不同酸碱度水热法可控制备硅基纳米材料及氢氧化镍纳米片的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今世界,对材料的尺寸要求越来越小;随着科技发展对新型及传统材料的性能要求也越来越高。由于一维硅纳米材料特殊的晶体构造以及新奇的光、电学特性,目前被普遍认为是一种极具潜力的半导体材料。
     本课题组已采用水热法制备了硅纳米管,但在制备硅纳米管时,仅采用纯水作溶剂,采用水热法制备硅纳米材料时,溶液的酸碱度是硅纳米材料形成过程中重要的因素,为了解决这一问题并揭示纳米材料在水热环境中的生长机理,本论文着重研究了不同溶液pH值对于纳米材料生长的影响。我们展开了以下几个方面的研究,首先在不同酸碱度条件下,研究原料前驱物溶液的黏度、粒度以及ζ电位的变化规律。通过实验结果分析认为,当溶液的pH值为3-6时,原料的分散程度较好。接下来,在酸性条件下制备出了硅纳米线,典型的实验条件为pH=6、470℃、8MPa、保温4h,硅纳米线平均直径约为80nm,纳米线的外层有无定形氧化硅外层。值得注意的是,当pH=5时,得到一种在高能电子束照射下产生变形的硅纳米线,高分辨电镜观察发现这种纳米线是由分散的纳米颗粒组成,颗粒之间的空隙由无定形氧化物填充。通过分析酸性环境制备硅纳米线的实验结果,我们认为纳米线的生长过程存在两个阶段,一是成核阶段,在这一阶段成核大小受酸碱度的影响较大。二是纳米线生长阶段,在这一阶段遵循“氧化物辅助生长机制”。随着温度的升高,晶核内不断析出晶体硅,在某个特定方向上,氧扩散能力弱,使得在此方向上不断析出晶体硅,保证了晶核沿一维方向生长。水热法在中性条件下能生长出硅纳米管,而在酸性条件仅能生长出硅纳米线,产生这样结果的原因是溶液的酸碱度对硅纳米材料的成核和生长产生了影响。为了研究这-变化的规律,利用第一性原理计算模拟,从理论角度研究硅纳米管的稳定性。研究发现表面不存在Si-H键的硅纳米管易于塌陷,最终形成线状结构。而表面存在Si-H键的硅纳米管相对稳定。
     调节水热溶液为碱性,结果显示,在碱性环境下能制备出氧化硅纳米球,典型的实验条件为pH=9、350℃、14MPa、保温4h。纳米球表面光滑,直径分布均匀,且纯度较高,随着pH值的升高,纳米球粒径呈现单调增长。在达到反应温度以后,氧化硅纳米球的粒径随着保温温度的升高而增大。氧化硅纳米球的粒径还会随着压力的增加而减小,这与硅纳米线直径与压力的关系一致,论文在4章中给出了pH值、温度、压力对粒径影响的详细机理分析。氧化硅纳米球具有良好的光致发光特性。样品的红外光谱显示,纳米球的表面存在Si-OH键以及Si-O-Si.通过碱性环境中的实验结果分析,在碱性环境中原料溶解后形成的硅酸根单体增加,同时碱性环境中存在的大量OH-离子进入成核中心形成Si-OH键,随着反应的进行硅酸根单体Si-OH之间形成Si-O-Si链,最终形成氧化硅纳米球。碱性环境中大量存在的OH-是无定形氧化硅颗粒生成的主要原因。
     另外,在中性和碱性的实验中我们意外地收集到一种无定形氧化硅纳米线,这种纳米线在反应釜顶端能够收集到,直径分布很广,从数十纳米到数微米不等。TEM分析表明氧化硅纳米线是一种非晶结构。在酸性环境下,这种纳米线无法生成,当pH≥7时,随着pH值的升高纳米线的直径明显增加。初步认为这种无定形纳米线的生成是受到温度梯度的影响。论文第4章详细讨论了其中机理。
     最后,尝试采用水热法制备其他纳米材料,使用Ni为原料,研究水热工艺条件对其生长的影响。实验得到的产物为氢氧化镍纳米片。典型实验条件为:pH=7,470℃,9MPa、保温时间4h。得到的氢氧化镍纳米片的厚度约为30nm,直径大约为150nm,纳米片聚集成球状。水热溶液酸碱度对产物的影响主要表现在酸性环境下无法形成氢氧化镍纳米片,当pH值大于7时,随着pH值的升高,纳米片的晶粒尺寸有先减小后增加。
     综上所述,本文通过理论结合实验研究不同酸碱度条件下水热制备硅纳米材料的形成过程。着重从实验角度研究在不同酸碱度条件下硅纳米材料在水热环境中的形成过程。通过实验研究发现,在酸性环境下得到的为晶体硅纳米线,而在碱性环境下得到的产物为无定形氧化硅纳米球和氧化硅纳米线。根据实验结果,分析了硅纳米材料的生长机理。调整水热溶液的酸碱度可实现可控制备硅纳米材料,这为下一步通过调整水热工艺参数宏量制备硅基纳米材料奠定了实验基础。
New kinds of materials with special characters are required in pressing because of addition of energy depletion and pollution of environment. The sizes of materials are needed to be smaller, because that the electronic devices are become samller and intelligent. And the characters of materials are neeed to be better, because that high speed developments of advance manufacture technology. One dimension nano materials have different structure, such as nanowires, nanorod, nanobelt, nanotube and so on. All of these kinds of materials have shown quite different character, such as quantum size effect, macroscopic quantum tunneling effect, coulomb blocked effect, small size effect, surface effect and so on. New kind research fields have been explored for scientist.
     The silicon nanotubes (SiNTs) have been synthesized by hydrothermal method with pure water. The pH value of solution which is one of important parameters of hydrothermal have not been considered. So we study the affection of pH value to the structure and morphology of nano materials mainly. The viscosity, grain size and ζ potential of precursor in solution have been studied in different pH value condition. The dispersion was better when pH value was3-6than the others. In acid environment, the silicon nanowires (SiNWs) have been synthesized. The typical experimental condition is470℃in temperature,8MPa in pressure, and4hours in reaction time. The average diameter of SiNWs with amorphous outside is80nm. The special SiNWs which would be deformed under high power electron beam illumination were composed of disposed nano particles by TEM image. The space between the nano particles is amorphous SiO. The SiNWs growth mechanism have two stage. The fist is nucleation stage, in which the size of crystal nucleus have been influence by pH value of solution. The precursor would dissolve to form silicate aggregation. When the temperature rised, the silicate aggregation would hydrolyze to form crystal nucleus. The Si-O bond located on the crystal nucleus would be broken and transform to Si-H bond, which ensure the growth of SiNWs continually. The second stage is growth stage of SiNWs, which fellow the oxide-assisted growth mechanism. The silicon would separate out from nucleus with temperature rising., The crystal silicon would separate out in direction which the diffusibility of oxygen atom was lower. The SiNTs would synthesized in neutral solution, as the SiNWs would synthesize in acid solution. The key parameter is pH value of solution in the transformation, which play an important role in nucleation and growth stage of crystal silicon nano materials. The simulation method have been used to study the mechanism of silicon nano materials growth. The nanotubes without Si-H bond on surface tend to collapse. The Si-H bond play an important role in stability of silicon nano material.
     In alkalescence solution, the production of experiment is silica nanospheres. The typical experiment parameter:pH is9, temperature is350℃, pressure is14MPa, soaking time is4hours. The nanosphere is smooth in surface, uniform in diameter and high purity. The diameter of nanosphere increase with the pH value of solution and temperature, and that decrease with the pressure. The photoluminescence spectrum of silica nanosphere shown that there are obviously peak located in411nm. The PL character of silica nanospheres still good when the sample place for long time. The Si-OH bond and Si-O-Si bond located on the surface of nanosphere synthesized by infra-red spectrum.
     The silicate monomer would increase in the alkalescence form the result of experiment with high pH value. The silicate monomer would hydrolyze to form the nucleation central, at the same time the OH-ion enter the central to form the Si-OH bond. The Si-OH bond would link each other to form Si-O-Si bond, and then the silica nanospheres generated at last. The amount of defect exist on the nanosphere surface because that the OH-take up the location of O2-, which induce the amorphous structure of nanospheres.
     The amorphous silica nanowires have been synthesize in neutral and alkalescence solution. The silica naowires locate on the top of reaction kettle. The diameter distribution rang are wide. The TEM image of sample shown that the nanowires are amorphous. The diameter of silica nanowires would increase with the pH value.
     The Ni(OH)2nanosheets have been synthesized by hydrothermal. The typical experiment condition:pH value was7, temperature was470℃and the pressure is9MPa. The thickness of Ni(OH)2nanosheets is about30nm, the diameter is about150nm. The temperature was higher than200℃is necessary condition of growth Ni(OH)2nanosheet. The aggregation of Ni(OH)2nanosheets have trend to dissolve when the temperature rise. The size of crystalline grain of Ni(OH)2nanosheets show a trend of first increase and then decrease with the pH value.
     In summary, the Si-H bond play an important role in growth proceeding. The pH value in solution is a crucial factor in synthesized silicon nano materials. The production is SiNWs in acid solution, and amorphous silica nanospheres in alkalescence solution. We discuss the growth mechanism of silicon nano materials in different experiment condition including temperature, pressure, reaction time and all. The Si-O bond on the surface of crystal nucleus were replaced by Si-H or Si-OH bond. The Si-H bond had advantage of stability of silicon crystal, which indicated that production is SiNWs in acid solution and amorphous nanospheres in alkalescence solution. The controllable silicon nano materials have been synthesized initially, which lay the foundation of silicon nano materials synthesis by hydrothermal method.
引文
[1]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001:8-25.
    [2]Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires [J]. Nature nanotechnology,2007,3:31-34.
    [3]袁高清,葛华才,范祥清.电池中高活性材料的制备[J].电池,1998,28(3):105-107.
    [4]Pickering C, Beale M I J, Robbins D J, et al. Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon [J]. Journal of Physics C:Solid State Physics,1984,17:6535-6552.
    [5]Sham T K, Naftel S J, Kim P S G, et al. Electronic structure and optical properties of silicon nanowires:A study using x-ray excited optical luminescence and x-ray emission spectroscopy [J]. Physical Review B,2004,70(4):6523-6552.
    [6]Ji X B, Banks C E, Xi W, et al. Edge plane sites on highly ordered pyrolytic graphite as templates for making palladium nanowires via electrochemical decoration [J]. Journal Of Physical Chemistry B,2006,110(45):22306-22309.
    [7]Xi G C, Liu Y K, Liu X Y, et al. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures [J]. Journal Of Physical Chemistry B,2006, 110(29):14172-14178.
    [8]Liu Q, Liu H J, Zhu J M, et al. Large-scale synthesis of single crystal silver nanowires by a sodium diphenylamine sulfonate reduction process [J]. Journal of Nanoscience and Nanotechnology,2006,6(1):231-234.
    [9]Kabashin A, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing [J]. Nature Materials,2009,8(11):867-871.
    [10]Wu X C, Tao Y R. Synthesis of crystalline and amorphous germanium nanorods [J]. Materials Research Bulletin,2002,37(13):2179-2183.
    [11]Zhang Y J, Zhu J, Zhang Q, et al. Synthesis of GeO2 nanorods by carbon nanotubes template [J]. Chemical Physics Letters,2000,317(3-5):504-509.
    [12]Jang E S, Won J H, Kim Y W, et al. Synthesis of porous and nonporous ZnO nanobelt, multipod, and hierarchical nanostructure from Zn-HDS [J]. Journal Of Solid State Chemistry,2010,183(8):1835-1840.
    [13]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001,291(5510):1947-1949.
    [14]Xi G C, Peng Y Y, Wan S M, et al. Lithium-assisted synthesis and characterization of crystalline 3C-SiC nanobelts [J]. Journal Of Physical Chemistry B,2004,108(52):20102-20104.
    [15]Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science,2009,323(5915): 760-763.
    [16]Feng X, LaTempa T J, Basham J I, et al. Ta3N5 nanotube arrays for visible light water photoelectrolysis [J]. Nano Letters,2010,10(3):948-952.
    [17]Bandaru P R, Daraio C, Jin S, et al. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions [J]. Nature Materials,2005,4(9): 663-666.
    [18]李新勇,张桂兰,汤国庆.纳米晶体材料研究进展[J].化学进展,1996,8:231-239.
    [19]Iijima S. Helical Microtubules of Graphitic Carbon [J]. Nature,1991,354(6348): 56-58.
    [20]Gates B, Mayers B, Wu Y Y, et al. Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature [J]. Advanced Functional Materials,2002,12(10):679-686.
    [21]Wadhwa P, Liu B, McCarthy M A, et al. Electronic junction control in a nanotube-semiconductor schottky junction solar cell [J]. Nano Letters,2010: 125-128.
    [22]Zygmunt J, Krumeich F, Nesper R. Novel silica nanotubes with a high aspect ratio-Synthesis and structural characterization [J]. Advanced Materials,2003, 15(18):1538-1542.
    [23]Schmidt V, Wittemann J V, Senz S, et al. Silicon nanowires:a review on aspects of their growth and their electrical properties [J]. Advanced Materials,2009, 21(2526):2681-2702.
    [24]Pecora E F, Irrera A, Boninelli S, et al. Nanoscale amorphization, bending and recrystallization in silicon nanowires [J]. Applied Physics A-materials Science & Processing,2010:1-7.
    [25]Jiang Z, Xie T, Yuan X Y, et al. Catalytic synthesis and photoluminescence of silicon oxide nanowires and nanotubes [J]. Applied Physics A-materials Science & Processing,2005,81(3):477-479.
    [26]Gao X, Zheng Z, Zhu H, et al. Rotor-like ZnO by epitaxial growth under hydrothermal conditions [J]. Chemical Communications,2004,2004(12): 1428-1429.
    [27]Wang H E, Chen Z, Leung Y H, et al. Hydrothermal synthesis of ordered single-crystalline rutile TiO nanorod arrays on different substrates [J]. Applied Physics Letters,2010,96:263104-263107.
    [28]Hennings D, Metzmacher C, Schreinemacher B. Defect chemistry and microstructure of hydrothermal barium titanate [J]. Journal Of The American Ceramic Society,2001,84(1):179-182.
    [29]Li Y, Zhang M, Guo M, et al. Hydrothermal growth of well-aligned TiO2 nanorod arrays:Dependence of morphology upon hydrothermal reaction conditions [J]. Rare Metals,2010,29(3):286-291.
    [30]施尔畏,陈之战,元如林.水热结晶学[M].北京:科学出版社,2004:30-52.
    [31]Yu J, Su Y, Cheng B, et al. Effects of pH on the microstructures and photo catalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method [J]. Journal Of Molecular Catalysis A-chemical,2006, 258(1-2):104-112.
    [32]Zhang H, Yang D, Ma X, et al. Synthesis of flower-like ZnO nanostructures by organic-free hydrothermal process [J]. Nanotechnology,2004,15:622-626.
    [33]Zhu K, Yanagisawa K, Onda A, et al. Hydrothermal synthesis and morphology variation of cadmium hydroxyapatite [J]. Journal Of Solid State Chemistry, 2004,177(12):4379-4385.
    [34]Hosaka M, Taki S. Raman spectral studies of SiO2-NaOH-H2O system solution under hydrothermal conditions [J]. Journal Of Crystal Growth,1990,100(3): 343-346.
    [35]Fortnum D, Edwards J. The Raman spectrum and the structure of the aqueous silicate ion [J]. Journal of Inorganic and Nuclear Chemistry,1956,2:9-18.
    [36]Fagan S B, Mota R, Baierle R J, et al. Stability investigation and thermal behavior of a hypothetical silicon nanotube [J]. Journal Of Molecular Structure-theochem,2001,539(1-3):101-106.
    [37]Kang J W, Byun K R, Hwang H J. Twist of hypothetical silicon nanotubes [J]. Modelling And Simulation In Materials Science And Engineering,2004,12(1): 1-12.
    [38]Li B X, Cao P L. Silicon nanorings and nanotubes:a full-potential linear-muffin-tin-orbital molecular-dynamics method study [J]. Journal Of Molecular Structure-theochem,2004,679(1-2):127-130.
    [39]Zhang M, Kan Y H, Zang Q J, et al. Why silicon nanotubes stably exist in armchair structure? [J]. Chemical Physics Letters,2003,379(1-2):81-86.
    [40]Zhang R Q, Lee S T, Law C K, et al. Silicon nanotubes:Why not? [J]. Chemical Physics Letters,2002,364(3-4):251-258.
    [41]Fagan S B, Baierle R J, Mota R, et al. Ab initio calculations for a hypothetical material:Silicon nanotubes [J]. Physical Review B,2000,61(15):9994-9996.
    [42]Lan J, Cheng D, Cao D, et al. Silicon nanotube as a promising candidate for hydrogen storage:From the first principle calculations to grand canonical Monte Carlo simulations [J]. The Journal of Physical Chemistry C,2008, 112(14):5598-5604.
    [43]Seifert G, Kohler T, Urbassek H, et al. Tubular structures of silicon [J]. Physical Review B,2001,63(19):193409-193413.
    [44]Ponomarenko O, Radny M, Smith P. Energetics of finite, clean and hydrogenated silicon nanotubes [J]. Surface Science,2004,562(1-3):257-268.
    [45]Tang Y H, Sun X H, Au F C K, et al. Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains [J]. Applied Physics Letters,2001,79:1673-1677.
    [46]Neuzil P, Wong C C, Reboud J. Electrically controlled hiant piezoresistance in silicon nanowires [J]. Nano Letters,2010,10(4):1248-1252.
    [47]Jung Y, Vacic A, Perea D, et al. Minority carrier lifetimes and surface effects in VLS-grown pn junction silicon nanowires [J]. Bulletin of the American Physical Society,2011,56:27-31.
    [48]Cui Y, Zhong Z, Wang D, et al. High performance silicon nanowire field effect transistors [J]. Nano Letters,2003,3(2):149-152.
    [49]Stone N J, Ahmed H. Single-electron detector and counter [J]. Applied Physics Letters,2000,77:744-748.
    [50]Stone N J, Ahmed H. Silicon single electron memory cell [J]. Applied Physics Letters,1998,73:2134-2138.
    [51]Guo L, Leobandung E, Chou S. A silicon single-electron tansistor memory operating at room temperature [J]. Science,1997,275(5300):649-653.
    [52]Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science,1998,279(5348):208-211.
    [53]Tang Y H, Zhang Y F, Lee C S, et al. Large Scale Synthesis of Silicon Nanowires by Laser Ablation [J]. Mater Res Soc Symp Proc,1998,526:73-78.
    [54]Feng S Q, Yu D P, Zhang H Z, et al. The growth mechanism of silicon nanowires and their quantum confinement effect [J]. Journal Of Crystal Growth,2000, 209(2-3):513-517.
    [55]Zeng X B, Xu Y Y, Zhang S B, et al. Silicon nanowires grown on a pre-annealed Si substrate [J]. Journal Of Crystal Growth,2003,247(1-2):13-16.
    [56]Liu Z Q, Pan Z W, Sun L F, et al. Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate [J]. Journal Of Physics And Chemistry Of Solids,2000,61(7):1171-1174.
    [57]Sakulchaicharoen N, Resasco D E. Temperature dependence of the quality of silicon nanowires produced over a titania-supported gold catalyst [J]. Chemical Physics Letters,2003,377(3-4):377-383.
    [58]Liu Z Q, Xie S S, Zhou W Y, et al. Catalytic synthesis of straight silicon nanowires over Fe containing silica gel substrates by chemical vapor deposition [J]. Journal Of Crystal Growth,2001,224(3-4):230-234.
    [59]Prosa T, Alvis R, Tsakalakos L, et al. Characterization of dilute species within CVD grown silicon nanowires doped using trimethylboron:protected lift out specimen preparation for atom probe tomography [J]. Journal of Microscopy, 2010,239(2):92-98.
    [60]Yu D P, Lee C S, Bello I, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature [J]. Solid State Communications,1998,105: 403-408.
    [61]Livisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996,2(271):933-937.
    [62]Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires [J]. Science,2000,287(5457):1471.
    [63]Lew K K, Redwing J M. Growth characteristics of silicon nanowires synthesized by vapor-liquid-solid growth in nanoporous alumina templates [J]. Journal Of Crystal Growth,2003,254(1):14-22.
    [64]Zhang Y F, Tang Y H, Lam C, et al. Bulk-quantity Si nanowires synthesized by SiO sublimation [J]. Journal Of Crystal Growth,2000,212(1-2):115-118.
    [65]Tang Q, Liu X, Kamins T I, et al. Nucleation of Ti-catalyzed self-assembled kinked Si nanowires grown by gas source MBE [J]. Journal Of Crystal Growth, 2003,251(1-4):662-665.
    [66]Zhang R Q, Lifshitz Y, Lee S T. Oxide-Assisted Growth of Semiconducting Nanowires [J]. Advanced Materials,2003,15(78):635-640.
    [67]Yao Y, Li F, Lee S T. Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts [J]. Chemical Physics Letters,2005, 406(4-6):381-385.
    [68]Chang J B, Liu J Z, Yan P X, et al. Ultrafast growth of single-crystalline Si nanowires [J]. Materials Letters,2006,60(17-18):2125-2128.
    [69]Wong Y Y, Yahaya M, Mat Salleh M, et al. Controlled growth of silicon nanowires synthesized via solid-liquid-solid mechanism [J]. Science and Technology of Advanced Materials,2005,6(3-4):330-334.
    [70]Coleman N R B, Morris M A, Spalding T R, et al. The formation of dimensionally ordered silicon nanowires within mesoporous silica [J]. J. Am. Chem. Soc., 2001,123(1):187-188.
    [71]Ma D D D, Lee C S, Au F C K, et al. Small-diameter silicon nanowire surfaces [J]. Science,2003,299(5614):1874-1877.
    [72]Sun X H, Wang S D, Wong N B, et al. FTIR spectroscopic studies of the stabilities and reactivities of hydrogen-terminated surfaces of silicon nanowires [J]. Inorganic Chemistry,2003,42(7):2398-2404.
    [73]Chen W W, Sun X H, Wang S D, et al. Etching behavior of silicon nanowires with HF and NH4F and surface charcterization by attenuated total reflection fouier transform infrared spectroscopy:similarities and differences between one-dimensional and two-dimensinal silicon surfaces [J]. Journal Of Physical Chemistry B,2005,109:10871-10879.
    [74]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal Of Colloid And Interface Science,1968, 26(1):62-69.
    [75]唐电,王永康,李永胜.纳米二氧化硅制备的初步研究[J].氯碱工业,1997,5:25-27.
    [76]王智,昊重庆,赵宏静.高纯超细SiO2粉末制备工艺研究[J].铁道学报,1998,6:105-110.
    [77]贾宏,郭楷,郭奋.用超重力法制备纳米二氧化硅[J].材料研究学报,2002,1(120-124).
    [78]许河敬,董云会,杨富贵.化学沉淀法制备多孔纳米SiO2粉末[J].淄傅学院学报,2002,4:52-55.
    [79]申小清,李中军,要红昌.纳米SiO2粉末的共沸蒸馏法制备及机理[J].郑州大学学报,2002,2:88-91.
    [80]Schmidt V, Wittemann J, Gosele U. Growth, thermodynamics, and electrical properties of silicon nanowires [J]. Chemical Reviews,2010,110(1):361-388.
    [81]Adachi M, Anantram M, Karim K. Optical properties of crystalline-amorphous core-shell silicon nanowires [J]. Nano Letters,2010.
    [82]Lefeuvre E, Kim K, He Z, et al. Optimization of organized silicon nanowires growth inside Porous Anodic Alumina template using Hot Wire Chemical Vapor Deposition process [J]. Thin Solid Films,2011.
    [83]Wang Y W, Liang C H, Meng G W, et al. Synthesis and photoluminescence properties of amorphous SiOx nanowires [J]. Journal Of Materials Chemistry, 2002,12(3):651-653.
    [84]Wang J C, Zhan C Z, Li F G. The synthesis of silica nano wire arrays [J]. Solid State Communications,2003,125(11-12):629-631.
    [85]Chen Y J, Li J B, Dai J H. Si and SiOx nano structures formed via thermal evaporation [J]. Chemical Physics Letters,2001,344(5-6):450-456.
    [86]Li S H, Zhu X F, Zhao Y P. Carbon-assisted growth of SiOx nanowires [J]. Journal Of Physical Chemistry B,2004,108(44):17032-17041.
    [87]Yu D P, Hang Q L, Ding Y, et al. Amorphous silica nanowires:Intensive blue light emitters [J]. Applied Physics Letters,1998,73(21):3076-3078.
    [88]Niu J J, Sha J, Zhang N S, et al. Tiny SiO2 nano-wires synthesized on Si (111) wafer [J]. Physica E,2004,23(1-2):1-4.
    [89]Zhang M, Bando Y, Wada K, et al. Synthesis of nanotubes and nanowires of silicon oxide [J]. Journal Of Materials Science Letters,1999,18(23): 1911-1913.
    [90]Pan Z W, Dai S, Beach D B, et al. Temperature dependence of morphologies of aligned silicon oxide nanowire assemblies catalyzed by molten gallium [J]. Nano Letters,2003,3(9):1279-1284.
    [91]Yan X Q, Zhou W Y, Sun L F, et al. The influence of hydrogen on the growth of gallium catalyzed silicon oxide nanowires [J]. Journal Of Physics And Chemistry Of Solids,2005,66(5):701-705.
    [92]Liang C H, Zhang L D, Meng G W, et al. Preparation and characterization of amorphous SiOx nanowires [J]. Journal Of Non-crystalline Solids,2000, 277(1):63-67.
    [93]Pan Z W, Dai Z R, Ma C, et al. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires [J]. Journal Of The American Chemical Society,2002,124(8):1817-1822.
    [94]Hu J, Bando Y, Liu Z, et al. Synthesis of Crystalline Silicon Tubular Nano structures with ZnS Nanowires as Removable Templates [J]. Angew. Chem. Int. Edit.,2004,43:63-66.
    [95]Zhuravlev L. Concentration of hydroxyl groups on the surface of amorphous silicas [J]. Langmuir,1987,3(3):316-318.
    [96]Zhao Q, Chen W, Zhu Q. Self-assembly and characterization of novel amorphous SiOx (x= 2.1) nanospheres [J]. Nanotechnology,2004,15(8):958-961.
    [97]Yang D, Wang R, He M, et al. Ribbon-and boardlike nanostructures of nickel hydroxide:Synthesis, characterization, and electrochemical properties [J]. Journal Of Physical Chemistry B,2005,109(16):7654-7658.
    [98]Pan T, Wang J M, Zhao Y L, et al. Al-stabilized a-nickel hydroxide prepared by electrochemical impregnation [J]. Materials Chemistry And Physics,2003, 78(3):711-718.
    [99]Luo Y, Zhang J, Shen Y, et al. Preparation and magnetic properties of nickel nanorods by thermal decomposition reducing methods [J]. Transactions Of Nonferrous Metals Society Of China,2006,16:96-100.
    [100]Yang L X, Zhu Y J, Tong H, et al. Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol [J]. Journal Of Solid State Chemistry,2007,180(7):2095-2101.
    [101]Kiani M, Mousavi M, Ghasemi S. Size effect investigation on battery performance:Comparison between micro-and nano-particles of β-Ni (OH)2 as nickel battery cathode material [J]. Journal Of Power Sources,2010,195(17): 5794-5800.
    [102]Wang H, Casalongue H S, Liang Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials [J]. Journal Of The American Chemical Society,2010,132(21):7472-7477.
    [103]Bernard M C, Cortes R, Keddam M, et al. Structural defects and electrochemical reactivity of (3-Ni(OH)2 [J]. Journal Of Power Sources,1996,63(2):247-254.
    [104]Watanabe K, Kikuoka T, Kumagai N. Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries [J]. Journal Of Applied Electrochemistry,1995,25(3): 219-226.
    [105]Reisner D E, Salkind A J, Strutt P R, et al. Nickel hydroxide and other nanophase cathode materials for rechargeable batteries [J]. Journal Of Power Sources,1997,65(1-2):231-233.
    [106]Liang Z H, Zhu Y J, Hu X L. Beta-nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets [J]. Journal Of Physical Chemistry B,2004,108(11):3488-3491.
    [107]Matsui K, Kyotani T, Tomita A. Hydrothermal Synthesis of Single-Crystal Ni (OH) 2 Nanorods in a Carbon-Coated Anodic Alumina Film [J]. Advanced Materials,2002,14(17):1216-1219.
    [108]Vazquez M V, Avena M J, De Pauli C P. Dehydration process on nickel hydroxide:Its influence on the electrochemical behaviour of Pt/Ni (OH) 2 electrodes [J]. Electrochimica Acta,1995,40(7):907-912.
    [109]周辉,任小华,蒋文全.制备工艺对球型氢氧化镍结构和性质的影响[J].电源技术,1999,23:67-69.
    [110]周根陶,刘双怀,郑永飞.一种新的超微粉末的方法一沉淀转化法[J].科学通报,1996,41(4):321-323.
    [111]周根陶,刘双怀,郑永飞.沉淀转化法制备不同形状的氢氧化镍及氧化镍超微粉末的研究[J].无机化学学报,1997,13(1):43-47.
    [112]张秀英,胡志国,赵春霞.离子交换树脂法制备氢氧化镍和氧化镍超细微粒[J].功能材料,2000,31(1):109-110.
    [113]彭成红,刘澄浦,李祖鑫.纳米氢氧化镍材料的研制[J].电池,2001,31(4):175-177.
    [114]夏熙,魏莹.纳米级β-Ni(OH)2:的制备和放电性能[J].无机材料学报,1998,13(5):674-678.
    [115]Song Q, Tang Z, Guo H, et al. Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values [J]. Journal Of Power Sources,2002,112(2):428-434.
    [116]Motupally S, Streinz C C, Weidner J W. Proton Diffusion in Nickel Hydroxide Films [J]. Journal Of The Electrochemical Society,1995,142:1401-1404.
    [117]Acharya R, Subbaiah T, Anand S, et al. Preparation, characterization and electrolytic behavior of β-nickel hydroxide [J]. Journal Of Power Sources, 2002,109(2):494-499.
    [118]杨桂琴,王雪松.纳米钴蓝色颜料的微乳法制备及其表征[J].应用化学,2000,17(5):490-450.
    [119]Schloh, Martin. Preparation from metal alkoxides of high purity metal powder [M]. New York:Educational & Professional Group,1996:42-57.
    [120]Subbaiah T, Mallick S C, Mishra K G, et al. Electrochemical precipitation of nickel hydroxide [J]. Journal Of Power Sources,2002,112(2):562-569.
    [121]Sasaki Y, Yamashita T. Effect of electrolytic conditions on the deposition of nickel hydroxide [J]. Thin Solid Films,1998,334(1-2):117-119.
    [122]Delahaye-Vidal A, Beaudoin B, Sac-Epee N, et al. Structural and textural investigations of the nickel hydroxide electrode [J]. Solid State Ionics,1996, 84(3):239-248.
    [123]Weidner J W, Timmerman P. Effect of proton diffusion, electron conductivity, and charge-transfer resistance on nickel hydroxide discharge curves [J]. Journal Electrochemical Society,1994,141:346-346.
    [124]赵力,周德瑞,张翠芬.纳米氢氧化镍的研制及其电化学性能[J].化学通报,2001,8:513-515.
    [125]余成洲,赖为华.氢镍电池的现状与发展方向[J].电池,2002,31(2):58-63.
    [126]Faure C, Delams C. Electrochemical behaviour of a-cobalted nickel hydroxide electrode [J]. Powder Sources,1991,36:497-450.
    [127]Laudise R A, Klerer J. The Growth of Single Crystals [J]. Journal Of The Electrochemical Society,1971,118:154C-154G.
    [128]Rabenau A. The Role of Hydrothermal Synthesis in Preparative Chemistry [J]. Angewandte Chemie-international Edition,1985,24(12):1026-1040.
    [129]Morey G W, Niggli P. The hydrothermal formation of silicates, a review:Jour [J]. J. Am. Chem. Soc.,1913,35:1086-1130.
    [130]Lobachev A. Crystallization processes under hydrothermal conditions [M]. New York:Plenum Publishing Corp.,1973:48-69.
    [131]Tang Y H, Pei L Z, Chen Y W, et al. Self-assembled silicon nanotubes under supercritically hydrothermal conditions [J]. Physical Review Letters,2006, 97(1):116106-116110.
    [132]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001:183-192.
    [133]张海军,贾晓林,刘战杰.纳米Al2O3-SiO2的分散及颗粒间力的相互作用[J].硅酸盐学报,2003,31(10):928-933.
    [134]Talin A A, Hunter L L, Leonard F, et al. Large area, dense silicon nanowire array chemical sensors [J]. Applied Physics Letters,2006,89:153102-153106.
    [135]Rurali R. Colloquium:Structural, electronic, and transport properties of silicon nanowires [J]. Reviews Of Modern Physics,2010,82(1):427-430.
    [136]Wang N, Tang Y H, Zhang Y F, et al. Si nanowires grown from silicon oxide [J]. Chemical Physics Letters,1999,299(2):237-242.
    [137]Wang R, Zhou G, Liu Y, et al. Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects [J]. Physical Review B, 2000,61(24):16827-16832.
    [138]Li B, Yu D, Zhang S L. Raman spectral study of silicon nanowires [J]. Physical Review B,1999,59(3):1645-1648.
    [139]Piscanec S, Cantoro M, Ferrari A C, et al. Raman spectroscopy of silicon nanowires [J]. Physical Review B,2003,68(24):241312-241315.
    [140]Zhang Y F, Tang Y H, Wang N, et al. Silicon nanowires prepared by laser ablation at high temperature [J]. Applied Physics Letters,1998,72(15): 1835-1837.
    [141]Tang Y H, Zhang Y F, Peng H Y, et al. Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders [J]. Chemical Physics Letters,1999, 314(1-2):16-20.
    [142]Lencka M M, Riman R E. Thermodynamic modeling of hydrothermal synthesis of ceramic powders [J]. Chemistry Of Materials,1993,5(1):61-70.
    [143]Bai J, Zeng X C, Hideki T, et al. Metallic single-walled silicon nanotubes [J]. PNAS,2004,101(9):2664-2668.
    [144]Zhang M, Kan Y, Zang Q, et al. Why silicon nanotubes stably exist in armchair structure? [J]. Chemical Physics Letters,2003,379(1-2):81-86.
    [145]Kumar V, Majumder C, Kawazoe Y. M@Si16, M=Ti, Zr, Hf:p conjugation, ionization potentials and electron affinities [J]. Chemical Physics Letters,2002, 363(3-4):319-322.
    [146]Tang Y H, Pei L Z, Chen Y W, et al. Self-assembled silicon nanotubes under supercritically hydrothermal conditions [J]. Physical Review Letters,2005, 95(11):116106-116110.
    [147]Yu K F, Guo Y P, Ding X F, et al. Synthesis of silica nanocubes by sol-gel method [J]. Materials Letters,2005,59(29-30):4013-4015.
    [148]Li X M, Wu Y L, Li Y. Surfactant-assisted synthesis of helical silica [J]. Inorganica Chimica Acta,2007,360(1):241-245.
    [149]Cheng L F, Zhang X T, Li Y C, et al. Template synthesis of aligned SiO2 submicro-wires [J]. International Journal of Nanoscience,2006,5(2-3): 273-278.
    [150]Lee S W, Kim Y U, Choi S S, et al. Preparation of SiO2/TiO2 composite fibers by sol-gel reaction and electrospinning [J]. Materials Letters,2007,61(3): 889-893.
    [151]Tricoli A, Righettoni M, Krumeich F, et al. Scalable flame synthesis of SiO2 nanowires:dynamics of growth [J]. Nanotechnology,2010,21: 465604-465607.
    [152]Mishra P K, Mohanty B C, Nayak B B. Fine silica powder preparation by use of a transferred arc thermal plasma reactor [J]. Materials Letters,1995,23(1-3): 153-156.
    [153]Uchino T, Yamada T. White light emission from transparent SiO glass prepared from nanometer-sized silica particles [J]. Applied Physics Letters,2004,85: 1164-1167.
    [154]Umezu I, Shibata K, Yamaguchi S, et al. Effects of thermal processes on photo luminescence of silicon nanocrystallites prepared by pulsed laser ablation [J]. Journal Of Applied Physics,1998,84:6448-6452.
    [155]Wakayama H, Goto Y, Fukushima Y. A novel method for tailoring porous structures of nanoporous materials using supercritical solvents [J]. Physical Chemistry Chemical Physics,2003,5(17):3784-3788.
    [156]沈湘黔,彭美勋,危亚辉.β-球形氢氧化镍的微结构与热分解特征[J].电源技术,2004,28(1):10-12.
    [157]Flynn J H. Stares of thermal analysis [M]. Washington D.C.:US Gov't Printing Office,1970:119-123.
    [158]王盘鑫.粉末冶金学[M].北京:冶金工业出版社,1997:48-52.
    [159]孙世刚.物理化学[M].厦门:厦门大学出版社,2008:67-82.
    [160]Mosser-Ruck R, Cathelineau M, Baronnet A, et al. Hydrothermal reactivity of K-smectite at 300C and 100 bar:dissolution-crystallization process and non-expandable dehydrated smectite formation [J]. Clay. Clay. Miner.,1999, 34(2):275-290.
    [161]Yu C H, Lin H H, Cheng S L, et al. Ultrafast directional nickel-silicide-induced crystallization of amorphous silicon under high-density current stressing [J]. Applied Physics Letters,2003,82:1857-1861.
    [162]Wang B, Callahan M J. Transport growth of GaN crystals by the ammonothermal technique using various nutrients [J]. Journal Of Crystal Growth,2006,291(2):455-460.
    [163]Chen X, Wang Z, Wang X, et al. Synthesis of novel copper sulfide hollow spheres generated from copper (Ⅱ)--thiourea complex [J]. J. Cryst. Growth, 2004,263(1-4):570-574.
    [164]Peng Q, Dong Y, Li Y. ZnSe semiconductor hollow microspheres [J]. Angew.
    Chem. Int. Edit,2003,42 (26):3027-3030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700