EDTA存在下光诱导铁氧化物的形成及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于纳米铁氧化物在催化、防腐、颜料、磁记录材料等领域有着广泛的应用,使得纳米铁氧化物的制备备受关注。从制备铁氧化物的原料区分可以将其分为两大类:一类是以Fe(Ⅲ)盐为原料,另一类则是以Fe(Ⅱ)盐为原料。本文以FeSO_4和NaOH为原料,主要研究了Fe(OH)_2悬浮液在不同条件下的氧化机制,旨在找出其规律,为今后以FeSO_4为原料制备不同的铁氧化物提供必要的实验数据。本文的创新之处在于采用O_3作氧化剂氧化Fe(OH)_2悬浮液并得到了一种新型的筏状γ-FeOOH,另外本文率先将可见光的影响引入实验体系,并对其影响机制进行了初步探讨。
     本文作者在前人工作的基础上,改用O_3作氧化剂研究了O_3氧化Fe(OH)_2悬浮液的过程,找到了其主要影响因素——初始pH值和EDTA,并分别对二者进行了研究。结果表明在弱碱性范围内pH值对产物的影响非常敏感,当初始pH值为8.6或8.5时可以得到纯相的γ-FeOOH,当初始pH值升高到8.7时得到的则是纯相的α-FeOOH。通过对产物进行透射电镜表征可以发现得到的γ-FeOOH为纳米筏状结构,α-FeOOH为无定形态。在室温下,O_3氧化Fe(OH)_2生成何种产物取决于氧化速率和pH:在pH值大于8.7时O_3在水中能够分解出氧化能力极强的新生态氧[O]和羟基自由基[·OH],快速将Fe(Ⅱ)氧化,并快速成核转化为非晶态α-FeOOH。当pH值小于8.7时,O_3分解为O_2可能占主导,O_2与配合物Fe~Ⅱ-EDTA的作用,通过电子转移可产生超氧负离子(O_2~-·),可使Fe(Ⅱ)快速生成γ-FeOOH。
     通过实验发现,加入适量的EDTA可以明显地加快反应速率,并且可以提高所得产物的纯度,增大EDTA的浓度对反应过程及产物并没有太大影响,主要是因为过量的EDTA络合Fe(Ⅱ)的一种保护作用。
     初始pH值和EDTA浓度是O_3氧化Fe(OH)_2悬浮液过程中的两个重要影响因素,同时也是空气氧化Fe(OH)_2悬浮液过程中的两个重要因素。本文分别探讨了初始pH值和EDTA浓度对反应过程及所得产物的影响。结果表明在初始pH值为8.6时可以得到纯的γ-FeOOH,随着pH值的升高则有利于α-FeOOH的生成,当初始pH值为9.0时可以得到纯相的α-FeOOH,pH值继续升高则有利于铁黑的生成。实验表明适量的EDTA的加入可以明显地加快反应速率,缩短反应时间,原因可能是因为EDTA和溶解氧形成电子转移络合物,并通过外层电子转移反应生成超氧负离子(O_2~-·),故而提高了Fe(Ⅱ)的氧化反应速率。EDTA浓度的增加反而降低了反应速率可能是因为过量的EDTA络合Fe(Ⅱ)的一种保护作用。
     在污水处理过程中Fe(Ⅲ)通常作为光催化剂使用,大气中的Fe(Ⅱ)/Fe(Ⅲ)可以降解草
Because of the widely application of nanosized iron oxides in many aspects, such as catalysis, antisepsis, pigments and magnetic recording materials, the preparation of the nanosized iron oxides attracts much attention. The preparation methods can be divided into two sorts according to their raw materials: one is based on Fe(Ⅱ)ion as its raw material;the other is Fe(Ⅲ)ion. The novelty of the article lies in the new style raft-like lepidocrocite prepared by O_3 oxidant, moreover, we firstly take into account of the light in the research and give primary discuss on its influential mechanism.In this article, we used FeSO_4 and NaOH as the raw material, and investigated the oxidation mechanisms of Fe(OH)_2 suspension at different conditions. The present work is aimed to find the rule, in order that we can supply necessary basis for the preparation of iron oxides in later use.The author used O_3 as the oxidant to investigate the oxidation process of Fe(OH)_2 suspension, and did respective researches on its main influential factors: initial pH and the concentration of EDTA. The results indicated that the initial pH has more effect on the product at higher pH. At pH 8.6 or 8.5, pure lepidocrocite was obtained;when pH >8.7, the main product is pure goethite. TEM images showed that lepidocrocite was raft-like, while goethite was amorphous. At room temperature, the species of the transformation products for Fe(OH)_2 depend on both pH and oxidation speed. The result in the current system may be explained by the following mechanism. According to literature data O_3 in aqueous solution pH>8.7 is decomposed to newly-formed[O], which is a very strong oxidant, and[·OH]. Fe(Ⅱ) can be oxidized speedly to form amorphous α-FeOOH. When pH<8.7, O_3 is predominately decomposed to O_2 and O_2 is transformed to [O_2~-·] by the interaction between O_2 and FeⅡ-EDTA. Thus Fe(OH)_2 can be transformed speedly to y-FeOOH. The results also suggested that trace of EDTA could accelerate the reaction rate noticeably, as well as enhance the purity of the product. While more EDTA in the system seemed no more effect. It's may be attributed to the protective function between EDTA and Fe(Ⅱ)ion.Initial pH and the concentration of EDTA were also the two main influential factors in the air oxidation. The results revealed that when pH 8.6 we can obtain pure lepidocrocite, as the
    rising of pH, more goethite was prepared. When pH 9.0, we can obtain pure goethite, the higher pH was suitable to the preparation of magnetite. We can conclude that the cooperation of trace of EDTA reduced the reaction time. It was considered that EDTA can form the charge-transfer complexes with the dissolved oxygen and superoxide anions(OY) were produced via a outer-sphere electron transformation. As a result, the oxidation rate of Fe( II )ion was accelerated. The slow down of the reaction with the increasing of EDTA may be attributed to the protective function between EDTA and Fe( II )ion.Fe(III)ion was usually used as light catalyst in the disposal of sewage, the iron-catalyzed photochemical decomposed oxalic acid and generation of hydrogen peroxide in atmospheric liquid phases. In our experiment system, according to the results, we found that light played some role in the reaction. Moreover the results revealed that increasing of light intensity, the reaction was sped up, and more lepidocrocite was obtained. We also compared with different lamps, and found that ultraviolet-light was in favor of the formation of magnetite.In the research, transmission electron microscopy(TEM), X-ray diffraction(XRD), and infrared(IR) spectrum were applied as our token method, and we gave some explanations on the reaction mechanism of Fe( II )ion oxidation by air under the light effect.
引文
1.王世敏,许祖勋,傅晶.纳米材料制备技术[M].化学工业出版社,2002
    2. A. Saric, S. Music, K. Nomura, etal. Microstructural Properties of Fe-oxide Powders Obtained by Precipitation from FeCl_3 Solutions. Mater. Sci. Eng. B, 1998, 56: 43-52
    3.刘辉,张兆志,魏雨,等.液相法合成α-Fe_2O_3微粒及其成因分析.人工晶体学报,2004,33(5):1-5
    4.景志红,王燕,吴世华.不同形态的α-Fe_2O_3纳米粉体的水热合成、表征及其磁性研究.无机化学学报,2005,21(1):145-148
    5.魏雨,郑学忠,刘晓林,等.均分散异形微粉α-Fe_2O_3的研究.科学通报,1996,41(4):315-317
    6.魏雨,郑学忠,刘晓林,等.均分散针状α-Fe_2O_3的制备.应用化学,1996,13(1):86-88
    7.魏雨,刘晓林,郑学忠.均分散超微细α-Fe_2O_3水溶胶的制备.物理化学学报,1996,12(6):551-554
    8.郑学忠,刘晓林,赵建路,魏雨.Fe(OH)_3中微量金属离子对水热合成α-Fe_2O_3粒径的影响.功能材料,1997,28(6):607-608
    9.刘跃进,李振民,李功军,等.水热法合成云母氧化铁结晶条件.化工学报,2004,55(5):846-849
    10.王兴尧,康晓红,谢慧琴,等.水热反萃法制备纳米α-Fe_2O_3.应用化学,2004,21(7):655-659
    11.魏雨,贺会兰,刘晓林,等.相转化对均匀胶粒的形貌及团聚度的影响.物理化学学报,1997,13(6):564-568
    12.魏雨,贺会兰,郑学忠,等.均分散纺锤状α-Fe_2O_3的制备研究.应用科学学报,1997,15(4):494-498
    13. Nobuoka, Soichiro(Nara, JA). Method for manufacture of micaceous alpha-ironoxide[P].US, 3987156. 1976
    14. Ado, Kazuaki, Nobuoka, etal. Method for manufacture of iron Oxide flakes[P]. US, 4233283, 1980
    15. Hanslik T, NosekAlois, SubrtJan, etal. Method of micaceous ironoxide(mio) pigment production[P]. EP, 0416648. 1991
    16.樊亮,彭同江.均匀水解法制备超微细氧化铁粉体的工艺研究.硅酸盐通报,2005,3:106-110
    17.严新,朱雪梅,吴俊方,等.均匀α-氧化铁纳米粒子的制备及表征.盐城工学院学报,2002,15(2):50-53
    18.胡兵,龙化云,黄光斗.均匀沉淀法制备超微细透明氧化铁黄颜料.湖北工学院学报,2003,18(1):53-55
    19.刘建华,于美,李松梅.氧化铁纳米线阵列的溶胶-凝胶模板法制备与表征.无机化学学报,2005,21(3):429-432
    20.杨隽,张启超.胶体化学法制备氧化铁超微粉体.无机盐工业,2000,32(1):16-18
    21.贺蕴秋,解厌红.溶胶-凝胶法合成氧化铁系统陶瓷.功能材料,1999,30(2):166-169
    22.甘礼华,李光明,岳天仪,等.氧化铁气凝胶的制备及其表征.高等学校化学学报,1999,20(1):132-134
    23.陈龙武,甘礼华,岳天仪,等.微乳液反应法制备α-Fe_2O_3超细粒子的研究.物理化学学报,1994,10(8):750-754
    24.申德君,张朝平,罗玉萍,等.反相微乳液化学剪裁制备明胶γ-Fe_2O_3纳米复合微粒.应用化学,2002,19(2):121-125
    25.陈葳,肖益鸿,詹瑛瑛,等.微乳法制备Au/Fe_2O_3水煤气变换反应催化剂.催化学报,2003,24(11):867-871
    26.王英富.用针铁矿生产云母氧化铁的研究.国外金属矿选矿,1999,36(4):11-12,16
    27.林金谷,王菊,邹炳锁,等.超声分解法制备Fe-Co合金纳米微粒的研究.化学物理学报,1996,9(3):262-265
    28.张敬畅,曹维良,单伟力,等.激光热分解法制备多相分铁基UFP催化剂及催化性能的评价.催化学报,1998,19(1):63-66
    29.李巧玲,魏雨,李琳,等.微波辐射制备均匀α-Fe_2O_3纳米胶粒的研究.化学世界,2000,41(10):551-554
    30.贾振斌,魏雨,王洪敏.纳米相铁红的液相制备.无机材料学报,2000,15(5):926-928
    31.邱春喜,姜继森,赵振杰,等.固相法制备α-Fe_2O_3纳米粒子.无机材料学报,2001,16(5):957-960
    32.张秀丽,刘辉,魏雨,等.纺锤形α-Fe_2O_3粒子的溶液催化合成.化学学报,2005,63(12):1141-1146
    33.孟哲,魏雨.微量Fe(Ⅱ)离子加速δ-FeOOH相转化历程的研究.应用科技,2005,32(1):56-58,61
    34.马子川,魏雨,郑学忠,等.亚铁盐氧化法合成纺锤形α-Fe_2O_3微粒条件的研究.功能材料,1998,29(5):465-467
    35.马子川,魏雨,郑学忠,等.Fe(Ⅱ)离子对γ-FeOOH相转化为α-Fe_2O_3的影响.河北师范大学学报,1998,22(2):223-225
    36.马子川,魏雨,郑学忠,等.Fe(Ⅱ)浓度及pH值对γ-FeOOH相转化为α-Fe_2O_3时间的影响.磁性材料及器件,1997,29(2):43-45,49
    37.孟哲,贾振斌,魏雨.δ-FeOOH的制备及热处理产物的FTIR光谱.过程工程学报,2004,4(2):146-149
    38.孟哲,贾振斌,魏雨.非品态δ-FeOOH液相合成纳米级α-Fe_2O_3粉体的历程研究.化学学报,2004,62(5):485-488
    39.马子川,魏雨,郑学忠,等.亚铁盐空气氧化生成γ-FeOOH反应的动力学研究.化学研究与应用,1998,10(2):213-216
    40.孟哲.无定形态δ-FeOOH的形成机理及相转化研究:[硕士学位论文].河北师范大学,2002
    41.张立德,牟季美.纳米材料和结构[M].北京:科学出版社,2001
    42.赵林森,周诗瑶,杨海峰,等.γ-Fe_2O_3超细微粒制备及基本特征上海师范大学学报(自然科学版),1996,25(1):53-58
    43.王金忠,吴家混,孙良彦,等.γ-Fe_2O_3气敏材料的制备及掺杂研究.传感技术学报,1998,3:12-16
    44. Moralesmp, Andresvm, Veintemillasvs, etal. Structural effects on the magnetic properties of γ-Fe_2O_3 nanoparticles. Journal of Magnetion and Magnetic materials, 1999, 203: 146-148
    45.姜国华,姜继森.γ-Fe_2O_3纳米粒子的湿固相研磨法制备研究.高等学校化学学报,2004,25(3):405-408
    46.罗玉萍,张朝平,申德君,等.明胶-γ-Fe_2O_3纳米复合微粒的制备.云南大学学报(自然科学版),2002,24(1A):14-18
    47.王泽敏,刘勇,戢明,等.激光烧蚀铁丝法制备γ-Fe_2O_3纳米粉.中国激光,2004,31(9):1132-1136
    48.曹维良,张敬畅,石锦华,等.超微粒子氧化铁的制备研究.应用科学学报,2000,18(2):171-174.
    49.裴素华,孙海波,张华,等.γ-Fe_2O_3响应苯类气体敏感材料特性研究.功能材料与器件学报,2004,10(1):41-44
    50.牛新书,徐荭,徐甲强.纳米γ-Fe_2O_3的合成及气敏性能.材料研究学报,2001,15(5):593-598
    51.李茂琼,项金钟,胡永茂,等.纳米γ-Fe_2O_3的制备及特性研究.材料导报,2003,17(3):83-84,71
    52.马丽景,林茂,闫涛,等.纳米γ-Fe_2O_3复合氧化物的制备与气敏性质.化工学报,2004,55(2):264-267
    53.沈辉,邓再德,吴少祥,等.磁流体及其制备方法.功能材料(增刊),1998,10:375
    54.高道江,赖欣,王建华.磁性流体制备技术的现状与展望.磁性材料及器件,1998,29(2):20-23
    55.曾桓兴.铁基微粉材料研制的进展.化学通报,1992,10:6-8.
    56. Kato K, Radbruch A. Selective separation of cells using magnetic colloids. Cytometry, 1993, 14:384-389
    57. Papisov M I, Bogdanor J A, Schaffer B, etal. Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution. Magn. Magn. Mater., 1993, 122: 383-386
    58. Ruuge E K, Rusetski A N. Magnetic fluidsas drug carriers: targeted transport of drugsbya magnetic field. Magn Magn. Mater., 1993, 122: 335-339
    59. Qu S, Yang H, Ren D, etal. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid Interface Science, 1999, 215: 190-192
    60. Carl R F, Dumesic J A. Strong oxide-oxide interaction in silica-supported magnetite catalysts. J. Phys. Chem., 1981, 85: 3175-3180
    61.康鸿业.影响Fe_3O_4超微粒子性能因素的研究.高等学校化学学报,1992,12(5):648-68
    62.常铮,郭灿雄,李峰,等.新型磁性纳米同体酸催化剂ZrO_2/Fe_3O_4的制备及表征.化学学报,2002,60(2):298-304
    63,王弘,曾桓兴,沈瑜生.氧化铁气体传感器研究.半导体学报,1987,8(1):43-47
    64. Wang C, Zhu G, Chen Z, etal. The preparation of magnetite Fe_3O_4 and its morphology control by a novel arcelectrodeposition method. Materials Research Bulletin, 2002, 37: 2525-2529
    65.涂国荣,刘翔峰,杜光旭,等.Fe_3O_4纳米材料的制备与性能测定.精细化工,2004,21(9):641-644
    66.陈雷,杨文军,黄程,等.以高分子材料为介质制备纳米氧化铁颗粒.高分子材料科学与工程,1998,14(4):53-55
    67.赖欣,毕剑,高道江,等.Fe_3O_4磁性流体的制备.磁性材料及器件,2000,31(3):15-18
    68. Fan R, Chen X H, Gui Z, et al. A new simple hydrothermal preparation of nanocrystalline magnetite Fe_3O_4. Mater. Res. Bull., 2001, 36:497
    69.杨华,黄可龙,刘素琴,等.水热法制备的Fe_3O_4磁流体.磁性材料及器件,2003,34(2):4-6,15
    70. Li Y, Liao H, Qian Y. Hydrothermal synthesis of ultrafine α-Fe_2O_3 and Fe_3O_4 powders. Mater. Res. Bull., 1998, 33(6): 841
    71.邹大香,王海燕,杨晓辉,等.影响水热合成纳米Fe_3O_4晶粒纯度和平均粒径的因素.科学技术与工程,2003,3(3):253-256
    72.邱星屏.四氧化三铁磁性纳米粒子的合成与表征.厦门大学学报,1999,38(5):711-715
    73.都有为,陆怀先,顾新运.Fe_3O_4生成过程的研究.应用科学学报,1985,3(3):267
    74.邹涛,郭灿雄,段雪,等.强磁性Fe_3O_4纳米粒子的制备及其性能表征.精细化工,2002,19(12):707-710
    75. Drmazet-Bonnamour I, Perchec P L. Colloidal dispersion of magnetite nanoparticles bia in situpreparition with sodium polyoxyalkylene di-phospho-naes. Colloid Surfaces, 2000, 173:61
    76. Vayssires L, Chanac C, Tronc E, etal. Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J. Colloid Interface Science, 1998, 205: 205
    77. Sun Y, Ma M, Zhang Y, etal. Synthesis of nanometer-size maghemite particles from magnetite. Colloids and surfaces A: Physicochem. Eng. Aspects., 2004, 245: 15-19
    78. Wang J, Zhang K, Peng Z, etal.. Magnetic properties improvement in Fe_3O_4 nanoparticles grown under magnetic fields. Journal of Crystal Growth, 2004, 266:500-504
    79. Kim D, Zhang Y, Voit W, etal. Synthesis and characterization of surfactant-coated super-paramagnetic monodispersed ironoxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2001, 225(1): 30-36
    80. Wu K, Kuo P, Yao Y, etal. Magnetic and optical properties of Fe_3O_4 nano-particle ferrofluids prepared by co-precipitation technique. IEEE Transactions on Magnetics, 2001, 37(4): 2651-2653
    81.李砅,侯乙东,李旦振,等.纳米Fe_3O_4磁性粒子的制备及物性研究.无机材料学报,2003,18(4):929-932
    82.邓建国,贺传兰,龙新平,等.磁性Fe_3O_4聚吡咯纳米微球的合成与表征.高分子学报,2003,3:393-397
    83. Lai Q, Lu J, Ji X. Study of preparation and properties on magnetization and stability for ferromagnetic fluids. Materials Chemistry and Physics, 2000, 66: 6-9
    84.孟哲,张冬亭,王春平.磁性纳米级Fe_3O_4的氧气诱导、空气氧化液相合成与表征.光谱实验室,2003,20(4):489-491
    85. Sugimoto T, Matijevic E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J Colloid Interface Science, 1980m 74: 227-243
    86.何秋星,杨华,刘素琴,等.转相法制备高比表面积纳米四氧化三铁磁性粉体.精细化工,2003,20:257-260
    87.王秀宇,杨桂琴,张之圣,等.纳米Fe_3O_4颗粒及磁性液体的制备.功能材料与器件学报,2005,11(2):228-232
    88.丁明,曾桓兴.中和沉淀法Fe_3O_4的生成研究.无机材料学报,1998,13(4):619-624
    89.张茂润.纳米级Fe_3O_4粉体的研制.淮南工业学院学报,2000,20(1):45-16,57
    90. Yoshikazui T, Masahide N, Satoshi H, etal.. Synthesis of ferrite nanoparticles by mechanica processing using a ball mill. Journal of the Japan Institute of Metals, 2002, 66(1): 34-39
    91. Gerardo F, Goya. Handling the particle size and distribution of Fe_3O_4 nanopartieles through ballmilling. Solid State Communications, 2004, 130: 783-787
    92. Lpez-Quintela M A, Rivas J. Chemcal reactions in microemulsion: a powerful method to obtain ultrafine particles. J Colloid Interface Science, 1993, 158:446
    93. Bandow S, Kimura K, Kon-no K, etal. Magnetic properties of magnetite utrafine particles prepared by microemulsion method.Jpn J Appl Phys, 1987, 26(5): 713
    94. Zhou Z, Wang J, Liu X, etal.. Synthesis of Fe_3O_4 nano-particles from emulsion.. J Mater Chem, 2001, 11: 1704-1709
    95.何秋星,杨华,陈权启,等.微乳化法制备纳米磁性Fe_3O_4微粒工艺条件研究.磁性材料及器件,2003,34(2):9-11
    96.王海燕,李新建.微乳-水热法制备粒径均匀的纯相纳米Fe_3O_4.科学技术与工程,2004,4(4):266-268
    97. Domingo C, Rodrguez-Clemente R, Blesa M. Morphological properties of α-FeOOH, γ-FeOOH and Fe_3O_4 obtained by oxidation of aqueous Fe(Ⅱ)solutions. J Colloid Interface Science, 1994, 165: 244
    98. Gmez-Lopera S A, Plaza R C, Plaza, etal. Spherical magnetite/biodegradable polymer composite particles. J Colloid Interface Science, 2001, 240: 40
    99. Hartridge A, Bhattacharya A K, Sengupta M, etal. Crystallite size dependenece on the magnetic propereics of nanocrystalline magnetite powders.J Magn Mater, 1997, 176:89
    100. Thapa D, Palkar V R, Kurup M B, etal. Properties of magnetite nanoparticles synthesized through a novelchemical route. Materials Letters, 2004, 58: 2692-2694
    101. Massart R. Preparation of magnetite nanoparticles. IEEE Trans. Magn., 1981, 17: 1247-1250
    102. Molday R S. Magnetic irondextran microspheres[P].US:4452773.1984-06-05
    103. Shen L, Laibinis P E, Hatton T A. Bilayer surfactant stabilized magneticfluids: Synthesis and interactions at interface. Langmuir, 1999, 15: 447-453
    104.邱星屏.四氧化三铁磁性纳米粒子的合成及表征.厦门大学学报(自然科学版),1999,38(5):711-715
    105.景苏,鲁新宇.室温固相法合成纳米FeOOH及Fe_2O_3.南京工业大学学报,2002,24(6):52-55
    106. Vijayakumar R, Koltypin Y, Felner I, etal. Sonochemica synthesis and characterization of pure nanometer-sized Fe_3O_4 particles. Materials Science and Engineering A, 2000, 286: 101-105
    107. Del M F, Morales M P, Levy D, etal. Formationof γ-Fe_2O_3 isolated nanoparticle in a silica matrix. Langmuir, 1997, 13: 3627
    108.杨仕清,王豪才,张万里,等.超细金属和二元合金磁粉的制备及静态与动态磁性研究.应用科学学报,1997,15(4):436-439
    109.李巧玲,魏雨,李琳,等.微波辐射制备均匀α-Fe_2O_3纳米胶粒的研究.化学世界,2000,10:551-554
    110.熊玉梅,周晓东,胡黎明.滴加法制备超细α-FeOOH的工艺过程研究.华东理工大学学报,1996,22(5):541-547
    111.朱建育,施利毅,张仲燕,等.纳米α-FeOOH颗粒的形态和结构.功能材料,2002,33(2):225-227
    112.汤瑞湖,陈白珍,龚竹青,等.滴加法制备铁黄颜料工艺研究.无机盐工业,2004,36(6):49-51
    113.曾桓兴.纺锤形铁黄α-FeOOH的合成.现代化工,1995,7:19-22
    114.关成信,王兰,安玉玲,等.均匀纺锤形α-FeOOH粒子的合成.磁记录材料,1996,1:10-13
    115.蔡世银,车阿小,李春忠,等.均匀纺锤形α-FeOOH微晶制备过程.华东理工大学学报,1997,23(2):298-302
    116.曾桓兴,张庶元,刘先松,等.均匀纺锤形铁黄α-FeOOH微晶生长机制研究.科学通报,1994,39(4):319-322
    117.古绪鹏,陈同云,吴鹏生.复合添加剂在碱法制备α-FeOOH中的应用.应用化学,2001,18(7):584-586
    118.朱萍,施利毅,张仲燕,等.利用钛白副产物绿矾制备纳米α-FeOOH的研究.环境科学学报,2000,20(3):382-384
    119.李春忠,陈军,陈劲松,等.酸法合成针形超微粒α-FeOOH过程研究Ⅰ.晶种制备.华东理工大学学报,1995,21(6):670-674
    120.李春忠,汪中柱,陈劲松,等.酸法合成针形超微粒α-FeOOH过程研究Ⅱ.铁黄生长.华东理工大学学报,1996,22(1):13-18
    121.胡兵,龙化云,黄光斗.均匀沉淀法制备超微细透明氧化铁黄颜料.湖北工学院学报,2003,18(1):53-55
    122.罗益民,黄可龙.纳米级α-FeOOH细粉的制备与表征.无机材料学报,1994,9(2):239-243
    123.黄光斗,贾泽宝,胡兵,等.透明氧化铁黄颜料的制备.无机盐工业,1999,31(5):12-14
    124.景苏,鲁新宇.室温固相法合成纳米FeOOH及Fe_2O_3.南京工业大学学报,2002,24(6):52-55
    125.张懿,王颖霞,华彤文.酸法合成α-FeOOH反应动力学研究.物理化学学报,1990,6(6):673-679
    126.陈学元,曾桓兴,万召奎,等.纺锤形铁黄α-FeOOH微晶合成动力学研究.中国科学技术大学学报,1994,24(2):176-184
    127.王亭杰,金涌,汪展文,等.针状羟基氧化铁的成核与生长过程.化工学报,1998,49(2):201-207
    128.古绪鹏,陈同云.针状超微铁黄形成机理的研究.无机盐工业,2001,33(4):8-9,14-15
    129.李春忠,蔡世银,朱以华.碱法铁黄合成过程成核生长机理.化学物理学报,1998,11(5):410-415
    130.张永光,吴鹏生,古绪鹏.络合剂Na_2H_2Y在形成α-FeOOH中的作用.东南大学学报(自然科学版),2002,32(2):272-275
    131.刘辉.氢氧化铁凝胶的催化相转化机理及α-Fe_2O_3的控制合成研究:[博士学位论文].中国科学院研究生院,2005
    132.张霞,赵岩,张彩碚.纺锤形β-FeOOH的形成过程研究.化学物理学报,2004,17(5):613-617
    133. Sugimoto T, Waki S, Itoh H, etal. Preparation of monodisperse platelet-type hematite particles from a highly condensed β-FeOOH suspension, Colloids Surfaces A: Physicochem. Eng. Aspects, 1996, 109: 155-165
    134. Cornell R M, Schneider W. Phase transformations in the ferrihydrite/cysteine system. Polyhedron, 1989, 8: 2829-2836
    135.关成信,安玉玲.γ-FeOOH品种成因分析及合成γ-Fe_2O_3的历程探讨.磁记录材料,1994,1:21-23
    136.韩今依,李春忠,胡黎明.超微粒γ-FeOOH的制备工艺研究.高等学校化学学报,1997,19(2):270-274
    137.车阿小,李春忠,吴秋芳,等.EDTA对γ-FeOOH制备过程的影响.华东理工大学学报,1998,24(4):441-445
    138.车阿小,李春忠,朱以华,等.EDTA对γ-FeOOH制备过程的影响.化学物理学报,1999,12(2):209-213
    139.罗红梅,曾桓兴.纺锤型γ-FeOOH的合成及其热分析研究.中国科学技术大学学报,1995,25(3):363-367
    140.魏雨,刘晓林,郑学忠.无极磁粉的制备.应用化学,1997,14(2):110-112
    141.马子川,魏雨,郑学忠,等.亚铁盐氧化法合成纺锤形α-Fe_2O_3微粒条件的研究.功能材料,1998,29(5):465-467
    142.马子川.均分散α-Fe_2O_3微粒的结晶技术及其机理研究:[博士学位论文].华南理工大学,1998
    143. Gotic M, Popovic S, Music S. Formation and characterization of δ-FeOOH. Materials letters, 1994, 21: 289-295
    144. Ishikawa T, Yasukawa A, Kandori K. Textures of tetradecahegron δ-FeOOH particles and their thermal decomposition products. Chem. Soc. Faraday Trans., 1994, 90(17): 2567-2571
    145. Ishikawa T, Cai Y W, Kandori K. Characterization of the thermal decomposition products of δ-FeOOH by fourier-transform infrared spectroscopy and N_2 adsorption. Chem. Soc. Faraday Trans., 1992, 88(8): 1173-1177
    146. Srinivasan R, Lin R, Spicer R L, etal. Structural features in the formation of the green rust intermediate and γ-FeOOH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113: 97
    147.魏雨,孟哲,贾振斌,等.Fe(OH)_2悬浮液在EDTA作用下氧气氧化生成δ-FeOOH的机理研究.高等学校化学学报,2005,26(5):945-947
    148.张玉亭,戴仲善.EDTA对均匀胶体粒子形成的影响.物理化学学报,1993,19(6):728-734
    149. Braterman P S, Cairns-Smith A G, Sloper R W. Photo-oxidation of hydrated Fe~(2+)-significance for banded iron formations. Nature, 1983, 303: 163-164
    150. Zuo Y, Deng Y. Iron(Ⅱ)-catalyzed photochemical decomposition of acid and generation of H_2O_2 in atmospheric liquid phases. P Ⅱ: S0045-6539(97)00228-2
    151.邓南圣,吴峰.环境光化学[M].北京:化学:F业出版社,2003,83—97
    152. Zuo Y, Holgne J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(Ⅲ)-oxalato complexes. Environ. Sci. Technol. 1992, 26, 1014-1022
    153. Kotronarou A, sigg L, SO_2 oxidation in atmosoheric water: role of Fe(Ⅱ) and effect of ligands. Environ. Sci. Technol., 1993, 27:2725-2735
    154. Zuo Y. Hoigne J. Evidence for photochemical formation of H_2O_2 and oxidation of SO_2 in authentic fog water. Science, 1993, 260: 71-73
    155. Andreozzi R, Caprio V, Marotta R. Iron(Ⅲ)(hydr)oxide-mediated photooxidation of 2-aminophenol in aqueous solution: a kinetic study. Water Research, 2003, 37: 3682-3688
    156. Andreozzi R, Caprio V, Marotta R. Oxidation of 3,4-dihydroxybenzoic acid by means of hydrogen peroxide in aqueous goethite slurry. Water Research, 2002, 36: 2761-2768
    157. Andreozzi R, Caprio V, Marotta R. Oxidation of aromatic substrates in water/goethite slurry by means of hydrogen peroxide. Water Research, 2002, 36: 469-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700