硅藻土基纳米二氧化钛的制备及其用于降解甲醛的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以硫酸氧钛为原料、硅藻土微粒为载体,尿素为沉淀剂,通过改变硫酸氧钛浓度、硅藻土与二氧化钛质量比、尿素浓度、pH值、水解温度、反应时间和焙烧温度等工艺条件,采用混合均匀沉淀法制备出了硅藻土基负载型纳米二氧化钛。利用SEM和XRD对样品的结构性能进行测定,得出最佳制备条件为:硫酸氧钛浓度初始浓度0.01mol/L,硅藻土与TiO_2质量比为2:1,尿素浓度为0.1mol/L,反应体系pH值为1.5,水解温度为75℃,反应时间为60min,煅烧温度700℃。在上述条件下制备的硅藻土基纳米二氧化钛样品中二氧化钛在硅藻土表面的最大覆盖率为75%、二氧化钛平均粒径为150nm,并初步探讨了二氧化钛粒子和载体之间的结合机理。
     在最佳条件下制备的样品,做降解甲醛气体的效果实验,并以实际的环境条件为参考,改变反应器内甲醛气体的初始浓度、反应体系的温度、相对湿度和光照强度,用气相色谱定量测定甲醛气体的含量,得出结论:硅藻土基纳米二氧化钛能在光照下持续降解高浓度甲醛气体,初始浓度为6.0×10-3mg/L甲醛气体,用5g样品经过150小时降解率达到99%;用5g硅藻土基纳米二氧化钛处理初始浓度为2.0×10-3mg/L甲醛,15℃时,需要50小时将其完全降解,温度越高,所需要时间越短,45℃下仅需要12小时就能彻底降解;光照强度为0时,产品几乎不能降解甲醛,照度越大,降解速率越快,在8100Lm/m2的照度下,5g样品14小时能将浓度为2.0×10-3mg/L甲醛完全降解;相对湿度的大小也影响对甲醛气体的降解,5g样品在相对湿度50%下,14小时能将2.0×10-3mg/L的甲醛降解到3.72×10-5mg/L,相对湿度越大,降解越彻底,在相对湿度80%下,14小时能降到1.0×10-5mg/L。
The nano-sized titanium dioxide immobilized onto diatomite was obtained through changing the TiOSO4 concentration, the quantity proportion between diatomite and TiO_2, the concentration of urea, pH, reaction temperature and time, calcining temperature by the mixed homogeneous deposition method using the carrier of diatomite,the raw material of TiOSO4 and the precipitator of urea The obtained photocatalyst were characterized by SEM and XRD and it was concluded that the best preparing conditions were as flowing: the incipient concentration of TiOSO4 was 0.01mol/L, the quantity ratio between diatomite and TiO_2 was 2:1, the concentration of urea was 0.1mol/L, the pH of reaction system was 1.5, the reaction temperature was 75℃, the reaction time was 60 min and the calcining temperature was 700℃. Under the best preparation conditions, the max loading rate of nano-sized titanium dioxide was 75%, and the average diameter of loaded particle was 150nm. We also probed to the binding mechanism of titanic dioxide particulate and the diatomite carrier.
     The experiment of degrading formaldehyde was did using the sample that was made out under the best preparation conditions.The residual quantity of formaldehyde was mensurated by the gas chromatograph through changing the raw concentration of formaldehyde injected into the reactor, the reaction temperature of reaction system, the light intensity and the relative humidity of atmosphere in the reactor on principle of the practical environment conditions. It came to the conclude as follows: the sample we made could oxidate completely the high concentration of formaldehyde under uninterrupted illumination and 5 gram of our sample could decrease 99 pensent of the formaldehyde with raw concentration of 6.0×10-3mg/L in 150 hours; the higher temperature, the rapider rate of degrading the same quantity of formaldehyde, as witch it cost 50 hours for 5 gram of sample oxidating formaldehyde with raw concentration of 2.0×10-3mg/L completely under 15℃, but cost 12 hours under 45℃; the stronger light intensity, the rapider rate of degrading the formaldehyde, as witch it cost 14 hours for 5 gram of sample oxidating formaldehyde with raw concentration of 2.0×10-3mg/L completely under the light intensity of 8100Lm/m2, but it nearly could not degrade the formaldehyde under 0 Lm/m2; the more relative humidity, the faster our sample degrading the formaldehyde, as witch 5 gram of our sample oxidated formaldehyde with raw concentration of 2.0×10-3mg/L to 3.72×10-5mg/L in 14 hours under the relative humidity of 50%, but to 1.0×10-5mg/L under the relative humidity of 80%.
引文
[1]高桂兰,段学臣,纳米金红石型二氧化钛粉末的制备及表征,硅酸盐通报,2004,23(1):88-90
    [2]何媛媛,李正山,范莉等,TiO2硅藻土复合光催化剂研制及光催化氧化水中亚甲基蓝的研究,染料与染色,2005,2:53-55
    [3]吴迪,王鼎聪,赵德智,纳米二氧化钛制备工艺应用进展,钛工业进展,2005,22(3):32-35
    [4]古映萤,邱小勇,杜作娟,不同晶型纳米TiO2的水热合成及光催化性能,化工新型材料,2004,32(2):14
    [5]赵红雁,张敬畅,曹维良,纳米二氧化钛的制备方法,石油化工,2003,32:449-451
    [6]杨柯,刘阳,尹虹,纳米二氧化钛的制备技术研究,中国陶瓷,2004,40(4):8-12
    [7] Choi. Han Ho, Park. Joodong, Singh. R.K, Nanosized titania encapsulated silica particles using an aqueous TiCl4 solution, Applied Surface Science, 2005, 240(1-4): 7-12
    [8] Sun-Jae Kim, Soon-Dong Park, Yong Hwan Jeong et al. Homogeneous precipitation of TiO2 ultra fine powders from aqueous TiOCl2 solution, Journal of the American Ceramic Society, 1999, 82(4): 927-958
    [9] Rubing Zhang, Lian Gao, Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles, Materials Research Bulletin, 2002, 37(9): 59-66
    [10] Dong Seok Seo, Hwan Kim, Hang Chul Jung et al. Synthesis and characterization of TiO2 nanocrystalline powder prepared by homogenous precipitation using urea, Journal of Materials Research, 2003, 18(3): 571-517
    [11]王晓慧,王子忱,李熙,胶溶法合成TiO2超细粒子,材料科学进展,1992,6(6):533-537
    [12]施利毅,华彬,微乳液的结构及其在制备超细颗粒中的应用,功能材料,1998,29(2):136-139
    [13] Kwiatkowki, Krzystof C et al, Handbook Nanostract Mater Anotechnol [M]. 2000, 387-421
    [14] Hirai T, Sato H, Komasawa I, Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide, Ind Eng Chem Rse, 1993, 32(12): 3014-3019
    [15]王祖鸩,张凤宝,张前程,负载型TiO2光催化剂的研究进展,化学工业与工程,2004,21(4): 248-254
    [16]郑巍,刘维屏,宣日成等,负载TiO2光催化降解咪蚜胺农药,环境科学,1999,20 (1):73-76
    [17]沈杭燕,张晋霞,唐新硕,TiO2膜光催化剂的改进及表征,化学物理学报,2001,14(4):497-500
    [18] Sopyan I, Watanabe M, Murasawa S et al. A Film -Type Photocatalyst Incorporating Highly Active TiO2 Powder and Fluororesin Binder:Photocatalytic Activity and Long-term Stability. J. Electranal. Chem., 1996, 415: 183-186
    [19] Wyness P, Klausner J F, Goswami D et al. Performance of Nonoconcentrating Solar Photocatalytic Oxidation Reation. Part I: Flat-plate Configuration, J. Solar Energy Engineering, 1994, 116: 2-7
    [20]陈士夫,梁新,赵梦同,不同制备条件对TiO2/beads光催化活性的影响,感光科学与光化学,1999,17(1):25-31.
    [21] Al-Ekabi H, Serpone N. Studies in Heterogenous Photocatalysis 1. Photocatalytic Degradation of Chlorinated Phenols in Aerated Aqueous Solutions over TiO2 Supported on a Glass Matrix, J. Phys. Chem., 1988, 92 (5): 726-731
    [22] Peill N I, Hoffmann M R. Development and Optimization of a TiO2-Coated Fiber-Optic Cable Reaction: et al. J. Photochem. Phhottobiol. A: Chem., 1997, 108: 221-228
    [23] Choi W, Ko J Y, Park H, et al. Investigation on TiO2-coated Optical Fibers for Gas-phase Photocatalytic Oxidation of Acetone, Appl. Catal. B, 2001, 31 (3): 209-220.
    [24]于向阳,程继健,杜永娟,稀土元素掺杂对TiO2相组成和光催化性能的影响,玻璃与搪瓷,2000,28(2):15-20 25
    [25]方佑龄,赵文宽,尹少华等,纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷,应用化学,14(2):81-83
    [26] Sauer M L, Oills D F. Phtotocatalyzed Oxidation of Ethanol and Acetaldehyde in Hunmidified Air, J. Catal. , 1996, 158: 570-582
    [27]贺飞,唐怀军,二氧化钛光催化自洁功能陶瓷的研制,武汉大学学报(理学版),2001,47(4):419-424
    [28] Liu X S, Iu K K, Thomas J K. Preparation, Characterization and Photoreactivity of Titanium(Ⅳ) Oxide Encapsulated in Zeolites, J. Chem. Sci. Faraday Trans., 1993, 89 (11): 1861-1865.
    [29] Fan F R F, Liu H Y, Bard A J. Integrated Chemical Systems: Photocatalysis at TiO2 Incorporated into Nafion and Clay, J. Phys. Chem., 1985, 89: 4418-4420
    [30] Wu Jihuai, Uchida S, Fujishiro Y, et al. Synthesis and Photocatalytic of HTaWO6/(Pt , TiO2) and HTaWO6/(Pt, Fe2O3), Internat J. Inorg. Mater, 1999, 1(3/4):253
    [31] Yoneyama H, Haga S, Yamanaka S. Photocatalytic Activities of Microcrystalline TiO2 Incorporated in Sheet Silicates of Clay, J. Phys. Chem., 1989, 93: 4833-4837.
    [32] Miyoshi H, Nippa S, Uchida H, et al. Photochemical properties of TiO2 Microcrystallines Prepared in Nafion, Bull. Chem. SoCc. Jpn., 1990, 63 :3380-3384
    [33] Ding Z, Lu G Q, Greenfield P F. Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water, J. Phys. Chem. B, 2000, 104: 4815-4820.
    [34]赵文宽,牛晓宇,贺飞等,TiO2/SiO2的制备及其对染料X-3B溶液降解的光催化活性,催化学报,2001,2 (2):171-173
    [35]胡春,王怡中,汤鸿霄等,表面键联型TiO2/SiO2固定催化剂的结构及催化性能,催化学报,2001,22(2):185-188
    [36] Yoshinori K, Tatsuo M, Ataunori M. Anutase Nanocrystal-disperred Thim Films Via Sol-gel Process with Hot Water Treatment : Effects of Poly(Ethyleneglycol) Addition on Photocatalytic Activity of the Films, J. Mater Chem. 2001, 11(8): 2045-2048
    [37]崔鹏,范益群,徐南平等,TiO2负载膜的制备、表征及光催化性能,催化学报,2000,21 (5):494-496
    [38]戴清,路春娥,翁葵平等,载钛中孔二氧化硅分子筛的光催化性能,催化学报,1999,20 (3):313-316
    [39]郑珊,高濂,张青红等,TiO2修饰MCM-41的结构表征及光催化苯酚降解活性,催化学报,2001,22(2):206-208
    [40]朱永法,张利,姚文清等,溶胶-凝胶法制备薄膜型TiO2光催化剂,催化学报,1999,20 (3):362-364
    [41]扬阳,陈爱平,古宏晨等,以膨胀珍珠岩为载体的漂浮型TiO2光催化剂降解水面浮油,催化学报,2001,22 (2):177-180
    [42]程沧沧,胡德文,赵俐敏,水泥负载半导体薄膜光催化降解黑色有机染料水溶液的研究,湖北化工,1998,3:22 -24
    [43] Berry R J, Mueller M R. Photocatalytic Decomposition of Crude Oil Slicks Using TiO2 on a Floating Subtrate, Microchem. J. 1994, 50: 28-32
    [44]瞿金清,方晓明,陈焕钦,纳米TiO2的液相制备方法及其在涂料工业中的应用,合成材料老化与应用,2002,4:18-21
    [45]李炜罡,霍冀川,刘树信等,负载型TiO2光催化剂研究进展,陶瓷学报,2004,25(2): 133-138
    [46]计兵,韩志萍,陈美红,纳米TiO2光催化剂负载化研究进展,菏泽师范专科学校学报,2004,26(2): 20-25
    [47]刘平,林华香,付贤智等,掺杂TiO2光催化膜材料的制备及其灭菌机理,催化学报,1999,20(3):325-328
    [48]黄艳娥,琚行松,纳米二氧化钛光催化降解水中有机污染物的研究,现代化工,2001,4,45-48
    [49]张广仁,室内有害物质浅析,国际木业,2003,33(3):8-9
    [50]杨虹,李裕生,黎智等,民用建筑工程室内环境污染监测质量控制,中国公共卫生,2005,21(9):1144-1145
    [51]李静萍,王农,室内装修材料中的有害物质,化学教育,2004,25(4):2-3,42
    [52]吴自强,刘志宏,室内甲醛污染控制技术进展,建筑人造板,2002,3:l1-l5
    [53] Lief Stage Kigyo Kumiai, Nomobo Katsuyoshi, Humidifiable formaldehyde adsorbent [P]. JP: 2002085535, 2002, 03, 26
    [54] Shman Kova Natalija Anatol Evn, Orekhova Svetlana Efimovna, Ashujko Valerij Arkad Evich et a1, Method of cleaning gases to remove formaldehyde [P]. RU: 2223812, 2004, 02, 20
    [55] Mitsui Norin K K, Formaldehyde absorbing agent [P], JP: 2002126059, 2002, 05, 08
    [56] Sun Gang, Formaldehyde scavenging microbiocidal articles [P], US: 2001000085, 2001, 04, 05
    [57]刘建章,周文瑞,张德荣等,室内高效甲醛消除剂的开发与应用实验,中国林产业,2004,(8):35-36
    [58]匙伟杰,李彦涛,樊守贞等,甲醛清除剂的研制,河北省科学院学报,2003,20(4):243-244
    [59]田福祯,郭敏杰,倪丽琴等,室内甲醛吸附-反应-降解复合纳米材料的制备与应用,应用化工,2005,34(9):576-577
    [60]吴亚西,陈烈贤,光催化氧化分解空气挥发性有机污染物的研究,卫生研究,2002,31(5):384-385
    [61]陆银兰,杨建忠,ACF负载纳米TiO2净化室内甲醛的应用研究,广西纺织科技,2004,33(4):35-36
    [62]魏绍东,王杏,以硫酸氧钛为原料制备纳米TiO2技术的研究,涂料工业,2005,35(8)
    [63]江俊俊,汪模辉,顾娟,室内空气中微量甲醛光催化降解研究进展,广东微量元素科学,2005,12(8):5-6
    [64] Ao C H, S C Lee, Yu C, Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156: 171-177
    [65] Marei G, Addamo M, Augugliaro V et a1, Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidifide air, in water and in water containing a zwitterionic surfactant, Journal of Photo Chemistry and Photobiology A: Chemistry, 2003, 160: 105-114
    [66] Jeong J, Sekiguchi K, Sakamoto K, Photochemical and photocatalytic degradation of gaseous toluene using short-wave-length UV irradiation with TiO2 catalyst: comparison of three UV sources, Chemosphere, 2004, 57: 663-671
    [67] Yang Jianjun, Li Dongxu, Li Qinglin et a1, Mechanism of photocatalytic oxidation of formaldehyde, Acta Phys-Chim Sin, 2001, 17(3): 278-281
    [68] Zhang Yiheng, Chen Qi, Zhang Yu et a1, Study of ESR on the photocatalytic oxidation of methanal, Chinese Journal of Chemical Physics, 1998, (11): 461-464
    [69] Xu Ruifen, Hu Xuexiang, Hu Weikang et a1, Study of the mechanism of HCHO photocatalysit degraded by nanosized TiO2, Chemical Research and Application, 2003, (15) : 715-717
    [70] Ching W H, Leung M D, Leung Y C, Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO2 thin film for enhancement of indoor air quality, Solar Energy, 2004, 77: 129-135
    [71] Liao Dongliang, Xiao Xinyan, Deng Qin et a1, Study oil kinetics of formaldehyde photocatalytic degradation of titanium dioxide, Environmental Protection of Chemical Industry, 2003, (23): 191-194
    [72]刘威,陈爱平,林嘉平等,均相水解法制备金红石含量可控的纳米TiO2,化学学报,2004, 62(12):1148-1152
    [73]谭世语,化工技术经济学,重庆:重庆大学出版社,1991,1,86-89
    [74]苏建民,高等学校教材,化工技术经济,北京:化学工业出版社,1990,11,27-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700