Chemistry-a European Journal,2007,13:2224~2229
    [39] Li D, He Q, Cui Y, et al. Fabrication of pH-responsive nanocomposites of goldnanoparticles/poly(4-vinylpyridine). Chem Mater,2007,19:412~417
    [40] Nuss S, Bottcher H, Wurm H, et al. Gold nanoparticles with covalently attached polymerchains. Angew Chem Int Ed,2001,40:4016~4018
    [41] Ohno K, Koh K-m, Tsujii Y, et al. Synthesis of Gold Nanoparticles Coated withWell-Defined, High-Density Polymer Brushes by Surface-Initiated Living RadicalPolymerization. Macromolecules,2002,35:8989~8993
    [42] Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties,and applications. Angew Chem Int Ed,2004,43:6042~6108
    [43] Samori B, Zuccheri G. DNA codes for nanoscience. Angew Chem Int Ed,2005,44:1166~1181
    [44] Zhao W A, Gao Y, Kandadai S A, et al. DNA polymerization on gold nanoparticles throughrolling circle amplification: Towards novel scaffolds for three-dimensional periodicnanoassemblies. Angew Chem Int Ed,2006,45:2409~2413
    [45] Kumer A, Whitesides G M. Features of gold having micrometer to centimeter dimensionscan be formed through a combination of stamping with elastomeric stamp and analkanethiol ldquoinkrdquo followed by chemical etching. Appl Phys Lett,1993,63:2002~2004
    [46] Zhao B, Brittain W J. Polymer brushes: surface-immobilized macromolecules. Prog PolymSci,2000,25:677~710
    [47] Jung J Y, Kim K W, Na K, et al. Fabrication of micropatterned gold nanoparticle arrays as atemplate for surface-initiated polymerization of stimuli~responsive polymers. MacromolRapid Commun,2006,27:776-780
    [48] Zhang T, Zheng Z, Ding X, et al. Smart Surface of Gold Nanoparticles Fabricated byCombination of RAFT and Click Chemistry. Macromol Rapid Commun,2008,29:1716~1720
    [49] Genson K L, Holzmueller J, Jiang C, et al. Langmuir Blodgett Monolayers of GoldNanoparticles with Amphiphilic Shells from V-Shaped Binary Polymer Arms. Langmuir,2006,22:7011~7015
    [50] Zubarev E R, Xu J, Sayyad A, et al. Amphiphilic Gold Nanoparticles with V-Shaped Arms. JAm Chem Soc,2006,128:4958~4959
    [51] Gittins D I, Susha A S, Schoeler B, et al. Dense nanoparticulate thin films via goldnanoparticle self-assembly. Adv Mater,2002,14:508~512
    [52] Shenhar R, Norsten T B, Rotello V M. Polymer-mediated nanoparticle assembly: Structuralcontrol and applications. Adv Mater,2005,17:657~669
    [53] Zhang X, Liu L, Tian J, et al. Copolymers of styrene and gold nanoparticles. ChemCommun,2008,6549~6551
    [54] Zhang X, Yang Y, Tian J, et al. Vesicles fabricated by hybrid nanoparticles. Chem Commun,2009,3807~3809
    [55] Shenton W, Davis S A, Mann S. Directed self-assembly of nanoparticles into macroscopicmaterials using antibody-antigen recognition. Adv Mater,1999,11:449~452
    [56] Brown S. Protein-mediated particle assembly. Nano Lett,2001,1:391~394
    [57] Boal A K, Ilhan F, DeRouchey J E, et al. Self-assembly of nanoparticles into structuredspherical and network aggregates. Nature,2000,404:746~748
    [58] Frankamp B L, Uzun O, Ilhan F, et al. Recognition-mediated assembly of nanoparticles intomicellar structures with diblock copolymers. J Am Chem Soc,2002,124:892~893
    [59] Lim I I S, Goroleski F, Mott D, et al. Adsorption of cyanine dyes on gold nanoparticles andformation of J-aggregates in the nanoparticle assembly. J Phys Chem B,2006,110:6673~6682
    [60] Bockstaller M R, Thomas E L. Optical properties of polymer-based photonic nanocompositematerials. J Phys Chem B,2003,107:10017~10024
    [61] Bockstaller M R, Thomas E L. Proximity effects in self-organized binary particle-blockcopolymer blends. Physical Review Letters,2004,93:166106(4page)
    [62] Elbakry A, Zaky A, Liebkl R, et al. Layer-by-Layer Assembled Gold Nanoparticles forsiRNA Delivery. Nano Lett,2009,9:2059~2064
    [63] Kong B-S, Geng J, Jung H-T. Layer-by-layer assembly of graphene and gold nanoparticlesby vacuum filtration and spontaneous reduction of gold ions. Chem Commun,2009,2174~2176
    [64] Schneider G, Decher G, Nerambourg N, et al. Distance-dependent fluorescence quenchingon gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett,2006,6:530~536
    [65] Jang S G, Kramer E J, Hawker C J. Controlled Supramolecular Assembly of Micelle-LikeGold Nanoparticles in PS-b-P2VP Diblock Copolymers via Hydrogen Bonding. J Am ChemSoc,2011,133:16986~16996
    [66] Ai K, Liu Y, Lu L. Hydrogen-Bonding Recognition-Induced Color Change of GoldNanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula. J AmChem Soc,2009,131:9496~9497
    [67] Xue M, Wang X, Wang H, et al. Hydrogen bond breakage by fluoride anions in a simpleCdTe quantum dot/gold nanoparticle FRET system and its analytical application. ChemCommun,2011,47:4986~4988
    [68] Kang Y J, Taton T A. Core/shell gold nanoparticles by self-assembly and crosslinking ofmicellar, block-copolymer shells. Angew Chem Int Ed,2005,44:409~412
    [69] Rasch M R, Rossinyol E, Hueso J L, et al. Hydrophobic Gold Nanoparticle Self-Assemblywith Phosphatidylcholine Lipid: Membrane-Loaded and Janus Vesicles. Nano Lett,2010,10:3733~3739
    [70] Nie Z, Fava D, Kumacheva E, et al. Self-assembly of metal-polymer analogues ofamphiphilic triblock copolymers. Nature Materials,2007,6:609~614
    [71] Storhoff J J, Lazarides A A, Mucic R C, et al. What controls the optical properties ofDNA-linked gold nanoparticle assemblies? J Am Chem Soc,2000,122:4640~4650
    [72] Mucic R C, Storhoff J J, Mirkin C A, et al. DNA-directed synthesis of binary nanoparticlenetwork materials. J Am Chem Soc,1998,120:12674~12675
    [73] Aslan K, Luhrs C C, Perez-Luna V H. Controlled and reversible aggregation of biotinylatedgold nanoparticles with streptavidin. J Phys Chem B,2004,108:15631~15639
    [74] Bockstaller M, Kolb R, Thomas E L. Metallodielectric photonic crystals based on diblockcopolymers. Adv Mater,2001,13:1783~1786
    [75] Bockstaller M R, Lapetnikov Y, Margel S, et al. Size-selective organization of enthalpiccompatibilized nanocrystals in ternary block copolymer/particle mixtures. J Am Chem Soc,2003,125:5276~5277
    [76] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationallyassembling nanoparticles into macroscopic materials. Nature (London),1996,382:607~609
    [77] Giljohann D A, Seferos D S, Daniel W L, et al. Gold Nanoparticles for Biology andMedicine. Angew Chem Int Ed,2010,49:3280~3294
    [78] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science (Washington D C),1997,277:1078~1081
    [79] Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation ofpolynucleotides with single base imperfections using gold nanoparticle probes. J Am ChemSoc,1998,120:1959~1964
    [80] Jin R C, Wu G S, Li Z, et al. What controls the melting properties of DNA-linked goldnanoparticle assemblies? J Am Chem Soc,2003,125:1643~1654
    [81] McCool B A, DeSisto W J. Synthesis and characterization of silica membranes prepared bypyridine-catalyzed atomic layer deposition. Industrial&Engineering Chemistry Research,2004,43:2478~2484
    [82] Touil S, Tingry S, Palmeri J, et al. Preparation and characterization ofalpha-cyclodextrin-containing membranes-application to the selective extraction of xyleneisomers. Polymer,2005,46:9615~9625
    [83] Parravano G. Surface reactivity of supported gold: II. Hydrogen transfer between benzeneand cyclohexane. Journal of Catalysis,1970,18:320~328
    [84] Schwank J, Galvagno S, Parravano G. Isotopic oxygen exchange on supported Ru and Aucatalysts. Journal of Catalysis,1980,63:415~424
    [85] Galvagno S, Parravano G. Chemical reactivity of supported gold: IV. Reduction of NO byH2. Journal of Catalysis,1978,55:178~190
    [86] Haruta M. Size-and support-dependency in the catalysis of gold. Catalysis Today,1997,36:153~166
    [87] Andreeva D, Tabakova T, Idakiev V, et al. Au/α-Fe2O3catalyst for water–gas shift reactionprepared by deposition–precipitation. Applied Catalysis A: General,1998,169:9~14
    [88] Haruta M, Ueda A, Tsubota S, et al. Low-temperature catalytic combustion of methanol andits decomposed derivatives over supported gold catalysts. Catalysis Today,1996,29:443~447
    [89] Yuan Y Z, Asakura K, Wan H L, et al. Supported gold catalysts derived from goldcomplexes and as-precipitated metal hydroxides, highly active for low-temperature COoxidation. Chemistry Letters,1996,755~756
    [90] Wagner F E, Galvagno S, Milone C, et al. Mossbauer characterisation of gold/iron oxidecatalysts. Journal of the Chemical Society, Faraday Transactions,1997,93:3403~3409
    [91] Zhu Y, Shen J, Zhou K, et al. Multifunctional Magnetic Composite Microspheres with inSitu Growth Au Nanoparticles: A Highly Efficient Catalyst System. J Phys Chem C,2011,115:1614~1619
    [92]曹同玉,刘庆普,胡金生.北京:聚合物乳液合成原理,性能及应用.1997
    [93]江明,A.艾森伯格,刘国军,张希.北京:大分子自组装,2006
    [94] Allen C, Eisenberg A, Maysinger D. Copolymer drug carriers: conjugates, micelles andmicrospheres. Stp Pharma Sciences,1999,9:139~151
    [95] Zhang L F, Eisenberg A. Formation of crew-cut aggregates of various morphologies fromamphiphilic block copolymers in solution. Polymers for Advanced Technologies,1998,9:677~699
    [96] Zhang L F, Eisenberg A. Crew-cut aggregates from self-assembly of blends ofpolystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution. JPolym Sci Part B Polym Phys,1999,37:1469~1484
    [97] Zhang L F, Eisenberg A. Thermodynamic vs kinetic aspects in the formation andmorphological transitions of crew-cut aggregates produced by self-assembly ofpolystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules,1999,32:2239~2249
    [98] Shen H W, Eisenberg A. Morphological phase diagram for a ternary system of blockcopolymer PS310-b-PAA(52)/dioxane/H2O. J Phys Chem B,1999,103:9473~9487
    [99] Luo L B, Eisenberg A. One-step preparation of block copolymer vesicles with preferentiallysegregated acidic and basic corona chains. Angew Chem Int Ed,2002,41:1001~1004
    [100] Liu F T, Eisenberg A. Preparation and pH triggered inversion of vesicles from poly(acrylicacid)-block-polystyrene-block-poly(4-vinyl pyridine). J Am Chem Soc,2003,125:15059~15064
    [101] Chiu H-C, Lin Y-W, Huang Y-F, et al. Polymer vesicles containing small vesicles withininterior aqueous compartments and pH-Responsive transmembrane channels. Angew ChemInt Ed,2008,47:1875~1878
    [102] Niu Z, He J, Russell T P, et al. Synthesis of Nano/Microstructures at Fluid Interfaces.Angew Chem Int Ed,2010,49:10052~10066
    [103] Pieranski P. Two-dimensional interfacial colloidal crystals. Physical Review Letters,1980,45:596~572
    [104] Schulman J H, Leja J. Control of contact angles at the oil-water-solid interfaces. Emulsionsstabilized by solid particles (BaSO4). Transactions of the Faraday Society,1954,50:598~605
    [105] Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability ofsurfactant-free emulsions. Langmuir,2000,16:8622~8631
    [106] Aveyard R, Clint J H, Horozov T S. Aspects of the stabilisation of emulsions by solidparticles: Effects of line tension and monolayer curvature energy. Physical ChemistryChemical Physics,2003,5:2398~2409
    [107] Rao C N R, Kalyanikutty K P. The liquid-liquid interface as a medium to generatenanocrystalline films of inorganic materials. Acc Chem Res,2008,41:489~499
    [108] Acharya S, Hill J P, Ariga K. Soft Langmuir-Blodgett Technique for Hard Nanomaterials.Adv Mater,2009,21:2959~2981
    [109] Tsai H J, Lee Y L. Manipulation ordered and close-packed nanoparticle monolayers atair/liquid interface coupling Langmuir-Blodgett and self-assembly techniques. Soft Matter,2009,5:2962~2970
    [110] Patolsky F, Timko B P, Yu G H, et al. Detection, stimulation, and inhibition of neuronalsignals with high-density nanowire transistor arrays. Science,2006,313:1100~1104
    [111] Zhong Z H, Wang D L, Cui Y, et al. Nanowire crossbar arrays as address decoders forintegrated nanosystems. Science,2003,302:1377~1379
    [112] Kim F, Kwan S, Akana J, et al. Langmuir-Blodgett nanorod assembly. J Am Chem Soc,2001,123:4360~4361
    [113] Xia H, Wang D. Fabrication of Macroscopic Freestanding Films of Metallic NanoparticleMonolayers by Interfacial Self-Assembly. Adv Mater,2008,20:4253~4256
    [114] Mueggenburg K E, Lin X M, Goldsmith R H, et al. Elastic membranes of close-packednanoparticle arrays. Nature Materials,2007,6:656~660
    [115] Bigioni T P, Lin X M, Nguyen T T, et al. Kinetically driven self assembly of highly orderednanoparticle monolayers. Nature Materials,2006,5:265~270
    [116] Reincke F, Hickey S G, Kegel W K, et al. Spontaneous assembly of a monolayer of chargedgold nanocrystals at the water/oil interface. Angew Chem Int Ed,2004,43:458~462
    [117] Xu L J, Han G B, Hu J W, et al. Hydrophobic coating-and surface active solvent-mediatedself-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces.Physical Chemistry Chemical Physics,2009,11:6490~6497
    [118] Arumugam P, Patra D, Samanta B, et al. Self-assembly and cross-linking of FePtnanoparticles at planar and colloidal liquid-liquid interfaces. J Am Chem Soc,2008,130:10046~10047
    [119] Wang D Y, Duan H W, Mohwald H. The water/oil interface: the emerging horizon forself-assembly of nanoparticles. Soft Matter,2005,1:412~416
    [120] Duan H W, Wang D Y, Kurth D G, et al. Directing self-assembly of nanoparticles atwater/oil interfaces. Angew Chem Int Ed,2004,43:5639~5642
    [121] Velev O D, Furusawa K, Nagayama K. Assembly of Latex Particles by Using EmulsionDroplets as Templates.1. Microstructured Hollow Spheres. Langmuir,1996,12:2374~2384
    [122] Dinsmore A D, Hsu M F, Nikolaides M G, et al. Colloidosomes: Selectively permeablecapsules composed of colloidal particles. Science,2002,298:1006~1009
    [123] He X D, Ge X W, Liu H R, et al. Self-assembly of pH-responsive acrylate latex particles atemulsion droplets interface. J. Appl. Polym. Sci.,2007,105:1018~1024
    [124] Skaff H, Lin Y, Tangirala R, et al. Crosslinked capsules of quantum dots by interfacialassembly and ligand crosslinking. Adv Mater,2005,17:2082~2086
    [125] Samanta B, Patra D, Subramani C, et al. Stable Magnetic Colloidosomes viaClick-Mediated Crosslinking of Nanoparticles at Water-Oil Interfaces. Small,2009,5:685~688
    [126] Lin Y, Skaff H, Emrick T, et al. Nanoparticle assembly and transport at liquid-liquidinterfaces. Science,2003,299:226~229
    [127] Nie Z H, Il Park J, Li W, et al. An "Inside-Out" Microfluidic Approach to MonodisperseEmulsions Stabilized by Solid Particles. J Am Chem Soc,2008,130:16508~16509
    [128] Lee D, Weitz D A. Double emulsion-templated nanoparticle colloidosomes with selectivepermeability. Adv Mater,2008,20:3498~3503
    [129] Lee D, Weitz D A. Nonspherical Colloidosomes with Multiple Compartments from DoubleEmulsions. Small,2009,5:1932~1935
    [130] Rossier-Miranda F J, Schroen C, Boom R M. Colloidosomes: Versatile microcapsules inperspective. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2009,343:43~49
    [131] Binks B P. Particles as surfactants-similarities and differences. Current Opinion in Colloid&Interface Science,2002,7:21~41
    [132] Liu L, Zhang J, Wu C, et al. Surface-active gold nanoparticles with mixed polymer brushesas surfactants in the preparation of polystyrene colloid particles. Macromol Rapid Commun,2008,29:45~51
    [133] Gill M, Mykytiuk J, Armes S P, et al. NOVEL COLLOIDAL POLYANILINE SILICACOMPOSITES. J Chem Soc-Chem Commu,1992,108~109
    [134] Schmid A, Tonnar J, Armes S P. A new highly efficient route to polymer-silica colloidalnanocomposite particles. Adv Mater,2008,20:3331~3336
    [135] Amalvy J I, Percy M J, Armes S P, et al. Characterization of the nanomorphology ofpolymer-silica colloidal nanocomposites using electron spectroscopy imaging. Langmuir,2005,21:1175~1179
    [136] Cauvin S, Colver P J, Bon S A F. Pickering stabilized miniemulsion polymerization:Preparation of clay armored latexes. Macromolecules,2005,38:7887~7889
    [137] Cayre O J, Biggs S. Hollow microspheres with binary porous membranes fromsolid-stabilised emulsion templates. J Mater Chem,2009,19:2724~2728
    [138] Wang C Y, Liu H X, Gao Q X, et al. Facile fabrication of hybrid colloidosomes withalginate gel cores and shells of porous CaCO(3) microparticles. ChemPhysChem,2007,8:1157~1160
    [139] Liu H X, Wang C Y, Gao Q X, et al. Fabrication of novel core-shell hybrid alginatehydrogel beads. Int J Pharm,2008,351:104~112
    [140] Noble P F, Cayre O J, Alargova R G, et al. Fabrication of "hairy" colloidosomes with shellsof polymeric microrods. J Am Chem Soc,2004,126:8092~8093
    [141] Cayre O J, Noble P F, Paunov V N. Fabrication of novel colloidosome microcapsules withgelled aqueous cores. J Mater Chem,2004,14:3351~3355
    [142] Duan H W, Wang D Y, Sobal N S, et al. Magnetic colloidosomes derived from nanoparticleinterfacial self-assembly. Nano Lett,2005,5:949~952
    [143] Douglas T, Young M. Viruses: Making friends with old foes. Science,2006,312:873-875
    [144] Fischlechner M, Donath E. Viruses as building blocks for materials and devices. AngewChem Int Ed,2007,46:3184~3193
    [145] Kaur G, He J B, Xu J, et al. Interfacial Assembly of Turnip Yellow Mosaic VirusNanoparticles. Langmuir,2009,25:5168~5176
    [146] Russell J T, Lin Y, Boker A, et al. Self-assembly and cross-linking of bionanoparticles atliquid-liquid interfaces. Angew Chem Int Ed,2005,44:2420~2426
    [147] Fujii S, Aichi A, Muraoka M, et al. Ferritin as a bionano-particulate emulsifier. J. ColloidInterface Sci.,2009,338:222~228
    [148] Tangirala R, Hu Y X, Joralemon M, et al. Connecting quantum dots and bionanoparticlesin hybrid nanoscale ultra-thin films. Soft Matter,2009,5:1048~1054
    [149] Hermanson K D, Huemmerich D, Scheibel T, et al. Engineered microcapsules fabricatedfrom reconstituted spider silk. Adv Mater,2007,19:1810~1815
    [150] Cheung D L, Bon S A F. Stability of Janus nanoparticles at fluid interfaces. Soft Matter,2009,5:3969~3976
    [151] Binks B P, Fletcher P D I. Particles adsorbed at the oil-water interface: A theoreticalcomparison between spheres of uniform wettability and "Janus" particles. Langmuir,2001,17:4708~4710
    [152] Gu H W, Yang Z M, Gao J H, et al. Heterodimers of nanoparticles: Formation at aliquid-liquid interface and particle-specific surface modification by functional molecules. JAm Chem Soc,2005,127:34~35
    [153] Suzuki D, Tsuji S, Kawaguchi H. Janus microgels prepared by surfactant-free pickeringemulsion-based modification and their self-assembly. J Am Chem Soc,2007,129:8088~8089
    [154] Zhang J, Wang X J, Wu D X, et al. Bioconjugated Janus Particles Prepared by in Situ ClickChemistry. Chem Mater,2009,21:4012~4018
    [155] Liu B, Wei W, Qu X Z, et al. Janus colloids formed by biphasic grafting at a pickeringemulsion interface. Angew Chem Int Ed,2008,47:3973~3975
    [156] Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in largequantity. Langmuir,2006,22:9495~9499
    [157] Liu B, Zhang C L, Liu J G, et al. Janus non-spherical colloids by asymmetric wet-etching.Chem Commun,2009,3871~3873
    [158] Wang B, Wang M, Zhang H, et al. Stepwise interfacial self-assembly of nanoparticles viaspecific DNA pairing. Physical Chemistry Chemical Physics,2007,9:6313~6318
    [159] Patra D, Pagliuca C, Subramani C, et al. Molecular recognition at the liquid-liquidinterface of colloidal microcapsules. Chem Commun,2009,4248~4250
    [160] He J B, Niu Z W, Tangirala R, et al. Self-Assembly of Tobacco Mosaic Virus at Oil/WaterInterfaces. Langmuir,2009,25:4979~4987
    [161] He J, Zhang Q, Gupta S, et al. Drying droplets: A window into the behavior of nanorods atinterfaces. Small,2007,3:1214~1217
    [162] Milner S T. Polymer brushes. Science (New York, N.Y.),1991,251:905~914
    [163] Pyun J, Kowalewski T, Matyjaszewski K. Synthesis of polymer brushes using atomtransfer radical polymerization. Macromol Rapid Commun,2003,24:1043~1059
    [164] Barbey R, Lavanant L, Paripovic D, et al. Polymer Brushes via Surface-InitiatedControlled Radical Polymerization: Synthesis, Characterization, Properties, andApplications. Chem Rev,2009,109:5437~5527
    [165] Matyjaszewski K, Xia J. Atom Transfer Radical Polymerization. Chem Rev,2001,101:2921~2990
    [166] Tsarevsky N V, Matyjaszewski K."Green" atom transfer radical polymerization: Fromprocess design to preparation of well-defined environmentally friendly polymeric materials.Chem Rev,2007,107:2270~2299
    [167] Huang X Y, Doneski L J, Wirth M J. Surface-confined living radical polymerization forcoatings in capillary electrophoresis. Anal. Chem.,1998,70:4023~4029
    [168] Ejaz M, Yamamoto S, Ohno K, et al. Controlled graft polymerization of methylmethacrylate on silicon substrate by the combined use of the Langmuir-Blodgett and atomtransfer radical polymerization techniques. Macromolecules,1998,31:5934~5936
    [169] Matyjaszewski K, Miller P J, Shukla N, et al. Polymers at interfaces: Using atom transferradical polymerization in the controlled growth of homopolymers and block copolymersfrom silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules,1999,32:8716~8724
    [170] Huang W X, Kim J B, Bruening M L, et al. Functionalization of surfaces bywater-accelerated atom-transfer radical polymerization of hydroxyethyl methacrylate andsubsequent derivatization. Macromolecules,2002,35:1175~1179
    [171] Jakubowski W, Matyjaszewski K. Activator generated by electron transfer for atomtransfer radical polymerization. Macromolecules,2005,38:4139~4146
    [172] Jakubowski W, Matyjaszewski K. Activators regenerated by electron transfer foratom-transfer radical polymerization of (meth)acrylates and related block copolymers.Angew Chem Int Ed,2006,45:4482~4486
    [173] Jakubowski W, Min K, Matyjaszewski K. Activators regenerated by electron transfer foratom transfer radical polymerization of styrene. Macromolecules,2006,39:39~45
    [174] Zhao H Y, Kang X L, Liu L. Comb-coil polymer brushes on the surface of silicananoparticles. Macromolecules,2005,38:10619~10622
    [175] Wischerhoff E, Uhlig K, Lankenau A, et al. Controlled cell adhesion on PEG-basedswitchable surfaces. Angew Chem Int Ed,2008,47:5666~5668
    [176] Bombalski L, Min K, Dong H C, et al. Preparation of well-defined hybrid materials byATRP in miniemulsion. Macromolecules,2007,40:7429~7432
    [177] Bao Z Y, Bruening M L, Baker G L. Rapid growth of polymer brushes from immobilizedinitiators. J Am Chem Soc,2006,128:9056~9060
    [178] Ashford E J, Naldi V, O'Dell R, et al. First example of the atom transfer radicalpolymerisation of an acidic monomer: direct synthesis of methacrylic acid copolymers inaqueous media. Chem Commun,1999,1285~1286
    [179] Moad G, Rizzardo E, Thang S H. Living radical polymerization by the RAFT process. AustJ Chem,2005,58:379~410
    [180] Baum M, Brittain W J. Synthesis of polymer brushes on silicate substrates via reversibleaddition fragmentation chain transfer technique. Macromolecules,2002,35:610~615
    [181] Perrier S, Takolpuckdee P, Westwood J, et al. Versatile chain transfer agents for reversibleaddition fragmentation chain transfer (RAFT) polymerization to synthesize functionalpolymeric architectures. Macromolecules,2004,37:2709~2717
    [182] Ranjan R, Brittain W J. Tandem RAFT polymerization and click chemistry: An efficientapproach to surface modification. Macromol Rapid Commun,2007,28:2084~2089
    [183] Li C Z, Benicewicz B C. Synthesis of well-defined polymer brushes grafted onto silicananoparticles via surface reversible addition-fragmentation chain transfer polymerization.Macromolecules,2005,38:5929~5936
    [184] Li C, Han J, Ryu C Y, et al. A versatile method to prepare RAFT agent anchored substratesand the preparation of PMMA grafted nanoparticles. Macromolecules,2006,39:3175~3183
    [185] Zhao Y, Perrier S. Reversible addition-fragmentation chain transfer graft polymerizationmediated by fumed silica supported chain transfer agents. Macromolecules,2007,40:9116~9124
    [186] Zhao Y L, Perrier S. Synthesis of well-defined homopolymer and diblock copolymergrafted onto silica particles by Z-supported RAFT polymerization. Macromolecules,2006,39:8603~8608
    [187] Perrier S, Takolpuckdee P, Mars C A. Reversible addition-fragmentation chain transferpolymerization mediated by a solid supported chain transfer agent. Macromolecules,2005,38:6770~6774
    [188] Hawker C J.“Living” Free Radical Polymerization: A Unique Technique for thePreparation of Controlled Macromolecular Architectures. Acc Chem Res,1997,30:373~382
    [189] Hawker C J, Bosman A W, Harth E. New polymer synthesis by nitroxide mediated livingradical polymerizations. Chem Rev,2001,101:3661~3688
    [190] Husseman M, Malmstrom E E, McNamara M, et al. Controlled synthesis of polymerbrushes by "Living" free radical polymerization techniques. Macromolecules,1999,32:1424~1431
    [191] Fischer H. The persistent radical effect: A principle for selective radical reactions andliving radical polymerizations. Chem Rev,2001,101:3581~3610
    [192] Matsuno R, Yamamoto K, Otsuka H, et al. Polystyrene-grafted magnetite nanoparticlesprepared through surface-initiated nitroxyl-mediated radical polymerization. Chem Mater,2003,15:3~5
    [193] Matsuno R, Yamamoto K, Otsuka H, et al. Polystyrene-and poly(3-vinylpyridine)-graftedmagnetite nanoparticles prepared through surface-initiated nitroxide-mediated radicalpolymerization. Macromolecules,2004,37:2203~2209
    [194] Brinks M K, Hirtz M, Chi L F, et al. Site-selective surface-initiated polymerization byLangmuir-Blodgett lithography. Angew Chem Int Ed,2007,46:5231~5233
    [195] Zhao X D, Fan X H, Chen X F, et al. Surface modification of multiwalled carbonnanotubes via nitroxide-mediated radical polymerization. J Polym Sci Part A Polym Chem,2006,44:4656~4667
    [196] Zhao X D, Lin W R, Song N H, et al. Water soluble multi-walled carbon nanotubesprepared via nitroxide-mediated radical polymerization. J Mater Chem,2006,16:4619~4625
    [197] Andruzzi L, Senaratne W, Hexemer A, et al. Oligo(ethylene glycol) containing polymerbrushes as bioselective surfaces. Langmuir,2005,21:2495~2504
    [198] Goto A, Kwak Y, Yoshikawa C, et al. Comparative study on decomposition rate constantsfor some alkoxyamines. Macromolecules,2002,35:3520~3525
    [199] Benoit D, Chaplinski V, Braslau R, et al. Development of a universal alkoxyamine for"living" free radical polymerizations. J Am Chem Soc,1999,121:3904~3920
    [200] Benoit D, Grimaldi S, Robin S, et al. Kinetics and mechanism of controlled free-radicalpolymerization of styrene and n-butyl acrylate in the presence of an acyclicbeta-phosphonylated nitroxide. J Am Chem Soc,2000,122:5929~5939
    [201] Parvole J, Billon L, Montfort J P. Formation of polyacrylate brushes on silica surfaces.Polym. Int.,2002,51:1111~1116
    [202] Parvole J, Montfort J P, Billon L. Formation of inorganic/organic nanocomposites bynitroxide-mediated polymerization in bulk using a bimolecular system. Macromol. Chem.Phys.,2004,205:1369~1378
    [203] Parvole J, Montfort J P, Reiter G, et al. Elastomer polymer brushes on flat surface bybimolecular surface-initiated nitroxide mediated polymerization. Polymer,2006,47:972~981
    [204] Bian K J, Cunningham M F. Surface-initiated nitroxide-mediated radical polymerization of2-(dimethylamino)ethyl acrylate on polymeric microspheres. Polymer,2006,47:5744~5753
    [205] Bartholome C, Beyou E, Bourgeat-Lami E, et al. Nitroxide-mediated polymerization ofstyrene initiated from the surface of silica nanoparticles. In situ generation and grafting ofalkoxyamine initiators. Macromolecules,2005,38:1099~1106
    [206] Bartholome C, Beyou E, Bourgeat-Lami E, et al. Viscoelastic properties and morphologicalcharacterization of silica/polystyrene nanocomposites synthesized by nitroxide-mediatedpolymerization. Polymer,2005,46:9965~9973
    [207] Jiang X M, Zhao B, Zhong G J, et al. Microphase Separation of High Grafting DensityAsymmetric Mixed Homopolymer Brushes on Silica Particles. Macromolecules,2010,43:8209~8217
    [208] Zhao B, Zhu L. Mixed Polymer Brush-Grafted Particles: A New Class of EnvironmentallyResponsive Nanostructured Materials. Macromolecules,2009,42:9369~9383
    [209] Zhao B, Zhu L. Nanoscale phase separation in mixed poly(tert-butyl acrylate)/polystyrenebrushes on silica nanoparticles under equilibrium melt conditions. J Am Chem Soc,2006,128:4574~4575
    [210] Li D, Sheng X, Zhao B. Environmentally Responsive “Hairy” Nanoparticles: MixedHomopolymer Brushes on Silica Nanoparticles Synthesized by Living RadicalPolymerization Techniques. J Am Chem Soc,2005,127:6248~6256
    [211] Foster E L, Tria M C R, Pernites R B, et al. Patterned polymer brushes via electrodepositedATRP, ROMP, and RAFT initiators on colloidal template arrays. Soft Matter,2012,8:353~359
    [212] Ma H, He J a, Liu X, et al. Surface Initiated Polymerization from Substrates of LowInitiator Density and Its Applications in Biosensors. Acs Appl Mat Interfaces,2010,2:3223~3230
    [213] Pickering S U. Emulsions. J Chem Soc,1907,91:2001~2021
    [214] Ofir Y, Samanta B, Rotello V M. Polymer and biopolymer mediated self-assembly of goldnanoparticles. Chem Soc Rev,2008,37:1814~1823
    [215] Rosi N L, Mirkin C A. Nanostructures in biodiagnostics. Chem Rev,2005,104:1547-1562
    [216] Hutching G J. Nanocrystalline gold and gold palladium alloy catalysts for chemicalsynthesis. Chem Commun,2008,1148~1164
    [217] Murray C B, Kagan C R, Bawendi M G, ynthesis and characterization of monodispersenanocrystals and close-packed nanocrystal assemblies. Annual Rev Mater Sci,2000,30:545~610
    [218](a) Boal A K, Ilhan F, DeRouchey J E, et al. Self-assembly of nanoparticles into structuredspherical and network aggregates. Nature,2000,404:746-748(b) Frankamp B L, Uzun O,Ilhan F, et al. Recognition-mediated assembly of nanoparticles into micellar structures withdiblock copolymers. J Am Chem Soc.2002,124:892~893
    [219](a) Storhoff J J, Mirkin C A. Programmed materials synthesis with DNA. Chem Rev,1999,99:1849-1862(b) Storhoff J J, Lazarides A, Mucic R C, et al. What controls the opticalproperties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc,2000,122:4640~4650(c) Mucic R C, Storhoff J J, Mirkin C A, et al. DNA-directed synthesis ofbinary nanoparticle network materials. J Am Chem Soc,1998,120:12674~12675
    [220](a) Andres R P, Bielefeld J D, Henderson J I, et al. Self-assembly of a two-dimensionalsuperlattice of molecularly linked metal clusters. Science,1996,273:1690~1693(b) Chen S.Two-dimensional crosslinked nanoparticle networks. Adv Mater,2000,12:186~189
    [221](a) Bockstaller M R, Thomas E L. Optical properties of polymer-based photonicnanocomposite materials. J Phys Chem B,2003,107:10017~10024(b) Bockstaller M R,Kolb R, Thomas E L. Metallodielectric photonic crystals based on diblock copolymers. AdvMater,2001,13:1783~1786(c) Bockstaller M R, Lapetinkov Y, Margel S, et al.Size-selective organization of enthalpic compatibilized nanocrystals in ternary blockcopolymer/particle mixtures. J Am Chem Soc,2003,125:5276~5277
    [222] Gohy J. Block copolymer micelles. Adv Polym Sci,2005,190:65~136
    [223] Boyer C, Whittaker M R, Luzon M, et al. Design and Synthesis of Dual Thermoresponsiveand Antifouling Hybrid Polymer/Gold Nanoparticles. Macromolecules,2009,42:6917~6926
    [224] Gittins D I, Caruso F. Tailoring the polyelectrolyte coating of metal nanoparticles. J PhysChem B,2001,105:6846~6852
    [213] Pickering S U. Emulsions. J Chem Soc,1907,91:2001~2021
    [225] Glogowski E, Tangirala R, He J, et al. Microcapsules of PEGylated gold nanoparticlesprepared by fluid-fluid interfacial assembly. Nano Lett,2007,7:389~393
    [226](a) Lin Y, Skaff H, Emrick T, et al. Nanoparticle assembly and transport at liquid-liquidinterfaces. Science,2003,299:226~229(b) Lin Y, Skaff H, Emrick T, et al. Ultrathincross-linked nanoparticle membranes. J Am Chem Soc,2003,125:12690~12691(c) Lin Y,B ker A, Skaff H, et al. Nanoparticle assembly at fluid interfaces: Structure and dynamics.Langmuir2005,21:191~194.(d) Russell J T, Lin Y, B ker A, et al. Self-assembly andcross-linking of bionanoparticles at liquid-liquid interfaces. Angew Chem Int Ed,2005,44:2420~2426
    [227](a) Link S, EI-Sayed M A. Size and temperature dependence of the plasmon absorption ofcolloidal gold nanoparticles. J Phys Chem B,1999,103:4212~4217(b) Link S, EI-SayedM A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillationsin gold and silver nanodots and nanorods. J Phys Chem B,1999,103:8410~8426
    [228] Underwood S, Mulvaney P. EFFECT OF THE SOLUTION REFRACTIVE-INDEX ONTHE COLOR OF GOLD COLLOIDS. Langmuir,1994,10:3427~3430
    [229](a) Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shellparticles. Langmuir,1996,12:4329~4335(b) Mulvaney P, Giersig M, Henglein A.SURFACE-CHEMISTRY OF COLLOIDAL GOLD-DEPOSITION OF LEAD ANDACCOMPANYING OPTICAL EFFECTS. J Phys Chem,1992,96:10419~10424
    [230] Bradford M M. RAPID AND SENSITIVE METHOD FOR QUANTITATION OFMICROGRAM QUANTITIES OF PROTEIN UTILIZING PRINCIPLE OFPROTEIN-DYE BINDING. Anal Biochem,1976,72:248~254
    [231] Deka J, Paul A, Chattopadhyay A. Sensitive Protein Assay with Distinction ofConformations Based on Visible Absorption Changes of Citrate-Stabilized GoldNanoparticles. J Phys Chem C,2009,113:6936~6947
    [232] Bao J, Chen W, Liu T, et al. Bifunctional Au-Fe3O4nanopartides for protein separation.ACS nano,2007,1:293~298
    [233](a) Kamata K, Lu Y, Xia Y N. Synthesis and characterization of monodispersed core-shellspherical colloids with movable cores. J Am Chem Soc,2003,125:2384~2385(b)Mulvaney S P, Musick M D, Keating C D, et al. Glass-coated, analyte-tagged nanoparticles:A new tagging system based on detection with surface-enhanced Raman scattering.Langmuir,2003,19:4784~4790(c) Kim S, Bawendi M G. Oligomeric Ligands forluminescent and stable nanocrystal quantum dots. J Am Chem Soc,2003,125:14652-14653(d) Kang Y, Taton T A. Core/shell gold nanoparticles by self-assembly andcrosslinking of micellar, block-copolymer shells. Angew Chem Int Ed,2005,44:409~412
    [234](a) Perez J M, Simeone F J, Saeki Y, et al. Viral-induced self-assembly of magneticnanoparticles allows the detection of viral particles in biological media. J Am Chem Soc,2003,125:10192~10193(b) Graham D L, Ferreira H A, Freitas P P.Magnetoresistive-based biosensors and biochips. Trends Biotechnol,.2004,22:455~462
    [235](a) Alexiou C, Jurgons R, Schmid R J, et al. Magnetic drug targeting-Biodistribution ofthe magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancertreatment. J Drug Targeting,2003,11:139~149(b) Dobson J. Magnetic nanoparticles fordrug delivery. Drug DeV Res,2006,67:55~60
    [236] Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical diagnosisand therapy. J Mater Chem,2004,14:2161~2175
    [237] Li D, Teoh W Y, Selomulya C, et al. Flame-sprayed superparamagnetic bare andsilica-coated maghemite nanoparticles: Synthesis, characterization, and proteinadsorption-desorption. Chem Mater,2006,18:6403~6413
    [238](a) Xu C, Xu K, Gu H, et al. Dopamine as a robust anchor to immobilize functionalmolecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc,2004,126:9938~9939(b) Gu H, Ho P-L, Tsang K W T, et al. Using biofunctional magneticnanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteriaat ultralow concentration. J Am Chem Soc,2003,125:15702~15703
    [239](a) Lo C K, Xiao D, Choi M M F. Homocysteine-protected gold-coated magneticnanoparticles: synthesis and characterisationt. J Mater Chem,2007,17:2418~2427(b)Wang L, Luo J, Maye M M, et al. Iron oxide-gold core-shell nanoparticles and thin filmassembly. J Mater Chem,2005,15:1821~1832.
    [240] Xu Z, Hou Y, Sun S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles withtunable plasmonic properties. J Am Chem Soc,2007,129:8698~8699
    [241](a) Thum-Albrecht T, Schotter J, K stle G A,et al. Ultrahigh-Density Nanowire ArraysGrown in Self-Assembled Diblock Copolymer Templates. Science,2000,290,2126~2129(b)Lopes W A, Jaeger H M. Hierarchical self-assembly of metal nanostructures on diblockcopolymer scaffolds. Nature,2001,414:735~738
    [242](a) Grubbs R B. Hybrid metal-polymer composites from functional block copolymers. JPolym Sci, Part A: Polym Chem,2005,43:4323~4336(b) Zhao H Y, Douglas E P, HarrisonB S, et al. Preparation of CdS nanoparticles in salt-induced block copolymer micelles.Langmuir,2001,17:8428~8433(c) Pyun J. Nanocomposite materials from functionalpolymers and magnetic colloids. Polym. Rev.2007,47:231~263(d) Wang C C, Chen A L,Chen I H. Effect of chelating functional polymer on the size of CdS nanocluster formation. JColloid Interface Sci,2006,293:421~429(e) Papaphilippou P, Loizou L, Popa N C, et al.Superparamagnetic Hybrid Micelles, Based on Iron Oxide Nanoparticles and Well-DefinedDiblock Copolymers Possessing beta-Ketoester Functionalities. Biomacromolecules,2009,10:2662~2671
    [243] Lazzari M, López-Quintela M A. Block copolymers as a tool for nanomaterial fabrication.Adv Mater.2003,15:1583~1594
    [244] Lin Y, Boker A, He J, et al. Self-directed self-assembly of nanoparticle/copolymer mixtures.Nature,2005,434:55~59
    [245](a) Zhang X, Liu L, Tian J, et al. Copolymers of styrene and gold nanoparticles. ChemCommun,2008,6549~6551(b) Zhang X, Yang Y, Tian J, et al. Vesicles fabricated byhybrid nanoparticles. Chem Commun,2009,3807~3809
    [246] Perez J M, Simeone F J, Saeki Y, et al. Viral-induced self-assembly of magneticnanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc.2003,125:10192~10193
    [247](a) Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev,2001,101:2921~2990
    [248] Hawker C J, Bosman A W, Harth E. Chem Rev,2001,101:3689~3745
    [249](a) Edmondson S, Osborne V L, Huck W T S. Polymer brushes via surface-initiatedpolymerizations. Chem Soc Rev,2004,33:14~22(b) Choi I S, Langer R. Surface-initiatedpolymerization of L-lactide: Coating of solid substrates with a biodegradable polymer.Macromolecules,2001,34:5361~5363(c) Schmidt A M. The synthesis of magneticcore-shell nanoparticles by surface-initiatied ring-opening polymerization ofepsilon-Caprolactone. Macromol Rapid Commun,2005,26:93~97
    [250](a) Li C, Han J, Ryu C Y, Benicewicz B C. A versatile method to prepare RAFT agentanchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules,2006,39:3175~3183(b) Zhao Y L, Perrier S. Synthesis of well-defined homopolymer anddiblock copolymer grafted onto silica particles by Z-supported RAFT polymerization.Macromolecules,2006,39:8603~8608
    [251](a) Lowe A B, Sumerlin B S, Donovan M S, et al. Facile preparation of transition metalnanoparticles stabilized by well-defined (Co)polymers synthesized via aqueous reversibleaddition-fragmentation chain transfer polymerization. J Am Chem Soc,2002,124:11562~11563(b) Spain S G, Albertin L, Cameron N R. Facile in situ preparation ofbiologically active multivalent glyconanoparticles. Chem. Commun.2006,4198~4200(c)Mayadunne R T A, Jeffery J, Moad G, et al. Living free radical polymerization withreversible addition-fragmentation chain transfer (RAFT polymerization): Approaches to starpolymers. Macromolecules,2003,36:1505~1513(d) Mayadunne R T A, Rizzardo E,Chiefari J, et al. Living polymers by the use of trithiocarbonates as reversibleaddition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radicalpolymerization in two steps. Macromolecules,2000,33:243~245
    [252](a) Lo C K, Xiao D, Choi M M F. Homocysteine-protected gold-coated magneticnanoparticles: synthesis and characterisationt. J Mater Chem,2007,17:2418~2427(b) WangL, Luo J, Maye M M, et al. Iron oxide-gold core-shell nanoparticles and thin film assembly.J Mater Chem,2005,15:1821~1832(c) Xu Z, Hou Y, Sun S. Magnetic core/shell Fe3O4/Auand Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc,2007,129:8698~8699
    [253] Lai J T, Filla D, Shea R. Functional polymers from novel carboxyl-terminatedtrithiocarbonates as highly efficient RAFT agents. Macromolecules,2002,35:6754~6756
    [254](a) Woehrle G H, Warner M G, Hutchison J E. Ligand exchange reactions yieldsubnanometer, thiol-stabilized gold particles with defined optical transitions. J Phys Chem B,2002,106:9979~9981(b) Chulzendorf M, Cavelius C, Eoin Murray P, et al. Biphasicsynthesis of Au@SiO2core-shell particles with stepwise ligand exchange. Langmuir2011,27,727~732
    [255](a) Hiemenz P C, Lodge T P. In Polymer Chemistry,2nd, ed., CRC Press, Boca Raton, FL,2007(b) Jiang X, Zhong G, Horton J M, et al. Evolution of Phase Morphology of MixedPoly(tert-butyl acrylate)/Polystyrene Brushes Grafted on Silica Particles with the Change ofChain Length Disparity. Macromolecules,2010,43:5387~5395
    [256] Zhang Z L, Horsch M A, Lamm M H, et al. Tethered nano building blocks: Toward aconceptual framework for nanoparticle self-assembly. Nano Letters,2003,3:1341~1346
    [257] Schulzendorf M, Cavelius C, Born P, et al. Biphasic Synthesis of Au@SiO2Core-ShellParticles with Stepwise Ligand Exchange. Langmuir,2011,27:727~732
    [258] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry: achemical strategy for the synthesis of nanostructures. Science,1991,254:1312~1319
    [259] Thum-Albrecht T, Schotter J, K stle N, et al. Ultrahigh-Density Nanowire Arrays Grownin Self-Assembled Diblock Copolymer Templates. Science,2000,290:2126~2129
    [260] Lopes W A, Jaeger H M. Hierarchical self-assembly of metal nanostructures on diblockcopolymer scaffolds. Nature,2001,414:735~738
    [261] Shen H W, Eisenberg A. Block length dependence of morphological phase diagrams of theternary system of PS-b-PAA/dioxane/H2O. Macromolecules,2000,33:2561~2572
    [262] Cho H, Kim S, Park S. Fabrication of gold nanoparticles and silicon oxide corpuscles fromblock copolymers. J Mater Chem,2010,20:1156~1160
    [263] Park S, Moon S C, Chen D, et al. Preparation of1inch gold nanowires from PS-b-P4VPblock copolymers. J Mater Chem,2010,20:1198~1202
    [264] Sharma N, Top A, Kiick K L, et al. One-Dimensional Gold Nanoparticle Arrays byElectrostatically Directed Organization Using Polypeptide Self-Assembly. Angew Chem IntEd,2009,48:7078~7082
    [265] Colfen H, Mann S. Higher-order organization by mesoscale self-assembly andtransformation of hybrid nanostructures. Angew Chem Int Ed,2003,42:2350~2365
    [266] Storhoff J J, Mirkin C A. Programmed materials synthesis with DNA. Chem Rev,1999,99:1849~1862
    [267] Rozenberg B A, Tenne R. Polymer-assisted fabrication of nanoparticles andnanocomposites. Prog Polym Sci,2008,33:40~112
    [268] Tian J, Jin J, Zheng F, et al. Self-Assembly of Gold Nanoparticles and Polystyrene: AHighly Versatile Approach to the Preparation of Colloidal Particles with Polystyrene Coresand Gold Nanoparticle Coronae. Langmuir,2010,26:8762~8768
    [269] Brennan J L, Hatzakis N S, Tshikhudo T R, et al. Bionanoconjugation via click chemistry:The creation of functional hybrids of lipases and gold nanoparticles. Bioconjugate Chem,2006,17:1373~1375
    [270] Binder W H, Sachsenhofer R, Straif C J, et al. Surface-modified nanoparticles via thermaland Cu(I)-mediated "click" chemistry: Generation of luminescent CdSe nanoparticles withpolar ligands guiding supramolecular recognition.J Mater Chem,2007,17:2125~2132
    [271] Roth P J, Theato P. Versatile synthesis of functional gold nanoparticles: Grafting polymersfrom and onto. Chem Mater,2008,20:1614~1621
    [272] Messmore B W, Hulvat J F, Sone E D, et al. Synthesis, self-assembly, and characterizationof supramolecular polymers from electroactive dendron rodcoil molecules. J Am Chem Soc,2004,126:14452~14458
    [273] Zhang J, Yang Y, Zhao C, et al. PS/PMMA mixed polymer brushes on the surface of claylayers: Preparation and application in polymer blends. J Polym Sci, Part A: Polym Chem,2007,45:5329~5338
    [274] Yang Y, Zhang J, Liu L, et al. Synthesis of PS and PDMAEMA mixed polymer brushes onthe surface of layered silicate and their application in pickering suspension polymerization.J Polym Sci, Part A: Polym Chem,2007,45:5759~5769
    [275] Tian J, Zheng F, Zhao H. Nanoparticles with Fe3O4-Nanoparticle Cores andGold-Nanoparticle Coronae Prepared by Self-Assembly Approach. J Phys Chem C,2011,115:3304~3312
    [276] Soo P L, Eisenberg A. Preparation of block copolymer vesicles in solution. J Polym Sci,part B: Polym Phys,2004,42:923~938
    [277] Giersig M, Ung T, Liz-Marzan L M, et al. Direct Observation of Chemical Reactions inSilica-Coated Gold and Silver Nanoparticles. Adv Mater,1997,9:570~575
    [278] Walsh D, Mann S. Fabrication of hollow Porous Shells of Calcium Carbonate fromSelf-Organizing Media. Nature,1995,377:320~323
    [279] Zhang Q, Wang W, Goebl J, et al. Self-templated Synthesis of Hollow nanostructures.Nano Today,2009,4:494~507
    [280] Lou, X. W.; Archer, L. A.; Yang, Z. Hollow Micro-/Nanostructures: Synthesis andApplications. Adv. Mater.2008,20,3987~4019.
    [281] Lou X W, Wang Y, Yuan C, et al. Template-free Synthesis of SnO(2) HollowNanostructures with High Lithium Storage Capacity. Adv Mater,2006,18:2325~2329
    [282] Zhu Y F, Shi J L, Shen W H, et al. Stimuli-Responsive Controlled Drug Release From aHollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. AngewChem Int Ed,2005,44:5083~5087
    [283] Chen J, Saeki F, Wiley B J, et al. Gold nanocages: Bioconjugation and Their Potential Useas Optical Imaging Contrast Agents. Nano Lett,2005,5:473~477
    [284] Ikeda S, Ishino S, Harada T, et al. Ligand-free Platinum Nanoparticles Encapsulated in aHollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst.Angew Chem Int Ed,2006,45:7063~7066
    [285] Caruso F. Nanoengineering of Particle Surfaces. Adv Mater,2001,13:11~22
    [286] Yu H, Yu J, Liu S, et al. Template-free Hydrothermal Synthesis of CuO/Cu2O CompositeHollow Microspheres. Chem Mater.2007,19:4327~4334
    [287] Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid HollowSpheres by Colloidal Templating. Science,1998,282:1111~1114
    [288](a) Caruso F, Spasova M, Susha A, et al. Magnetic Nanocomposite Narticles and HollowSpheres Constructed by a Sequential Layering Approach. Chem Mater,2001,13:109~116(b) Imhof A. Preparation and Characterization of Titania-Coated Polystyrene Spheres andHollow Titania Shells. Langmuir,2001,17:3579~3585
    [289](a) Sun Y, Mayers B T, Xia Y. Template-Engaged Replacement Reaction: A One-stepApproach to The Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors.Nano Lett,2002,2:481~485(b) Peng S, Sun S. Synthesis and Characterization ofMonodisperse Hollow Fe3O4Nanoparticles. Angew Chem Int Ed,2007,46:4155~4158
    [290] Hu Y, Ge J, Sun Y, et al. A Self-Templated Approach to TiO2Microcapsules. Nano Lett,2007,7:1832~1836
    [291](a) Zhang D, Qi L, Ma J, et al. Synthesis of Submicrometer-Sized Hollow Silver Spheresin Mixed Polymer-Surfactant Solutions. Adv Mater,2002,14:1499~1502(b) Li Y, Li X, LiY, et al. Controlled Self-Assembly Behavior of an Amphiphilic Bisporphyrin-Bipyridinium-Palladium Complex: From Multibilayer Vesicles to Hollow Capsules. AngewChem Int Ed.2006,45:3639~3643
    [292](a) McDonald C J, Bouck K J, Chaput A B, et al. Emulsion Polymerization of VoidedParticles by Encapsulation of a Nonsolvent. Macromolecules,2000,33:1593~1605(b)Buchold D H, Feldmann C. Nanoscale Gamma-AIO(OH) Hollow Spheres: Synthesis andContainer-type Functionality. Nano Lett,2007,7:3489~3492
    [293] Zoldesi C I, Imhof A. Synthesis of Monodisperse Colloidal Spheres, Capsules, andMicroballoons by Emulsion Templating. Adv Mater,2005,17:924~928
    [294](a) Velev O D, Furusawa K, Nagayama K. Assembly of Latex Particles by Using EmulsionDroplets as Templates.1. Microstructured Hollow Spheres. Langmuir,1996,12:2374~2384(b) Velev O D, Furusawa K, Nagayama K. Assembly of Latex Particles by Using EmulsionDroplets as Templates.2. Ball-like and Composite Aggregates. Langmuir,1996,12:2385~2391.(c) Binks B P, Lumsdon S O. Catastrophic Phase Inversion of Water-in-OilEmulsions Stabilized by Hydrophobic Silica. Langmuir,2000,16:2539~2547
    [295](a) Dinsmore A D, Hsu M F, Nikolaides M G, et al. Colloidosomes: Selectively PermeableCapsules Composed of Colloidal Particles. Science,2002,298:1006~1009(b) Samanta B,Patra D, Subramani C, et al. StableMagnetic Colloidosomes via Click MediatedCrosslinking of Nanoparticles at Water-Oil Interfaces. Small,2009,5:685~688(c) Niu Z,He J, Russell T P, et al. Synthesis of Nano/Microstructures at Fluid Interfaces. Angew ChemInt Ed,2010,49:10052~10066
    [296](a) Tian J, Jin J, Zheng F, et al. Self-Assembly of Gold Nanoparticles and Polystyrene: AHighly Versatile Approach to the Preparation of Colloidal Particles with Polystyrene Coresand Gold Nanoparticle Coronae. Langmuir,2010,26:8762~8768(b) Tian J, Zheng F, ZhaoH. Nanoparticles with Fe3O4-Nanoparticle Cores and Gold-Nanoparticle Coronae Preparedby Self-Assembly Approach. J Phys Chem C2011,115:3304~3312
    [297](a) Zhang X, Liu L, Tian J, et al. Copolymers of Styrene and Gold Nanoparticles. Chem.Commun.2008,6549~6551(b) Zhang X, Yang Y, Tian J, et al. Vesicles Fabricated byHybrid Nanoparticles. Chem. Commun.2009,3807~3809(c) Tian J, Zheng F, Duan Q, et al.Self-assembly of Polystyrene with Pendant Hydrophilic Gold Nanoparticles: The Influenceof the Hydrophilicity of the Hybrid Polymers. J Mater Chem.2011,21:16928~16934
    [298](a) Duan H, Wang D, Sobal N S, et al. Magnetic Colloidosomes Derived fromNanoparticle Interfacial Self-Assembly. Nano Lett.2005,5:949~952(b) Duan H, Wang D,Kurth D K., et al. Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces. AngewChem Int Ed,2004,43:5639~5642(c) Wang D, Duan H, Mohwald H. The Water/OilInterface: the Emerging Horizon for Self-assembly of Nanoparticles. Soft Matter,2005,1:412~416
    [299](a) Jeon H K, Kim J K. The Effect of the Amount of in Situ Formed Copolymers on theFinal Morphology of Reactive Polymer Blends with an In Situ Compatibilizer.Macromolecules,1998,31:9273~9280(b) Sigalov G M, Ibuki J, Chiba T, et al. Method ofEffective Ellipses for Digital Image Analysis of Size, Shape, Orientation, and InterparticleDistances in Polymer Blends: Application to a Study of Polyamide6/PolysulfoneReactive Blending. Macromolecules,1997,30:7759~7767
    [300] Annemie R, Laurence C, Zhang Z, et al. The Compressive Deformation ofMulticomponent Microcapsules: Influence of Size, Membrane Thickness, and CompressionSpeed. J Biomater Sci, Polym Ed,2001,12:157~170
    [301] Jo S, Shin H, Shung A K, et al. Synthesis and Characterization of Oligo(poly(ethyleneglycol) fumarate) Macromer. Macromolecules,2001,34:2839~2844
    [302] Andreopoulos F M, Deible C R, Stauffer M T, et al. Photoscissable Hydrogel Synthesis viaRapid Photopolymerization of Novel PEG-Based Polymers in the Absence ofPhotoinitiators. Journal of the American Chemical Society,1996,118:6235~6240
    [303] Zhang Y, Won C-Y, Chu C-C. Synthesis and characterization of biodegradablehydrophobic–hydrophilic hydrogel networks with a controlled swelling property. J Poly SciPart A: Polymer Chemistry,2000,38:2392~2404
    [304] Bouas-Laurent H, Castellan A, Desvergne J P, et al. Photodimerization of anthracenes influid solution: structural aspects. Chem Soc Rev,2000,29:43~55
    [305] Bouas-Laurent H, Castellan A, Desvergne J P, et al. Photodimerization of anthracenes influid solutions:(part2) mechanistic aspects of the photocycloaddition and of thephotochemical and thermal cleavage. Chem Soc Rev,2001,30:248~263
    [306] Zheng Y, Micic M, Mello S V, et al. PEG-Based Hydrogel Synthesis via thePhotodimerization of Anthracene Groups. Macromolecules,2002,35:5228~5234
    [307] McSkimming G, Tucker J H R, Bouas-Laurent H, et al. An Anthracene-BasedPhotochromic System That Responds to Two Chemical Inputs. Angew Chem Int Ed,2000,39:2167~2169
    [308] Cao D, Meier H. The Unusual Photochemistry of Dendrimers with an Anthracene Core.Angew Chem Int Ed,2001,40:186~188
    [309] Yang X F, Guo X Q. Investigation of the anthracene-nitroxide hybrid molecule as a probefor hydroxyl radicals. Analyst,2001,126:1800~1804
    [310] Yin Z, Koulic C, Pagnoulle C, et al. Probing of the reaction progress at a PMMA/PSinterface by using anthracene-labeled reactive PS chains. Langmuir,2003,19:453~457
    [311] Moran N, Bassani D M, Desvergne J-P, et al. Detection of a single DNA base-pairmismatch using an anthracene-tagged fluorescent probe. Chem Commun,2006,5003~5005
    [312] Duff M R, Tan W B, Bhambhani A, et al. Contributions of hydroxyethyl groups to theDNA binding affinities of anthracene probes. J Phys Chem B,2006,110:20693~20701
    [313] Coursan M, Desvergne J P, Deffieux A. Reversible photodimerisation ofω-anthrylpolystyrenes. Macromolecular Chemistry and Physics,1996,197:1599~1608
    [314] Chujo Y, Sada K, Nomura R, et al. Photogelation and redox properties ofanthracene-disulfide-modified polyoxazolines. Macromolecules,1993,26:5611~5614
    [315] Wang C, Zhang D, Xiang J, et al. New Organogels Based on an Anthracene Derivativewith One Urea Group and Its Photodimer: Fluorescence Enhancement after Gelation.Langmuir,2007,23:9195~9200
    [316] Goldbach J T, Russell T P, Penelle J. Synthesis and Thin Film Characterization ofPoly(styrene-block-methyl methacrylate) Containing an Anthracene Dimer PhotocleavableJunction Point. Macromolecules,2002,35:4271~4276
    [317] Goldbach J T, Lavery K A, Penelle J, et al. Nano-to Macro-Sized Heterogeneities UsingCleavable Diblock Copolymers. Macromolecules,2004,37:9639~9645
    [318] Lou X W, Yuan C, Zhang Q, et al. Platinum-Functionalized Octahedral Silica Nanocages:Synthesis and Characterization. Angew Chem Int Ed,2006,45:3825~3829
    [319] Lou X W, Yuan C, Archer L A. Double-Walled SnO2Nano-Cocoons with MovableMagnetic Cores. Adv Mater,2007,19:3328~3332
    [320] Lou X W, Li C M, Archer L A. Designed Synthesis of Coaxial SnO2@carbon HollowNanospheres for Highly Reversible Lithium Storage. Adv Mater,2009,21:2536~2539
    [321] Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO2Microspheres in IonicLiquids. J Am Chem Soc,2003,125:6386~6387
    [322] Lou X W, Yuan C, Archer L A. Shell-by-Shell Synthesis of Tin Oxide Hollow Colloidswith Nanoarchitectured Walls: Cavity Size Tuning and Functionalization. Small,2007,3:261~265
    [323] Marinakos S M, Novak J P, Brousseau L C, et al. Gold Particles as Templates for theSynthesis of Hollow Polymer Capsules. Control of Capsule Dimensions and GuestEncapsulation. Journal of the American Chemical Society,1999,121:8518~8522
    [324] Xu H, Wang W. Template Synthesis of Multishelled Cu2O Hollow Spheres with aSingle-Crystalline Shell Wall. Angew Chem Int Ed2007,46:1489~1492
    [325] Hubert D H W, Jung M, Frederik P M, et al. Vesicle-Directed Growth of Silica. Adv Mater,2000,12:1286~1290
    [326] Yeh Y-Q, Chen B-C, Lin H-P, et al. Synthesis of Hollow Silica Spheres withMesostructured Shell Using Cationic Anionic-Neutral Block Copolymer TernarySurfactants. Langmuir,2005,22:6~9
    [327] Wu C Z, Xie Y, Lei L Y, et al. Synthesis of New-Phased VOOH Hollow “Dandelions” andTheir Application in Lithium-Ion Batteries. Adv Mater,2006,18:1727~1732
    [328] Peng Q, Dong Y, Li Y. ZnSe Semiconductor Hollow Microspheres. Angew Chem Int Ed,2003,42:3027~3030
    [329] Li, Shi, Hua, et al. Hollow Spheres of Mesoporous Aluminosilicate with aThree-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability. NanoLetters,2003,3:609~612
    [330] Fowler C E, Khushalani D, Mann S. Interfacial synthesis of hollow microspheres ofmesostructured silica. Chem Commun,2001,2028~2029

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700