生物医用钛基植入体材料表面纳米结构的构建及其生物学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物医用材料,是用于取代、修复活组织的天然或人造材料。生物医用材料与延长人类寿命和提高生活质量息息相关,因而生物材料领域越来越受到重视。近年来,材料学和生物学的研究进展为生物医用材料的发展奠定了基础。而随着全球人口老龄化进程的加速、人类对健康和长寿的追求、运动创伤的增多、疑难病患者的增加和需要替换组织的病人年龄降低等现象都对生物材料提出了非常大的需求。目前,不仅植入手术增加,植入后的修复手术也随之增加。修复手术给患者造成了疼痛,并且造价高成功率低,这就对生物材料提出了更高的要求。
     生物医用钛材料由于其良好的力学性能、低弹性模量、易加工性、抗腐蚀性和生物相容性被广泛应用作人工骨、人工关节、骨钉、牙种植体等硬组织替代材料和心脏瓣膜、血管支架等血管材料。但是,钛及其合金本身存在着生物惰性的缺点,使其植入体内与周围组织的结合仅仅是简单的机械锁合,不能形成良好的键合作用。因而钛植入体往往被纤维组织所包裹而与宿主组织隔离开来,长此以往会引起血栓从而导致植入体的失败。目前主要的解决方法是在植入体表面形成磷灰石,形成骨性结合。但这种方法也存在着致命的缺点就是与钛基体的结合力弱,容易造成脱落。而其他物理方法包括离子注入,热喷涂等方法也存在着造价昂贵的问题。另外,在外科手术中,细菌感染是临床上面临的棘手问题。全面的消毒和严格的无菌操作条例等措施下,术后感染经常发生。严重的感染会延长住院时间、增加患者的病痛和经济负担等一系列问题。临床上主要的解决途径是抗生素注射的方法,而抗生素抗菌具有特异性,需要长期注射而且会引发抗药细菌株。
     植入体表面微纳米结构通过对络氨酸激酶活性,胞内信号通路的调节来控制转录活性和基因表达影响细胞的贴壁、形态、排列、粘附、迁移、增殖、分化和骨架组装;钙镁离子在骨代谢中扮演着重要角色;氧化石墨烯和还原氧化石墨烯对蛋白和生长因子的富集作用可以调控细胞分化;纳米银具备有效的抑制多种细菌、真菌和病毒的特性。
     基于以上问题,本论文提出在钛表面原位构建纳米结构活化钛表面;通过载入促进细胞成骨分化的离子Ca2+和Mg2+定向调控干细胞命运;而氧化石墨烯和还原氧化石墨烯组装在具有钛酸钠纳米结构的钛表面构建复合纳米材料改善生物学功能;在钛酸钠纳米结构上载入Ag+并还原得到Ag纳米颗粒原位制备兼备抑菌和生物相容性的钛植入体材料,具体包括如下工作:
     1.钛表面纳米结构的构建及其生物学性能。
     利用碱-水热的方法通过调节反应条件在医用金属钛表面原位构建了纳米网络结构和纳米管结构的单斜钛酸钠Na2Ti307;通过静滴法测量了超纯水在三组样品,包括抛光的纯钛片、钛酸钠网络结构和纳米管结构上的接触角,并对三组样品表面的亲疏水性能比较,探讨了表面纳米结构对前成骨细胞(MC3T3-E1)行为的影响;细胞增殖、细胞骨架染色和碱性磷酸酶活性测试得到的结果可以看出:钛酸钠纳米网络结构能够促进细胞的贴壁、铺展、迁移和增殖,特别是在成骨诱导因子的协同作用下更加明显。而纳米管结构的钛酸钠与之相比,更能促进细胞的成骨分化;钛酸钠纳米网络结构的构建为后续工作奠定了基础。
     2.钛表面构建不同离子的钛酸盐纳米结构,调控干细胞的命运。
     通过简单的水热技术和随后的离子交换过程制备了Na+-钛酸盐,Mg2+-钛酸盐和Ca2+-钛酸盐等不同离子的钛酸盐纳米结构。钛片浸没在MgCl2和CaCl2溶液中后NazTi3O7纳米结构中的Na+被完全取代。这种方法改变了用于细胞培养的钛植入体表面的化学环境,如钛酸盐纳米结构中无机阳离子的种类和数量,从而调控间充质干细胞的命运,包括贴壁,增殖和分化。与Na+-钛酸盐的样品相比,Mg2+-钛酸盐和Ca2+-钛酸盐的钛酸盐纳米结构样品均能促进细胞的增殖和成骨分化。但是过量的离子会抑制细胞活动。Ca2+-钛酸盐比Mg2+-钛酸盐在促进细胞分化方面更具有优势。
     3.在含钛酸钠纳米结构的钛表面组装氧化石墨烯(GO)和还原氧化石墨烯(rGO)进行表面改性并研究其生物学性能。
     构建氧化石墨烯和还原氧化石墨烯功能化的钛表面材料"GO-Ti"和'rGO-Ti"。具体方法是:首先通过碱-水热处理得到了利于细胞活动的钛酸钠的纳米网络结构;而结构中所含的Ti-O可以与偶联剂3-氨丙基三乙氧基硅烷(APTES)结合,然后组装GO得到'GO-Ti";随后通过联氨原位还原"GO-Ti"表面的GO得到"rGO-Ti"。通过Raman, XPS和SEM确定了功能化的钛表面成分分别为氧化石墨烯(GO)和还原氧化石墨烯(rGO);另外也证实了钛表面组装GO和rGO后改变了接触角,从而影响了材料表面的生物学功能;蛋白吸附实验和细胞实验证实了GO和rGO的功能化使得钛表面对蛋白分子和细胞生长因子具有明显的富集作用,特别是GO中的含氧基团的辅助作用,使其具备了调控钛表面的生物学功能和细胞的增殖和分化能力;在钛表面组装石墨烯的工作具有开创性,而且有效的调控了细胞行为,包括贴壁、铺展、增殖和分化等。
     4.钛表面原位构建具有抑菌性能和生物相容性的钛酸/银纳米颗粒/钛酸的三明治纳米结构。
     在Ti植入体表面成功原位构建了钛酸-银纳米颗粒-钛酸的三明治纳米结构。首先通过碱水热反应在Ti片表面合成钛酸钠纳米结构;接着在硝酸银溶液中Ti片表面上钛酸钠纳米结构中的Na+离子被溶液中的Ag+离子取代;最后在葡萄糖溶液中Ag+被还原为Ag纳米颗粒。三明治结构上的银纳米颗粒镶嵌在钛酸盐纳米结构的片层结构之间,尺寸和含量随着硝酸银溶液和葡萄糖浓度的增加而增加。与未被葡萄糖还原的样品中Ag+离子的爆发式释放相比,还原后得到的三明治结构中对Ag+的释放起到了缓释作用,实现了稳定的持续释放过程,因而提高了抑菌效果。确定了在0.01mmol/L的硝酸银溶液中离子交换的样品为最优选择具有高达99.99%的抑菌率和良好的生物相容性。目前的研究工作证实了钛酸-银纳米颗粒-钛酸的三明治纳米结构具有抑菌性能和细胞相容性的双重功能。
Biomedical materials are artificial or natural materials, used to replace or revise the lost or diseased biological structure to restore their function. They are closely related with the improvement of the quality of life and longevity of human being. Therefore, this field has drawn more and more attentions. Recently, the progress of material and biological science promote the development of biomaterial. Due to the acceleration of the aging process, the pursuit of human health and longevity, the increase of physical trauma and patients suffering complicate diseases, the demand for biomaterials is tremendous. At present, the increasing number of the repair and replacement surgeries cause pains to the patients, and the increase of the cost. Moreover, the successful rate of the surgery is rather low. Therefore, higher requirements for biological materials are expected.
     Biomedical metallic titanium (Ti) is widely used for artificial bone, artificial joints, bone screws, dental implants as well as heart valves, vascular stents and other vascular materials, because of their good mechanical property, high corrosion resistance, low elasticity modulus, biocompatibility and simple processing. However, the bionert property of titanium makes it difficult to bind with surrounding tissues and the fibrous tissue would appear during the usage period, which cause thrombus and failure of implants. The mainly available way to resolve the above problems is to form apatite coatings on the surface integrated with host tissues. But a fatal disadvantage is the weak bonding strength between the coatings and the titanium substrate, which makes it easy to fall off. For other physical methods, such as ion implantation, thermal spraying and so on, the cost increased. Another complicate issue for the application of titanium implant is the potential bacterial infection. With the comprehensive disinfection and strictly aseptic operation, the postoperative infection is still a frequent occurrence. Serious infections will prolong hospitalization time, increase the patient's pains, financial burden and a series of troublesome issues. The main solution for infection is to inject clinically antibiotic, which possess antimicrobial specificity, but this will lead to drug-resistant strains of bacteria after a long-term injection.
     It's known that the surface micro-/nanostructure influences cell activity, including cell adhesion, spread, proliferation, differentiation; calcium and magnesium cations play a vital role in bone metabolism; the preconcentration effects of graphene oxide and graphene regulate cell growth and differentiation; silver nanoparticles possess the property of inhibiting bacteria, fungi and viruses, which could be applied in preparing antibacterial implants.
     Based on the above problems, this paper proposed four topics as below:
     1. In situ construction of sodium titanate nanostructure on titanium and the biological research
     Using alkali-hydrothermal method, two kinds of sodium titanate nanostructure, nanonetwork and nanotube were constructed through the reaction between metallic titanium and concentrated NaOH; SEM, EDX, HRTEM and Raman confirmed both the sodium titanate nanostructures are monoclinic crystal Na2Ti3O7; the formed nanostructure improved the hydrophilicity of the surface, which is an important factor for affecting cell activity; cell experiments, including cell proliferation, cytoskeleton staining and alkaline phosphatase (ALP) activity demonstrated that sodium titanate nano-network structure promoted cell proliferation and sodium tianate nanotubes and enhanced ALP (the marker of osteogenesis) activity; moreover, the preparation of sodium titanate activates the titanium surface and which is helpful for the following research work.
     2. Nanostructured titanate with different metal ions on surface of metallic titanium for regulating the fate of rat bone marrow mesenchymal stem cells
     Na+-titanate, Mg2+-titanate and Ca2+-titanate nanostructure can be synthesized by a facile method based on a hydrothermal technique and followed by an ion-substitution process. By immersing titanium foil with Na2Ti3O7nanostructured on the surface in MgCl2and CaCl2solution, Na+in titanate can be totally substituted by Mg2+or Ca2+ions. This treatment modified the chemical environment on surface of titanium implants for cell culture, i.e. category and quantity of inorganic cations in titanate nanostructure, which can tune protein adsorption and the fate of mesenchymal stem cells, including adhesion, proliferation and differentiation. Both Mg2+and Ca2+in titanate nanostructure can enhance proliferation and osteogenic differentiation of BMSCs, compared with Na+-titanate nanostructures. Excessive Mg2+and Ca2+in titanate can inhibit cell proliferation and differentiation of BMSCs, yet, after some cations (Mg2+, Ca2+) release into osteogenic inductive medium during cell culture, osteoblastic differentiation could be enhanced. Certainly, Ca2+-titanate has more advantages than Mg2+-titanate in cell differentiation. This facile method of introducing Mg2+and Ca2+into titanate by ion- substitution would be promising in titanium implant design and manufacture.
     3. A graphene oxide and reduced graphene oxide functionalized Ti implant for improving biological property
     Based on the great significance of graphene and its derivatives in biological applications, graphene oxide (GO) and reduced graphene oxide (rGO) were firstly successfully assembled on titanium foils with sodium titanate nanostructure on the surface to obtain the composite nanostructures. The typical process is through alkylation method using coupling agent to bind GO and sodium titanate nanostructure and then GO was in situ reduce on the surface by hydrazine. Raman, XPS and SEM confirmed the structure and composition of GO and rGO on titanium surface. The modification altered the hydrophilicity of the surface and thus influenced the biological function. Then the protein adsorption and cell experiments demonstrated that functionalized samples, especially GO with a large scale of oxygen-containing groups can concentrate protein and growth factors which are associated with cell activities and promote cell proliferation and differentiation. Because of the great enhancement in cell growth, as well as the hot topic of graphene, the titanium material functionalized with graphene will be promising in the biomedical future.
     4. In situ construction of a titanate-silver nanoparticle-titanate sandwich nanostructure on a metallic titanium surface for bacteriostatic and biocompatible implants
     The sodium titanate nanonetwork film was first synthesized on the Ti foil surface by the alkaline hydrothermal method. Subsequently, the silver ions substituted for the sodium ions in the layer-structured sodium titanate by immersing sodium titanate into the AgNO3solution. Finally, Ag+ions were reduced to the Ag nanoparticles (AgNPs) in the glucose solution. As a result, a titanate-silver nanoparticle-titanate sandwich nanostructure was successfully in situ constructed on the titanium surface. The size and the amount of AgNPs in the sandwich nanostructure increased with an increase in the concentrations of the silver nitrate and the glucose. Compared with Ag+-titanate samples without reduction, this sandwich nanostructure showed a steady and prolonged release manner of Ag+ions, and thereby improved the bacteriostatic efficacy. An optimal concentration of AgNO3solution for ion-substitution was0.01mM and its bacteriostatic rate was determined as high as99.99%and also it possessed good cytocompatibility. The present work demonstrated a titanate-silver nanoparticle-titanate sandwich nanostructure that has dual functions of antibacterial activity and cytocompatibility. Therefore, the Ti substrate with such a sandwich nanostructure on the surface is a promising implantable biomaterial.
引文
[1]李世普编著.生物医用材料导论[M].武汉:武汉工业大学出版社,2000.
    [2]刘宣勇编著.生物医用钛材料及其表面改性[M].北京:化学工业出版社,2008
    [3]Narayan RJ. The next generation of biomaterial development. Philos Transact A Math Phys Eng Sci.2010;368:1831-187
    [4]蒋震.β-硅酸二钙陶瓷的制备及其生物活性研究,湖南大学硕士论文,2009
    [5]Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci.2009;54:397-425
    [6]顾汉卿.生物医学材料学(生物医学工程丛书)[M].天津:天津科技翻译出版公司,1993.
    [7]Ramakrishna S, Mayer J, Wintermantel E, Leong Kam W. Biomedical applications of polymer-composite materials:a review. Compos Sci Technol 2001;61:1189-224.
    [8]Wise DL. Biomaterials engineering and devices. Berlin:Humana Press; 2000. p. 205-319.
    [9]Park JB, Bronzino JD, editors. Biomaterials:principles and applications. Boca Rator, FL:CRC Press; 2003. p.1-241.
    [10]Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89:780-5.
    [11]Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 1998;19:1621-39.
    [12]Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng: A 1996;213:134-7.
    [13]Gross UM. Biocompatibility--the interaction of biomaterials and host response. J Dent Educ.1988;52:798-803.
    [14]刘洪刚,程国安.生物材料的研究和展望.自然杂志.1998,20(6):30.
    [15]Katz JL. Anisotropy of Young's modulus of bone. Nature 1980;283:106-7.
    [16]Black J, Hastings GW. Handbook of biomaterials properties. London UK: Chapman and Hall; 1998.
    [17]Sumner DR, Turner TM, Igloria R, Urban RM, Galante JO. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J. Biomech. 1998;31:909-17.
    [18]Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008; 29: 2941-53.
    [19]Hallab NJ, Anderson S, Stafford T, Glant T, Jacobs JJ. Lymphocyte responses in patients with total hip arthroplasty. J. Orthop. Res 2005; 23(2):384-91.
    [20]Sargeant A, Goswami T. Hip implants:Paper V. Physiological effects. Mater Des 2006; 27:287-307.
    [21]Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J Biomech 2000;33:1611-8.
    [22]于振涛,张明华,余森,刘春潮,汶斌斌,张亚峰.中国医疗器械用钛合金材料研发、生产与应用现状分析.中国医疗器械信息.2012年07期
    [23]Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R.2004;47:49-121
    [24]Polmear IJ. Titanium alloys.light alloys. Chapter 6. London:Edward Arnold Publ,1981:162.
    [25]于振涛,周廉,王克光.生物医用型p型钛合金的设计与开发[J],稀有金属快报,No1,2004,5-10
    [26]Dowson D, Bio-tribology of natural and replacement synovial joints:Mow VC, Ratcliffe A, Woo SL-Y, editor. Biomechanics of diarthrodial joints,Vol. Ⅱ. Chap.29. New York:Springer,1992:305-345
    [27]Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A.1998;243:231-6
    [28]Tengvall P, Lundstrom I. Physico-chemical considerations of titanium as a biomaterial. Clin Master,1992;9:115-34.
    [29]Breme J. Titanium and its alloys biomaterials of preference. Men Etud Sci Rev Metal.1989;86:625-37.
    [30]Parks GA. The isoelectric point of solid oxides, solid hydroxides, and aqueous hydroxyl complex system. Chem. Rev.1965;65:177-98
    [31]陶凤娟.纯钛表面塑性变形纳米化对MC3T3细胞生物学行为的影响复旦大学硕士论文,2009.
    [32]Schmidt C, Kaspar D, Sarkar MR, Claes LE, Ignatius AA. A scanning electron microscopy study of human osteoblast morphology on five orthopedic metals. J Biomed Mater Res.2002;63:252-61.
    [33]Takadama H, Kim HM, Kokubo T, Nakamura T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J Biomed. Mater. Res.2001;57:441-8
    [34]Zhen X, Huang M, Ding C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 2000;21:841-9
    [35]Kim H M, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 1996;32:409-17
    [36]Antonelli DM, Ying JY. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew Chem Int Ed Engl.1995;34:2014-7
    [37]Gong D, Grimes CA, Varghese OK. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res.2001;16:3331-3334.
    [38]Han Y, Hong S H, Xu K. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Sur Coat Technol.2003;168:249-58
    [39]Hanawa T. In vivo metallic biomaterials and surface modification.Mater Sci Eng A.1999;267:260-7
    [40]Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 2006;32:5561-71
    [41]Schliephake H, Botel C, Forster A, Schwenzer B, Reichert J, Scharnweber D. Effect of oligonucleotide mediated immobilization of bone morphogenic proteins on titanium surfaces.2012;33:1315-22
    [42]Hu X, Neoh KG, Zhang J, Kang ET, Wang W. Immobilization strategy for optimizing VEGF's concurrent bioactivity towards endothelial cells and osteoblasts on implant surfaces. Biomaterials,2012;33:8082-93
    [43]Peng XL, Clyne TW. Formation and adhesion of hot filament CVD diamond films on titanium substrates. Thin Solid Films 1997;293:261-9
    [44]Archer NJ. The plasma-assisted chemical vapour deposition of TiC, TiN and TiCxN1-x, Metallurgical and protective coatings 1981;80:221-225.
    [45]Hochauer D, Mitterer C, Penoy M, Michotte C, Martinzd HP, Kathrein M. Titanium doped CVD alumina coatings. Surf Coat Technol.2008;203:350-6
    [46]Sawase T, Wennerberg A, Baba K, Tsuboi Y, Sennerby L, Johansson CB, Albrektsson T. Application of Oxygen Ion Implantation to Titanium Surfaces: Effects on Surface Characteristics, Corrosion Resistance, and Bone Response. Clin Implant Dent Relat Res.2001;3:221-9.
    [47]S. Fukumotoa, H. Tsubakinoa, S. Inoueb, L. Liuc, M. Terasawad, T. Mitamurad. Surface modification of titanium by nitrogen ion implantation. Mater Sci Eng:A. 1999;263:20-209.
    [48]Ruby Gupta and M P Srivastava. Carbon ion implantation on titanium for TiC formation using a dense plasma focus device. Plasma Sources Sci. Technol. 2004;13:371-4.
    [49]Stevens MM, George JH. Exploring and Engineering the Cell Surface Interface. Science 2005;310:1135-8.
    [50]Teixeira AI, Nealey PF, Murphy CJ, J Biomed Mater Res.2004;71A:369-76.
    [51]Curtis AS, Gadegaard N, Dalby MJ, Riehle MO, Wilkinson CD,Aitchison G. Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans. Nanobioscience,2004;3:61-5.
    [52]Price RL, Ellison K, Haberstroh KM, Webster TJ. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J. Biomed. Mater. Res. A,2004;70A:129-38.
    [53]R. L. Price, K. M. Haberstroh, T. J. Webster. Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina Med Biol Eng Comput.2003;41:372-375.
    [54]Andersson AS, Backhed F, von Euler A, Richter-Dahlfors A, Sutherland D, Kasemo B. Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials 2003;24:3427-36.
    [55]Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, Boyan B. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials, 2005,26:1837-47.
    [56]Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng.2001;7:291-301.
    [57]Yim EK, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 2005;26:5405-13.
    [58]Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol.2009; 10:21-33.
    [58]Hsu SH, Chen CY, Lu PS, Lai CS, Chen CJ. Oriented Schwann cell growth on microgrooved surfaces. Biotechnol.Bio eng.,2005;92:579-88.
    [59]Loesberg WA, te Riet J, van Delft FC, Schon P, Figdor CG, Speller S, van Loon JJ, Walboomers XF, Jansen JA. The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 2007;28:3944-51.
    [60]Teixeira AI, McKie GA, Foley JD, Bertics PJ, Nealey PF, Murphy CJ. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 2006;27:3945.
    [61]Teixeira AI, McKie GA, Foley JD, Bertics PJ, Nealey PF, Murphy CJ. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. J Biomed Mater Res 1995;29:81-8.
    [62]Dalby MJ, Gadegaard N, Riehle MO, Wilkinson CD, Curtis AS. Investigating filopodia sensing using arrays of defined nanopits down to 35 nm diameter in size. Int J Biochem Cell Biol.2004;36:2005.
    [63]Hart A, Gadegaard N, Wilkinson CD, Oreffo RO, Dalby MJ. Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography. J Mater Sci Mater Med.2007;18:1211-1218.
    [64]Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Dalby MJ. The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med.2007,18:399-404.
    [65]Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol.2006;7:265-75.
    [66]Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol.2009 Jan;10(1):21-33.
    [67]Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-81.
    [68]Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater.,2007,6:997-1003.
    [69]Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro-and nanoscale to control cellfunction. Angew Chem Int Ed Engl. 2009;48(30):5406-15
    [70]Dalby MJ, Gadegaard N, Tare R,Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater.2007;6:997-1003
    [71]Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced Cellular Mobility Guided by TiO2 Nanotube Surfaces. Nano Lett.2008 Mar;8(3):786-93.
    [72]Bettinger CJ, Zhang Z, Gerecht S, Borenstein JT, Langer R. Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv Mater.2008; 20:99-103.
    [73]A. Curtis. Tutorial on the biology of nanotopography. IEEE Trans. Nanobioscience, 2004;3:293-295.
    [74]Curtis AS, Gadegaard N, Dalby MJ, Riehle MO, Wilkinson CD, Aitchison G. Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans. Nanobioscience,2004;3:61-65.
    [75]Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng.2001;7:291-301.
    [76]http://www.stem-cell-solutions.com.au/test/training/research/111-adult-mesenchymal-stem-cells
    [77]Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32:2757-74
    [78]Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res.2002;62:175-84.
    [79]Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, et al. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res.2002;62:99-105.
    [80]Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Kilburn J. Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 2005;37:211-9.
    [81]Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Mills BG. Bone loss induced by dietary magnesium reduction to 10% of the nutrient requirement in rats is associated with increased release of substance P and tumor necrosis factor-alpha. J Nutr 2004; 134:79-85.
    [82]Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency:effect on bone and mineral metabolism in the mouse. Calcif Tissue Int 2003;72:32-41.
    [83]Hinoi E, Takarada T, Yoneda Y. Glutamate signaling system in bone. J Pharmacol Sci 2004;94:215-20.
    [84]Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005;26: 4847-55.
    [85]Marie PJ. The calcium-sensing receptor in bone cells:a potential therapeutic target in osteoporosis. Bone 2010;46:571-6.
    [86]Valerio P, Pereira MM, Goes AM, Leite MF. Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater 2009;4:045011.
    [87]Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183-91.
    [88]Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and Graphene Oxide:Synthesis, Properties, and Applications. Adv Mater.2010;22:3906-24
    [89]Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D. Dekany I, Chem. Mater.2006;18:2740-9.
    [90]Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat nanotechnol.2009;4:217-24.
    [91]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric Field Effect in Atomically Thin Carbon Films. Science 2004;306:666-9
    [92]Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol.2009;4:217-24
    [93]Gilje S, Han S, Wang M, Wang KL, Kaner RB. Kaner A. chemical route to graphene for device applications. Nano Lett.2007;7:3394-8
    [94]Hassan M. A. Hassan, Victor Abdelsayed, Abd El Rahman S. Khder, Khaled M. AbouZeid, James Terner, M. Samy El-Shall,Saud I. Al-Resayes and Adel A. El-Azhary. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem.,2009,19,3832-3837
    [95]Murugan AV, Muraliganth T, Manthiram A. Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage. Chem. Mater.2009;21:5004-6
    [96]Subrahmanyam KS, Panchakarla LS, Govindaraj A, C. N. R. Rao. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C, 2009;113:4257-59
    [97]Wang G, Wang B, Park J, Yang J, Shen X, Yao J. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 2009;47:68-72.
    [98]Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials:an interdisciplinary review. Chem. Res. Toxicol.2012;25:15-34
    [99]Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett.2009;9:1593-7.
    [100]Cote LJ, Kim J, Tung VC, Luo J, Kim, F, Huang, J. Graphene oxide as surfactant sheets. Pure Appl Chem.2009;83:95-110.
    [101]Kim F, Cote LJ, Huang J. Graphene oxide:surface activity and two-dimensional assembly. Adv. Mater.2010;22:1954-8.
    [102]Guo F, Kim F, Han TH, Shenoy VB, Huang J, Hurt RH. Hydration-responsive folding and unfolding transitions in graphene oxide liquid crystal phases. ACS Nano 2011;5:8019-25.
    [103]Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010;2:581-7.
    [104]姜晖,王雪梅,王晨苏.石墨烯类材料在生物医学领域应用的研究进展.药学学报Acta Pharmaceutica Sinica 2012,47 (3):291-298
    [105]Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale,2011;3:2461-4.
    [106]Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett,2011;200:201-10.
    [107]Donaldson K,Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon Nanotubes:A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci.2006;92:5-22.
    [108]Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB. Biopersistence and potential adverse health impacts of fibrous nanomaterials:what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol.2009; 1:511-29.
    [109]Liu X, Hurt RH, Kane AB. Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon N Y.2010;48:1961-9.
    [110]Allen BL, Kichambare PD, Gou P, Vlasova Ⅱ, Kapralov AA, Konduru N, Kagan VE, Star A. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett.2008;8:3899-903.
    [111]Kagan VE. Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova Ⅱ, Belikova NA, Yanamala N, Kapralov A, Tyurina YY, Shi J, Kisin ER, Murray AR, Franks J, Stolz D, Gou P, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol.2010;5:354-9.
    [112]Kotchey GP, Allen BL, Vedala H, Yanamala N, Kapralov AA, Tyurina YY, Klein-Seetharaman J, Kagan VE, Star A. The enzymatic oxidation of graphene oxide. ACS Nano 2011;5:2098-108.
    [113]Guo L, Von Dem Bussche A, Buechner M, Yan A, Kane AB, Hurt RH. Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 2008;4:721-7.
    [114]Woorle-Knirsch, JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett.2006;6:1261-8.
    [115]Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 2007;45:1425-32.
    [116]Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R, Duana H, Chen Y. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH sensitivity. J. Mater. Chem.2010;21:3448-54.
    [117]Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.2008; 1:203-12.
    [118]Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics.2012;2:283-94.
    [119]Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M. Blue photoluminescence from chemically derived graphene oxide. Adv Mater.2010;22:505-9
    [120]Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B. Strongly green-photoluminescent graphene quantum dots for bioimag-ing applications. Chem Commun.2011;47:6858-60.
    [121]Zhang L, Xing Y, He N, Zhang Y. Lu Z, Zhang J, Zhang Z. Preparation of graphene quantum dots for bioimaging application. J Nanosci Nanotechno. 2012; 12:2924-28.
    [122]Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008;8:586-90.
    [123]Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine:theranostic applications. Chem Soc Rev.2013;42:530-47
    [124]Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev. Cancer.2003;3:380-7.
    [125]Dong H, Zhao Z, Wen H, Li Y, Guo F, Shen A, Frank P, Lin C, Shi D, Sci China Chem. Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy.2010;53:2265-71.
    [126]Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y, Superparamagnetic graphene oxide-FesO4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem.2009.19:2710-4.
    [127 Ryoo SR, Kim YK, Kim MH, Min DH. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes:proliferation, focal adhesion, and gene transfection studies. ACS Nano.2010;4:6587-98.
    [128]Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules.2010;11:2345-51.
    [129]Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PL, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano.2011;5:4670-8.
    [130]Kalbacova M, Broz A, Kong J, Kalbac M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 2010;48: 4323-9.
    [131]Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, Liu L, Jin G, Tang M, Cheng G. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 2011;32:9374-82
    [132]Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial Coatings on Titanium Implants. J Biomed Mater Res Part B Appl Biomater.2009;91:470-80
    [133]Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004;350:1422-9.
    [134]Hetrick EM, Schoenfisch MH. Reducing implant-related infections:active release strategies. Chem Soc Rev 2006;35:780-9.
    [135]Donlan RM, Costerton JW. Biofilms:survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15:167-93.
    [136]Lindsay D, von Holy A. Bacterial biofilms within the clinical setting:What healthcare professionals should know. J Hosp Infect 2006;64:313-25.
    [137]Wahlig H, Dingeldein E. Antibiotics and bone cements. Experimental and clinical long-term observations. Acta Orthop Scand 1980;51:49-56.
    [138]Salzmann GM, Naal FD, von Knoch F, Tuebel J, Gradinger R, Imhoff AB, Schauwecker J. Effects of cefuroxime on human osteoblasts in vitro. J Biomed Mater Res A 2007;82:462-8.
    [139]陈丽梅,银基纳米材料在生物材料表面的构建及其抑菌性能,山东大学硕士论文,2012.
    [140]Li JX, Wang J, Shen LR, Xu ZJ, Li P, Wan GJ, Huang N, The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behavior. Surf Coat Technol 2007;201:8155-9.
    [141]Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect 2005;60:1-7.
    [142]Bosetti M, Masse A, Tobin E, Cannas M. Silver coated materials for external fixation devices:in vitro biocompatibility and genotoxicity. Biomaterials 2002;23:887-92.
    [143]Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G. Lack of toxicological side-effects in silvercoated megaprostheses in humans. Biomaterials 2007;28:2869-75.
    [144]Zhang W, Luo Y, Wang H, Jiang J, Pu S, Chu PK. Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater 2008;4:2028-36.
    [145]Kwok SCH, Zhang W, Wan GJ, McKenzie DR, Bilek MMM, Chu PK. Hemocompatibility and anti-bacterial properties of silver-doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition. Diamond Relat Mater 2007;16:1353-60.
    [146]Ewald A, Gluckermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online 2006;5:22.
    [147]Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006;27:5512-7.
    [148]Catalina Marambio-Jones · Eric M. V. Hoek. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart Res 2010;12:1531-51
    [149]AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano.2009;3:279-90.
    [150]Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res.2008;42:3066-74.
    [151]Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnol.2010;28:580-8.
    [152]Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311:622-7.
    [153]Mendis E, Rajapakse N, Byun HG, Kim SK. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 2005;77:2166-78.
    [154]Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal-ions. Free Radic Biol Med.1995;18:321-36.
    [155]Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43:1027-32.
    [156]Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res.2008;42:3066-74.
    [157]Smetana AB, Klabunde KJ, G.R. Marchin, C.M. Sorensen. Biocidal activity of nanocrystalline silver powders and particles. Langmuir 2008;24:7457-64.
    [158]Morones JR, Elechiguerra JL, Camacho AC, Holt K, Kouri JB, Ramirez JT, Yacaman M. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16:2346-53.
    [159]Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol.2008,24:192-196.
    [160]Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16:2346-53.
    [161]Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu GY. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane:structural basis for permeability. Langmuir 2000; 16:2789-96.
    [162]Stanic V, Janackovic D, Dimitrijevic S, Tanaskovic SB, Mitric M, Mirjana S. Pavlovic MS, Krstic A, Jovanovic D, Raicevic S. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci.2001;257:4510-8.
    [163]Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C. Silver release from silver-containing hydroxyapatite coatings. J Mater Sci Mater Med.2008:1892-6.
    [1]Ren N, Li R, Chen L, Wang G, Liu D, Wang Y, Zheng L, Tang W. Yu X, Jiang H, Liu H, Wu N. In situ construction of a titanate-silver nanoparticle-titanate sandwich nanostructure on a metallic titanium surface for bacteriostatic and biocompatible implants. J Mater Chem.2012;22:19151.
    [2]刘宣勇编著.生物医用钛材料及其表面改性[M].北京:化学工业出版社,2008
    [3]Meyle J, Gultig K, Nisch W. Variation in contact guidance by human cells on microstructured surface. J Biomed Mater Res.1995;29:1-88.
    [4]Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol.1997;68:186-98.
    [5]Nanci, A, Wuest, J, Peru, L, Brunet, P, Sharma, V, Zalzal, S. McKee, MD. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res.1998;40:324-35.
    [6]Zingcr O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials, 2004;25:2695-2711;
    [7]Popat KC, Leoni L, Grimes CA, Desal TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials,2007;28:3188-3197
    [8]Le Guehennec L, Soueidan A, Layrolle P, Amourig Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater,2007;23:844-854.
    [9]Papalexiou V, Novaes AB Jr, Grisi MF, Souza SS, Taba M Jr, Kajiwara JK. Influence of implant microstructure on the dynamics of bone healing around immediate implants placed into periodontally infected sites:Aconfocal laser scanning microscopic study. Clin Oral Implants Res.2004; 15:44-53
    [10]Oh SH, Finones RR, Daraio C, Chen LH, Jin S. Growth of nano-scale hydroxyapatite using chemically. Biomaterials,2005;26:4938-4943.
    [11]Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals:Ti, Ti6A14V, and CoCrMo. Biomaterials,2004;25:4731-473。
    [12]Bettinger CJ, Langer R, Borenstein JT. Borenstein. Engineering substrate topography at the micro-and nanoscale to control cell function. Angew. Chem. Int. Ed. 2009;48:5406-5415.
    [13]Goodman SL, Sims PA, Albrecht RM, Three-dimensional extracellular matrix textured biomaterials. Biomaterials 1996;17:2087-95.
    [14]Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res.2000;299:39-46.
    [15]Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO,Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater.2007;6:997-1003.
    [16]Yang MT, Sniadecki NJ, Chen CS, Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 2007;19:3119-3123.
    [17]Schmidt C, Kaspar D, Sarkar MR, Claes LE, Ignatius AA. A scanning electron microscopy study of human osteoblast morphology on five orthopedic metals. J Biomed Mater Res.2002;63:252-61.
    [18]Kim H M, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 1996;32:409-17
    [19]Antonelli DM, Ying JY. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew Chem Int Ed Engl.1995;34:2014-7
    [20]Gong D, Grimes CA, Varghese OK. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res.2001; 16:3331-4.
    [21]Peng XL, Clyne TW. Formation and adhesion of hot filament CVD diamond films on titanium substrates. Thin Solid Films 1997;293:261-9
    [22]Zhen X, Huang M, Ding C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 2000;21:841-9
    [23]Hanawa T. In vivo metallic biomaterials and surface modification.Mater Sci Eng A.1999;267:260-7
    [24]王冠聪.具有二级三维网络结构的壳聚糖/羟基磷灰石骨组织工程复合支架材料的构建及其生物性能研究,山东大学博士论文,2012
    [25]Wu D, Liu J, Zhao X, Li A, Chen Y, Ming N. Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts. Chem. Mater. 2006;18:547-553.
    [26]潘摇琰,郭玉鹏,宋文波,刘志辉.钛金属表面结构可控多层钛酸盐纳米管薄膜的制备和结构稳定性.高等学校化学学.2012;33:225-9.
    [27]Bunker BC, Penden, CHF, Tallant DR, Martinez SL, Turner GL, Mater. Res. Soc. Symp. Proc.1988;121:105.
    [28]Sakka S, Miyaji, F, Fukumi, K, Structure of Binary K2O·TiO2 and Cs2O·TiO2. J. Non-Cryst. Solids 1989; 112:64-68.
    [29]Miyaji F, Yoko T, Kozukaand H, Sakka, S, Structure of Na2O·2TiO2 glass. J. Mater. Sci.1991;26:248-252.
    [30]Ocana M, Jose V. Garcia-Ramos, Carlos J. Serna, Low-Temperature Nucleation of Rutile Observed by Raman Spectroscopy during Crystallization of TiO2. J. Amer. Ceram. Soc.1992;75:2010-2012.
    [31]Byeon SH, Lee SO, Kim H, Structure and Raman Spectra of Layered Titanium Oxides. J. Solid State Chem.1997; 130:110-116.
    [32]Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing, Adv. Mater.1999; 11:1307-1311
    [33]Ponsonnet L, Reybiera K, Jaffrezica N, Comteb V, Lagneaub C, Lissacb M, Marteleta C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behavior. Mater. Sci. Eng. C.2003;23:551-560.
    [34]Hallab NJ, Bundy KJ, O'Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion, Tissue Eng.2001;71:55-71.
    [35]Maitz MF, Poon RW, Liu XY, Pham MT, Chu PK. Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials 2005;26:5465-73.
    [36]Anselme K, Bigerelle M, Noel B, lost A, Hardouin P. Effect of grooved titanium substratum on human osteoblastic cell growth. J Biomed Mater Res,2002;60:529-40.
    [37]Shelton RM, Rasmussen AC, Davies JE. Protein adsorption at the interface between charged polymer substrate and migrating osteoblasts. Biomaterials.1988;9:24-29.
    [38]Lu L, Wu L, Jia H, Li Y, Chen J, Xu D, Li Q. The epithelial sodium channel is involved in dexamethasone-induced osteoblast differentiation and mineralization. Cell Biol Toxicol 2012;28:279-89.
    [39]Yada M, Inoue Y, Uota M, Torikai T, Watari T, Noda I, Hotokebuchi T. Plate, wire, mesh, microsphere, and microtube composed of sodium titanate nanotubes on a titanium metal template. Langmuir.2007;23:2815-23.
    [1]Hong MH, Lee DH, Kim KM, Lee YK. Improved bonding strength between TiO2 film and Ti substrate by microarc oxidation. Surf Interface Anal.2010;42:492-6.
    [2]Shi X, Nakagawa M, Kawachi G, Xu L, Ishikawa K. Surface modification of titanium by hydrothermal treatment in Mg-containing solution and early osteoblast responses. J Mater Sci-Mater Med.2012;23:1281-90.
    [3]Lum LB, Beirne OR, Curtis DA. Histologic evaluation of hydroxylapatite-coated versus uncoated titanium blade implants in delayed and immediately loaded applications. Int J Oral Maxillofac Implants.1991;6:456-62.
    [4]Kido H, Saha S. Effect of HA coating on the long-term survival of dental implant: a review of the literature. J Long Term Eff Med Implants.1996;6:119-33.
    [5]Wei Xia CL, Jukka Lausmaa and Hakan Engqvist. Biomimetic Hydroxyapatite Deposition on Titanium Oxide Surfaces for Biomedical Application. Advanced in Biomimetics [M]. InTech,2011:429-52.
    [6]Hayashi K, Inadome T, Tsumura H, Nakashima Y, Sugioka Y. Effect of surface roughness of hydroxyapatite-coated titanium on the bone-implant interface shear strength. Biomaterials 1994; 15:1187-91.
    [7]Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 2004;25:2111-21.
    [8]Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32:2757-74.
    [9]Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005;26:4847-55.
    [10]Marie PJ. The calcium-sensing receptor in bone cells:a potential therapeutic target in osteoporosis. Bone 2010;46:571-6.
    [11]Barradas AM, Fernandes HA, Groen N, Chai YC, Schrooten J, van de Peppel J, van Leeuwen JP, van Blitterswijk CA, de Boer J. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 2012;33:3205-15.
    [12]Kanaya S, Nemoto E, Ebe Y, Somerman MJ, Shimauchi H. Elevated extracellular calcium increases fibroblast growth factor-2 gene and protein expression levels via a cAMP/PKA dependent pathway in cementoblasts. Bone 2010;47:564-72.
    [13]Honda Y, Anada T, Kamakura S, Nakamura M, Sugawara S, Suzuki O. Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun.2006;345:1155-60.
    [14]Chai YC, Roberts SJ, Schrooten J, Luyten FP. Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model. Tissue Eng Part A. 2011;17:1083-97.
    [15]Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A. 2004;101:5140-5.
    [16]Rosen V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev.2009;20:475-80.
    [17]Hinoi E, Takarada T, Yoneda Y. Glutamate Signaling System in Bone. J Pharmacol Sci.2004;94:215-20.
    [18]Valerio P, Pereira MM, Goes AM, Leite MF. Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater.2009;4:045011.
    [19]Sul Y. The significance of the surface properties of oxidized titanium to the bone response:special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003;24:3893-907.
    [20]Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials:a review. Biomaterials 2006;27:1728-34.
    [21]Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62:175-84.
    [22]Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency:effect on bone and mineral metabolism in the mouse. Calcif Tissue Int.2003;72:32-41.
    [23]Wei J, Jia J, Wu F, Wei S, Zhou H, Zhang H, et al. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration. Biomaterials 2010;31:1260-9.
    [24]Ahmed I PA, Jones A, Walker G, Scotchford C. Rudd C. Cytocompatibility and effect of increasing MgO content in a range of quaternary invert Phosphate-based Glasses. J Biomater Appl.2010;24:555-75.
    [25]Howlett CR ZH, O'Dell R, Noorman J, Evans P, Dalton BA, et al. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells. J Mater Sci Mater Med.1994;5:715-22.
    [26]Maitz MF, Poon RW, Liu XY, Pham MT, Chu PK. Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials 2005;26:5465-73.
    [27]Shigeru Nishiguchi SF, Hyun-Min Kim, Tadashi Kokubo, Takashi Nakamura. Biology of alkali-and heat-treated titanium implants. J Biomed Mater Res A. 2002;67:26-35.
    [28]Kim H-M MF, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res A.1996;32:409-17.
    [29]Wang Y, Du G, Liu H, Liu D, Qin S, Wang N, et al. Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications. Adv Funct Mater 2008;18:1131-7.
    [30]Ren N, Li R, Chen L, Wang G, Liu D, Wang Y, et al. In situ construction of a titanate-silver nanoparticle-titanate sandwich nanostructure on a metallic titanium surface for bacteriostatic and biocompatible implants. J Mater Chem.2012;22:19151.
    [31]Suetake J, Nosaka AY, Hodouchi K, Matsubara H, Nosaka Y. Characteristics of titanate nanotube and the states of the confined sodium ions. J Phys Chem C. 2008;112:18474-82.
    [32]Mark F. Pittenger AMM, Stephen C. Beck, Rama K. Jaiswal, Robin Douglas, Joseph D. Mosca, Mark A. Moorman, Donald W. Simonetti, Stewart Craig, Daniel R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7.
    [33]Wang N, Xie K, Huo S, Zhao J, Zhang S, Miao J. Suppressing phosphatidylcholine-specific phospholipase C and elevating ROS level, NADPH oxidase activity and Rb level induced neuronal differentiation in mesenchymal stem cells. J cellular biochem.2007; 100:1548-57.
    [34]Wang G, Zheng L, Zhao H, Miao J, Sun C, Ren N, et al. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering. Tissue Eng Part A.2011;17:1341-9.
    [35]Boskey AL. Biomineralization:conflicts, challenges, and opportunities. J Cell Biochem Suppl.1998;30-31:83-91.
    [36]Skipper NT. Neutron Diffraction Study of Calcium Vermiculite Hydration of Calcium Ions in a Confined Enironment. J Phys Chem C.1994;98:942-5.
    [37]Papp S, Korosi L, Meynen V, Cool P, Vansant EF, Dekany I. The influence of temperature on the structural behaviour of sodium tri-and hexa-titanates and their protonated forms. J Solid State Chem.2005; 178:1614-9.
    [38]Viana BC, Ferreira OP, Filho AGS, Hidalgo AA, Filho JM, Alves OL. Alkali metal intercalated titanate nanotubes:A vibrational spectroscopy study. Vib Spectrosc. 2011;55:183-7.
    [39]Kim DH, Oh SG, Cho CG. Effects of Cs and Na Ions on the Interfacial Properties of Dodecyl Sulfate Solution. Colloid Polym Sci 2001;279:39-45.
    [40]Suresh MK, Thomas JK, Sreemoolanadhan H, George CN, John A, Solomon S, Wariar PRS, Koshy J. Synthesis of nanocrystalline magnesium titanate by an auto-igniting combustion technique and its structural, spectroscopic and dielectric properties. Mater Res Bull.2010;45:761-5.
    [41]Sun X, Li Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chemistry 2003;9:2229-38.
    [42]Chu CL, Chung CY, Zhou J, Pu YP, Lin PH. Fabrication and characteristics of bioactive sodium titanate/titania graded film on NiTi shape memory alloy. J Biomed Mater Res A.2005;75:595-602.
    [43]Liu H, Yang D, Waclawik ER, Ke X, Zheng Z, Zhu H, et al. A Raman spectroscopic study on the active site of sodium cations in the structure of Na2Ti3O7 during the adsorption of Si2+ and Ba2+ cations. J Raman Spectrosc.2010;41:1792-6.
    [44]Dongjiang Yang ZZ, Hongwei Liu, Huaiyong Zhu, Xuebin Ke, Yao Xu, D. Wu, and Y. Su. Layered titanate nanofibers as efficient adsorbents for removal of toxic Radioactive and Heavy metal Ions from water. J Phys Chem C.2008; 112:16275-80.
    [45]Healy KE Ducheyne P. Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 1992;13:553-61.
    [46]Tsai J-Y, Chao J-H, Lin C-H. Low temperature carbon monoxide oxidation over gold nanoparticles supported on sodium titanate nanotubes. J. Mol. Catal. A: Chem.2009;298:115-24.
    [47]Masanori Horie Keiko Nishio KF, Shigehisa Endoh, Arisa Miyauchi. Protein Adsorption of Ultrafine Metal Oxide and Its Influence on Cytotoxicity toward cultured cells. Chem Res Toxicol.2008;22:543-53.
    [48]Tantipolphan R, Rades T, McQuillan AJ, Medlicott NJ. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Int J Pharm.2007;337:40-7.
    [49]Chittur KK. FTIR-ATR for protein adsorption to biomaterial surfaces. Biomaterials 1998;19:357-69.
    [50]Zeng H, Chittur KK, Lacefiel WR. Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials 1999;20:377-84.
    [51]NiFU F, DeOliveira DB, Trumble WR, Sarkar HK, Singh BR. Secondary Structure Estimation of Proteins Using the Amide III Region of Fourier Transform Infrared Spectroscopy:Application to Analyze Calcium-Binding-Induced Structural Changes in Calsequestrin. Appl Spectrosc.1994:48:1432-41.
    [52]Rezania A, Healy KE. Integrin Subunits Responsible for Adhesion of Human Osteoblast-like Cells to Biomimetic Peptide Surfaces. J Orthop Res.1999;17:615-23.
    [53]Ruoslahti E, Pierschbacher MD. New Perspectives in cell adhesion:RGD and integrins. Science 1987:238:491-7.
    [54]Dransfield Ⅰ, Cabanas C, Craig A, Hogg N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J Cell Biol.1992; 116:216-26.
    [55]Smith JW, Piotrowicz RS, Mathis D. A Mechanism for divalent cation regulation beta 3-integrin. J Biol Chem.1994;269:960-7.
    [56]Mould AP, Akiyama SK, Humphries MJ. Regulation of integrin alpha 5 beta I-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+. J Biol Chem.1995;270:26270-7.
    [57]Chen CS. Geometric control of cell life and death. Science 1997;276:1425-8.
    [58]Webster TJ, Ergun C, Doremus RH, Bizios R. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. Ⅰ. Structure and microstructure. J Biomed Mater Res.2002;59:305-11.
    [59]Lu L, Wu L, Jia H, Li Y, Chen J, Xu D, Li Q. The epithelial sodium channel is involved in dexamethasone-induced osteoblast differentiation and mineralization. Cell Biol Toxicol 2012;28:279-89.
    [60]Lina M. Obeid CML, Linda A. Karolak, Yusuf A. Hannun. Programmed cell death induced by ceramide. Science 1993;259:1769-71.
    [61]Webster TJ, Ergun C, Doremus RH, Bizios R. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. Ⅱ. Mechanisms of osteoblast adhesion. J Biomed Mater Res.2002;59:305-11.
    [62]Serre CM, Papillard M, Chavassieux P, Voegel JC, Boivin G. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J Biomed Mater Res.1998;42:626-33.
    [63]Abed E, Moreau R. Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation. Cell Prolif. 2007;40:849-65.
    [64]Martin FV, Martin GR. Deciphering skeletal patterning:clues from the limb. Nature,2003;423:319-25.
    [65]Liu H, Li W, Shi S, Habelitz S, Gao C, Denbesten P. MEPE is downregulated as dental pulp stem cells differentiate. Arch Oral Biol.2005;50:923-8.
    [66]Boskey A, Mendelsohn R. Infrared analysis of bone in health and disease. J Biomed Opt.2005; 10:031102.
    [67]Zhao H, Dong W, Zheng Y, Liu A, Yao J, Li C, Tang W, Chen B, Wang G, Shi Z. The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds. Biomaterials,2011;32:5837-46.
    [68]Chou YF, Chiou WA, Xu Y, Dunn JC, Wu BM. The effect of pH on the structural evolution of accelerated biomimetic apatite. Biomaterials.2004;25:5323-31.
    [69]Wilson RM, Elliott JC, Dowker SEP, Smith RI. Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials, 2004;25:2205-13.
    [70]Dadsetan M, Hefferan TE, Szatkowski JP, Mishra PK, Macura SI, Lu L, Yaszemski MJ. Effect of hydrogel porosity on marrow stromal cell phenotypic expression. Biomaterials,2008;29:2193-202.
    [71]Tsunoda K, Kumaki D, Takahashi T, Yajima H, Ishii T, Itohb H. Characterization of materials ejected by excimer laser ablation of hydrated collagen gel. Appl Surf Sci. 2002;197-198:782-5.
    [72]Ma G, Liu XY. Hydroxyapatite:hexagonal or monoclinic? Cryst Growth Des 2009;9:2991-4.
    [73]Chou SY, Cheng CM, LeDuc PR. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells. Biomaterials.2009;30:3136-42.
    [74]Wu C, Ramaswamy Y, Zhu Y, Zheng R, Appleyard R, Howard A, Zreiqat H. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(DL-lactide-co-glycolide) films. Biomaterials,2009;30:2199-208.
    [75]Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials,2006;27:5651-7.
    [1]Lee WC, Lim CH, Shi H, Tang LA, Wang Y, Lim CT, Loh KP. Origin of Enhanced Stem Cell Growth and differentiation on graphene and graphene oxide. ACS Nano 2011;5:7334-41.
    [2]Geim AK. Graphene:status and prospects. Science 2009;324:1530-4.
    [3]Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008;321:385-8.
    [4]Frank IW, Tanenbaum DM, Van der Zande AM, McEuen PL. Mechanical properties of suspended graphene sheets. J Vac Sci Technol B.2007;25:2558-61
    [5]Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, Song YI, Hong BH, Ahn JH. Wafer-scale synthesis and transfer of graphene films. Nano Letters 2010; 10:490-3.
    [6]Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5:574-8.
    [7]Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon 2006;44:1034-47.
    [8]Kalbacova M, Kalbac M, Dunsch L, Hempel U. Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts. Carbon 2007;45:2266-72.
    [9]Mooney E, Dockery P, Greiser U, Murphy M, Barron V. Carbon Nanotubes and Mesenchymal Stem Cells:Biocompatibility, Proliferation and Differentiation. Nano Lett.2008;8:2137-43.
    [10]Liu Z, Tabakman S, Welsher K, Dai H. Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery. Nano Res.2009;2:85-120.
    [11]Kalbacova M, Broz A, Kong J, Kalbac M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 2010;48:4323-9.
    [12]Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PL, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B. Graphene for Controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 2011;5:4670-8.
    [13]William S. Hummers Jr. Offeman RE. Preparation of graphitic oxide. J. Am. Chem. Soc.1958;80:1339-1339.
    [14]Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M. Thin-film particles of graphite oxide 1::High-yield synthesis and flexibility of the particles. Carbon 2004;42:2929-37.
    [15]Suetake J, Nosaka AY, Hodouchi K, Matsubara H, Nosaka Y. Characteristics of Titanate Nanotube and the States of the Confined Sodium Ions. J. Phys. Chem. C 2008;112:18474-82.
    [16]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007;45:1558-65.
    [17]Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett.2009;9:1593-7.
    [18]Pham VH, Cuong TV, Nguyen-Phan TD, Pham HD, Kim EJ, Hur SH, Shin EW, Kim S, Chung JS. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem Commun (Camb) 2010;46:4375-7.
    [19]Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett.2009,9,1752-8.
    [20]Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem. Soc. Rev,2010;39:228-40.
    [21]Dang TT, Pham VH, Hur SH, Kim EJ, Kong BS, Chung JS. Superior dispersion of highly reduced graphene oxide in N,N-dimethylformamide. J Colloid Interface Sci. 2012;376:91-6.
    [22]Pham VH, Pham HD, Dang TT, Hur SH, Kim EJ, Kong BS, Kim S, Chung JS. Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. J. Mater. Chem.2012;22:10530-6.
    [23]Chen C, Chen T, Wang H, Sun G, Yang X. A rapid, one-step, variable-valence metal ion assisted reduction method for graphene oxide. Nanotechnology 2011;22:405602.
    [24]Ghosh S, Sarker BK, Chunder A, Zhai L, Khondaker SI. Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phy. Lett. 2010;96:163109.
    [25]Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009;47:145-52.
    [26]Wu S, Liu X, Hu T, Chu PK, Ho JP, Chan YL, Yeung KW, Chu CL, Hung TF, Huo KF, Chung CY, Lu WW, Cheung KM, Luk KD. A Biomimetic Hierarchical Scaffold Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals. Nano Lett.2008;8:3803-8.
    [27]Healy KE, Ducheyne P. Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 1992; 13:553-61.
    [28]Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. Protein Corona-Mediated Mitigation of Cytotoxicity of Graphene Oxide. ACS Nano 2011;5:3693-700.
    [29]Obeid LM, Linardic CM, Karolak LA, Hannun YA, Programmed cell death induced by ceramide. Science,1993;259:1769-1771.
    [30]Wang G, Zheng L, Zhao H, Miao J, Sun C, Ren N, Wang J, Liu H, Tao X. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering. Tissue Eng Part A 2011;17:1341-9.
    [1]Garvin KL, Hanssen AD. Infection after total hip arthroplasty. Past, present, and future. J Bone Joint Surg Am.1995;77:1576-88.
    [2]Schmalzried TP, Amstutz HC, Au MK, Dorey FJ. Etiology of deep sepsis in total hip arthroplasty. The significance of hematogenous and recurrent infections. Clin. Orthop. Relat. Res.1992;280:200-7
    [3]Schutzer SF, Harris WH, Deep-wound infection after total hip replacement under contemporary aseptic conditions. J Bone Joint Surg Am.1988;70:724-7.
    [4]Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N. Engl. J. Med. 2004;351:1645-54.
    [5]Gristina AG, Oga M, Webb LX, Hobgood CD. Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science 1985;228:990-3.
    [6]Kaiser AB. Antimicrobial prophylaxis in surgery. N Engl J Med.1986;315:1129-38.
    [7]Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135-8.
    [8]Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater.2009;91:470-80.
    [9]Navarro M, Michiardi A, Castano O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface.2008;5:1137-58.
    [10]Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH. Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J Mater Sci Mater Med.1999;10:35-46.
    [11]Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF, Murphy CJ, Abbott NL. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials 2010;31:680-90.
    [12]Sambhy V, MacBride MM, Peterson BR, Sen A. Silver bromide nanoparticle/polymer composites:dual action tunable antimicrobial materials. J Am Chem Soc.2006; 128:9798-808.
    [13]Cao H, Liu X. Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip. Rev Nanomed Nanobiotechnol.2010;2:670-84.
    [14]Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol.2005;71:7589-93.
    [15]Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol.2008;74:2171-8
    [16]Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles Nanotechnology 2007; 18:225103.
    [17]Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 2009;20:085102.
    [18]Chen X, Schluesener HJ. Nanosilver:a nanoproduct in medical application. Toxicol. Lett.,2008;176:1-12.
    [19]Nadworny PL, Wang J, Tredget EE, Burrell RE. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine. 2008;4:241-51.
    [20]Sibbald RG, Contreras-Ruiz J, Coutts P, Fierheller M, Rothman A, Woo K. Bacteriology, inflammation, and healing:a study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv. Skin Wound Care 2007;20:549-58.
    [21]Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem.2007;2:129-36.
    [22]J. B. Wright, K. Lam, A. G. Buret, M. E. Olson and R. E. Burrell, Topical delivery of silver nanoparticles promotes wound healing. Wound Repair Regener.,2002,10, 141-51.
    [23]Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, Peng Y, Liu X, Luo Q. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns 2007;33:161-6.
    [24]Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol.2010;28:580-8.
    [25]Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006;27:5512-7.
    [26]Ewald A, Gluckermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. BioMed. Eng. Online,2006;5:22.
    [27]Cao H, Liu X, Meng F, Chu PK. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 2011;32:693-705.
    [28]Mo A, Liao J, Xu W, Xian S, Li Y, Shi B, Preparation and antibacterial effect of silver-hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci., 2008;255:435-438.
    [29]Juan L, Zhimin Z, Anchun M, Lei L, Jingchao Z. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomed.2010;5:261-267.
    [30]Inoue Y, Uota M, Torikai T, Watari T, Noda Ⅰ, Hotokebuchi T, Yada M. Antibacterial properties of nanostructured silver titanate thin films formed on a titanium plate. J Biomed Mater Res A.2010;92:1171-80.
    [31]Bush JR, Nayak BK, Nair LS, Gupta MC, Laurencin CT. Improved bio- implant using ultrafast laser induced self-assembled nanotexture in titanium. J Biomed Mater Res B Appl Biomater.2011;97:299-305.
    [32]Wang Y, Du G, Liu H, Liu D, Qin S, Wang N, Hu C, Tao X, Jiao J, Wang J, Wang Z, Nanostructured Sheets of Ti-O Nanobelts for Gas Sensing and Antibacterial Applications. Adv. Funct. Mater.,2008;18:1131-7.
    [33]Wang Q, Yu H, Zhong L, Liu J, Sun J, Shen J. Incorporation of silver ions into ultrathin titanium phosphate films:in situ reduction to prepare silver nanoparticles and their antibacterial activity. Chem. Mater.2006; 18:1988-94.
    [34]Wu N, Wang J, Tafen de N, Wang H, Zheng JG, Lewis.JP, Liu X, Leonard SS, Manivannan A. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J Am Chem Soc.2010;132:6679-85.
    [35]Tafen DN, Wang J, Wang H, Wu N, Lewis JP. Visible light photocatalytic activity in nitrogen-doped TiO2 nanobelts, Appl Phys Lett.2009;94:093101.
    [36]Blumberger J, Bernasconi L, Tavemelli Ⅰ, Vuilleumier R, Sprik M. Electronic structure and solvation of copper and silver ions:a theoretical picture of a model aqueous redox reaction. J Am Chem Soc.2004;126:3928-38.
    [37]Kim DH, Oh SG, Cho CG, Effects of Cs and Na ions on the interfacial properties of dodecyl sulfate solutions Colloid Polym Sci.2001;279:39-45.
    [38]Chiang CY, Chiou SH, Yang WE, Hsu ML, Yung MC, Tsai ML, Chen LK, Huang HH. Formation of TiO(2) nano-network on titanium surface increases the human cell growth. Dent. Mater.2009;25:1022-9.
    [39]Bavykin DV, Friedrich JM, Walsh FC, Protonated Titanates and TiO2 Nanostructured Materials:Synthesis, Properties, and Applications. Adv. Mater. 2006;18:2807-24.
    [40]Kim HM, Miyaji F, Kokubo T, Nakamura T, Apatite-forming ability of alkali-treated Ti metal in body environment. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 1997;105:111-6.
    [41]Viana BC, Ferreira OP. Souza Filho AG, Mendes Filho J, Alvesa OL. Structural, Morphological and Vibrational Properties of Titanate Nanotubes and Nanoribbons. J Braz Chem Soc.2009;20:167-75.
    [42]Kim HM, Miyaji F, Kokubo T, Nakamura T. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci Mater Med.1997;8:341-7.
    [43]Bunker BC, Peden CHF, Tallant DR, Martinez SL, Turner G L. Raman and NMR Studies of Hydrous Sodium Titanates. Mater. Res. Soc. Symp. Proc.1988,121,105-109.
    [44]Sakka S, Miyaji F, Fukumi K. Structure of Binary K2O-TiO2 and Cs2O-TiO2 Glasses. J Non-Cryst Solids.1989; 112:64-8.
    [45]Miyaji F, Yoko T, Kozuka, H, Sakka, S. Structure of Na2O·2Ti02 glass. J Mater Sci.1991;26:248-52.
    [46]Ocana, M, Garcia-Ramos J V, Serna CJ. Low-temperature nucleation of rutile observed by Raman spectroscopy during crystallization of TiO2. J. Am. Ceram. Soc. 1992;75:2010-2.
    [47]Bates CW, Wertheim GK, Buchanan DNE. Nature of the 3.8 eV plasmon in x-ray photoemission from silver. Phys Lett. A.1979;72:178-80.
    [48]Wagner CD, Riggs WM, Davis LE, Moulders JF, Mullenberg GE, Handbook of X-ray Photoelectron Spectroscopy:A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy, ed. G. E. Mullenberg, Perkin-Elmer Corporation, Eden Prairie,1979, pp.120-121.
    [49]Viana BC, Ferreira O.P, Filho AGS, Hidalgo AA, Filho JM, Alves OL. Alkali metal intercalated titanate nanotubes:a vibrational spectroscopy study. Vib. Spectrosc. 2011;55:183-7.
    [50]Kolen'ko YV, Kovnir KA, Gavrilov AI, Garshev AV, Frantti J, Lebedev 01, Churagulov BR, Tendeloo GV, Yoshimura M. Hydrothermal Synthesis and Characterization of Nanorods of Various Titanates and Titanium Dioxide. J Phys Chem B.2006;110:4030-8.
    [51]Xie J, Ji T, Ou-Yang XH, Xiao ZY, Shi HJ. Preparation of SrTiO3 Nanomaterial from Layered Titanate Nanotubes or Nanowires. Solid State Commun.2008; 147:226-9.
    [52]Korosi L, Papp S, Csapo E, Meynen V, Cool P, Dekany IA. Short solid-state synthesis leading to titanate compounds with porous structure and nanosheet morphology. Microporous Mesoporous Mater.2012; 147:53-8.
    [53]Wei M, Konishi Y, Arakawa H. Synthesis and Characterization of Nanosheet-Shaped Titanium Dioxide. J. Mater. Sci.2007;42:529-33.
    [54]Yu JC, Zhang LZ, Zheng Z, Zhao JC. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater. 2003;15:2280-6.
    [55]Ding Z, Lu GQ, Greenfield PF. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem. B 2000;104:4815-20.
    [56]Mukhopadhayay SM, Garofalini SH. Surface studies of TiO2-SiO2 glasses by X-ray photoelectron spectroscopy. J. Non-Cryst. Solids 1990,126,202-208.
    [57]Luo SH, Xiao W, Wei XJ, Jia WT, Zhang CQ, Huang WH, Jin DX, Rahaman MN, Day DE. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass. J Biomed Mater Res B Appl Biomater.2010;95:441-8.
    [58]Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 2005;26:2081-8.
    [59]Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 1993;259:1769-71.
    [60]AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009;3:279-90.
    [61]Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci.2005;88:412-9.
    [62]Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16:2346-53.
    [63]Song HY, Ko KK, Oh LH, Lee BT, Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cells Mater.2006;11:58.
    [64]Liao J, Anchun M, Zhu Z, Quan Y, Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. Int J Nanomed.2010;5:337-42.
    [65]Rai M, Yada A, Gade A, Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv.2009;27:76-83.
    [66]Darouiche RO, Anti-infective efficacy of silver-coated medical prostheses. Clin Infect Dis.1999;29:1371-7.
    [67]Ren N, Li R, Chen L, Wang G, Liu D, Wang Y, Zheng L, Tang W. Yu X, Jiang H, Liu H, Wu N. In situ construction of a titanate-silver nanoparticle-titanate sandwich nanostructure on a metallic titanium surface for bacteriostatic and biocompatible implants. J Mater Chem.2012;22:19151-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700