低价带金属氧化物光催化剂的制备及其降解水中抗生素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染一直是人们关注最多的环境问题,伴随着医药工业的快速发展,抗生素被发现存在于很多水源中。当抗生素被释放到水体中,会影响水生生物的生长,诱导抗药细菌的产生,毒性大、成分复杂、难于处理;同时抗生素废水中残留的抗生素所带来的负面效应对人体的健康造成了威胁,从而引起人们越来越多的关注。目前抗生素废水处理的手段主要有物理法、化学法、生物化学法等,但这些传统的处理技术或存在运行成本高、或带有二次污染等缺点,使得处理效果不能令人满意。
     光催化氧化技术是一种高级光催化氧化技术,是一种最有可能利用自然界太阳光实现清洁去污的环境友好技术,目前已成为人们关注较多的废水处理方法。在众多光催化材料中氧化物类光催化剂具有低廉、无污染、抗光腐蚀等优点被誉为环境友好的污染处理材料,在环保和节能的应用前景受到广泛的关注。但是很多氧化物本身也存在局限性,如光量子效率比较低、光催化降解缺乏选择性等。因此,近年来开发具有可见光响应能力强、光催化活性高、有选择性降解能力的低价带光催化剂成为了研究的热点。
     因此制备氧化物类光催化剂,并对该类光催化剂实施表面修饰以提高光催化剂的光催化效率及对可见光的响应能力。
     本论文研究主要包括以下内容:
     (1)水热法制备三氧化钨纳米片光催化剂及性能研究
     a.采用水热技术,在低温条件下制备纳米片状WO3,以罗丹明B和四环素废水溶液为模拟废水进行光催化降解试验。研究结果表明:低温条件下制备的光催化剂WO3在可见光下具有一定的催化活性。
     b.通过在材料的表面负载一层贵金属Pt作为电子的接受体来有效地分离电子和空穴。对WO3和Pt/WO3进行了光催化性能的对比实验表明Pt/WO3纳米片比WO3纳米片有着很明显的光催化增强的活动,同时研究了Pt/WO3光催化机理,通过活性物种捕获试验表明在光催化过程中羟基自由基是光催化过程中最主要的活性物种。
     (2)三氧化二铟光催化剂的制备及性能研究
     通过微波辅助水热法合成三氧化二铟立方块形貌和微球形貌。通过光降解性能分析可知,三氧化二铟立方块形貌具有可见光下降解四环素的性质。
     (3)微波辅助水热法制备三氧化二铋纳米管光催化剂及性能研究
     a.采用微波辅助水热技术,在低温条件下制备Bi2O3。以四环素废水和环丙沙星废水为模拟废水进行光催化降解试验。研究显示:低温条件下合成的光Bi2O3催化剂在可见光下具有较强的吸收并且在可见光下具有催化活性。
     b.合成的Bi2O3纳米管在可见光下表现出对四环素和环丙沙星的光降解率。在可见光照射下1小时内降解10mg/L和20mg/L的四环素降解率为83.63%和61.04%,而降解20mg/L环丙沙星的降解率仅为34.90%。结果显示:Bi2O3纳米管在降解四环素比降解环丙沙星有着更好的光催化性能,而且Bi2O3在光降解抗生素的过程中具有一定的选择性。
     (4)溶剂热法制备固溶体InxBi(2-x)O3微米球光催化剂及性能研究
     a.通过溶剂热法制备了固溶体InxBi2-xO3微米球,方法简单经济,无需添加表面活性剂等模板。通过制备过程中通过适当地改变反应参数及条件来研究固溶体InxBi2-xO3微米球的最佳形成条件。
     b.该固溶体InxBi2-xO3微米球在可见光下显示对四环素的光降解率。该物质与三氧化二铟和三氧化二铋的光催化性能进行对比。研究结果表明:固溶体InxBi2-xO3微米球比三氧化二铟和三氧化二铋有着明显的光催化增强的活动。同时研究了固溶体InxBi2-xO3微米球的光催化机理。通过活性物种捕获试验表明在光催化过程中空穴是光催化过程中最主要的活性物种。
     (5)快速水热制备的铁掺杂二氧化钛大孔光催化剂的制备及性能研究
     具有3D大孔结构Fe/Ti-M (1%、5%、10%和50%)可见光催化剂。调整Fe的掺杂量对Fe/Ti-M的晶体结构具有很重要的影响。当Fe的量与Ti的相等时,得到Fe3Ti3O10相。而且,Fe/Ti-M随着Fe的掺杂出现了红移现象,并进一步研究了Fe/Ti-M对四环素的光催化性能。结合晶体结构和吸收光谱,Fe/Ti-M(10%)表现了最优的光催化性能。
Water pollution as a primary issue of environmental pollution attracts most attention.With the continuous development of medical industry, various kinds of antibodies have beenwidely found in different aquatic environments. After released into the environment,antibiotics will affect aquatic organisms and induce bacterial resistance.Also, it is difficult totreat antibodies due to its high toxicity and complicated composition. At the same time thenegative impact of antibiotics residue in water pose the risk to the health of human.Therefore, more and more attented have been paid to this serious issue. The treated methodsof waste water mainly included physics methods, chemical methods, biochemical methods, etal. Unfortunately, the conventional physical and chemical treatments are always high cost orhave seconded pollution which lack of enough efficiency for antibodies removal.
     Photocatalytic oxidation technology, as one of the AOPs (Advanced Oxidation Processes),is most likely to take advantage of natural sunlight for decontamination environmentallyfriendly, which may be an ideally method to realize removal of pollutant. Among thephotocatalytic material, oxide photocatalyst, as one friendly materials, have attracted mostattention for environmental protection and energy saving due to its low price, none pollutionto environment and resistance light corrosion. However, oxide photocatalyst has limitation forpractical application, such as low photons efficiency and lack of selectivity. Thus, to developstrong respond to visible light irradiation, high photocatalytic activity and low-band gapphotocatalysts becomes a research hotspot.
     Herein, we prepared and modified oxide photocatalyst to improve the photocatalyticefficiency of photocatalyst and responsiveness of visible light.
     The work mainly included the following items:
     (1) Hydrothermal synthesis of WO3nanosheets photocatalyst and the study onphotocatalytic performance
     a. In our work, we have successfully synthesized WO3nanosheets via a hydrothermalmethod under the condition of low temperature preparation and conducted photocatalyticdegradation test with Rhodamine B and tetracycline waste water solution. The results showedthat WO3nanosheets in visible light had catalytic activity.
     b. Pt decorated WO3nanosheets favors electron transfer process to improve the separationof electrons and holes effectively. Significant enhancement of activity has been clearly foundon Pt/WO3nanosheets compared with WO3nanosheets. The photocatalytic mechanism ofPt/WO3are studied at the same time, and the active species captured test
     indicated the·OH radicals do exist in the process of the photocatalytic oxidation (PCO) ofTC.
     (2) The synthesis and application research of indium trioxide of two differentmorphologies photocatalyst
     By microwave hydrothermal method and solution heat method indium trioxide cube andmicrospheres are synthesized respectively. The photodegradation performance analysisshowed that indium trioxide cube and microspheres has properties to photodegrade TC undervisible light.
     (3) Rapid microwave-assisted synthesis of Bi2O3tubes and photocatalytic properties forantibiotics
     a. Bismuth oxide (Bi2O3) nanotubes have been successfully synthesised via a rapidmicrowave-assisted synthetic method for the first time. Moreover, the photocatalyticproperties of Bi2O3in the degeneration of antibiotics, especially tetracycline (TC) andciprofloxacin (CIP), were studied. Our research showed that the prepared Bi2O3sample at lowtemperatures has a strong absorbency and has a perfect photocatalytical activity under visiblelight.
     b. We study the time-dependent degradation of TC and CIP by the same amount of Bi2O3under the same photocatalytic degeneration condition. The photocatalytic degeneration rate of10mg/L TC and20mg/L TC is83.63%and61.04%, respectively,and that of20mg/L CIPis only34.90%. We have found that it has better photocatalytic effect in the degeneration ofTC compared with CIP which means that Bi2O3has certain selectivity in the photocatalyticdegradation process of antibiotics.
     (4) Solvent thermal synthesis and photocatalytic degradation of waste water ofInxBi(2-x)O3microsphere
     a. InxBi(2-x)O3microspheres were synthesized by solvothermal solution, The method issimple, economical, without adding a surfactant template. Through the preparation byappropriate changes in reaction parameters and conditions to investigate the optimalformation conditions of solid solution InxBi(2-x)O3microspheres.
     b. InxBi2-xO3microspheres showed high photodegradation rate of tetracycline undervisible light. Significant enhancement of activity has been clearly found on InxBi2-xO3microspheres compared with In2O3and Bi2O3. The photocatalytic mechanism of InxBi2-xO3isstudied at the same time, and the active species captured test indicated the holes do exist inthe process of the photocatalytic oxidation (PCO) of TC.
     (5)Titanium dioxide macroporous materials doped with iron: synthesis andphoto-catalytic properties
     Fe/Ti-M (1%,5%,10%, and50%) with a3D macroporous structure has beensuccessfully synthesized. Tuning the doping quantity of Fe can significantly affect the crystalstructure of the resulting Fe/Ti-M. The obtained samples exhibited the Fe3Ti3O10phase whenthe quantity of Fe was equal to Ti. Moreover, the Fe/Ti-M showed a significant red shift inresponse to the doping of Fe. The photo-catalytic properties of Fe–Ti–Oxide-M were studiedunder visible light in-depth. Taking into account the crystal structure and absorption spectra,the Fe/Ti-M (10%) showed the optimal catalytic activity among the samples with differentdoping quantities of Fe in this system.
引文
[1]Peng Z. A., Peng X. G.. Mechanisms of The Shape Evolution of CdSe Nanocrystals [J].Journal of the American Chemical Society,2001, V123(7):1389-1395
    [2]Li Y. D., Li X. L., Deng Z. X., et al. From Surfactant-Inorganic Mesostructures toTungsten Nanowires [J]. Angewandte Chemie-International Edition,2002, V41(2):333-335
    [3]Wang X., Zhuang J., Peng Q., et al. A General Strategy for Nanocrystal Synthesis [J].Nature,2005, V437:121
    [4]Wu Y. Y., Yang P. D.. Direct Observation of Vapor-Liquid-Solid Nanowire Growth [J].Journal of the American Chemical Society,2001, V123(13):3165-3166
    [5]Somers R. C., Bawendi M. G., Nocera D. G., CdSe Nanocrystal Based Chem-/Bio-sensors[J]. Chemical Society Reviews,2007, V36(4):579-591
    [6]李群.纳米材料的制备与应用技术[M].北京:化学工业出版社,2008
    [7]张立德.纳米材料[M].北京:化学工业出版社,2002
    [8]Tahmasebi Garavand N., Ranjbar M., Mahdavi S. M., et al. Colouration Process ofColloidal Tungsten Oxide Nanoparticles in the Presence of Hydrogen Gas [J]. AppliedSurface Science,2012, V258(24):10089-10094
    [9]Chen C. J., Chen D. H.. Preparation and Near-infrared Photothermal Conversion Propertyof Cesium Tungsten Oxide Nanoparticles[J]. Nanoscale Research Letters,2013, V8(1):1-8
    [10]Raman P. S., Nair K. G. M., Ghatak J., et al. Formation of Embedded Indium Nitride andIndium Oxide Nanoclusters in Silica Samples Sequentially Implanted with Indium andNitrogen Ions[J]. Journal of Experimental Nanoscience,2013, V8(7-8):957-964
    [11]Zhang H. X., Yang B. Q., Feng P. X., et al. Ambient Pressure Synthesis ofNanostructured Tungsten Oxide Crystalline Films[J]. Journal of Nanomaterials,2008,V2008:1-6
    [12]Fung M. K., Wong K. K., Chen X. Y., et al. Indium Oxide, Tin Oxide and Indium TinOxide Nanostructure Growth by Vapor Deposition[J]. Current Applied Physics,2012,V12(3):697-706
    [13]Kang L., Jiang Y., Tang X., et al. Electrochemical Property of Manganese Oxide NanobeltBundles with Layered Structure[J]. Chinese Journal of Chemistry,2012, V30(2):299-302
    [14]Wang S., Cheng G., Cheng K., et al. The Current Image of Single SnO2NanobeltNanodevice Studied by Conductive Atomic Force Microscopy[J]. Nanoscale ResearchLetters,2011, V6(1):1-6
    [15]Nguyen T., Park S., Kim J. B., et al. Polycrystalline Tungsten Oxide Nanofibers forGas-Sensing Applications[J]. Sensors&Actuators: B. Chemical,2011, V160(1):549-554
    [16]Nguyen T., Jun T., Rashid M., et al. Synthesis of Mesoporous Tungsten Oxide NanofibersUsing the Electrospinning Method[J]. Materials Letters,20011, V65(17):2823-2825
    [17]Chen C. C., Cheng C. H., Lin C. K.. Template Assisted Fabrication of TiO2and WO3Nanotubes[J]. Ceramics International,2013, V39(6):6631-6636
    [18]Rao P. M., Cho I. S., Zheng X.. Flame Synthesis of WO3Nanotubes and Nanowires forEfficient Photoelectrochemical Water-Splitting[J]. Proceedings of the CombustionInstitute,2013, V34(2):2187-2195
    [19]Park S. H., Kim Y. H., Lee T. G., et al. Synthesis and Electrochemical Capacitance ofLong Tungsten Oxide Nanorod Arrays Grown Vertically on Substrate[J]. MaterialsResearch Bulletin,2012, V47(11):3612-3618
    [20]Tokunaga T., Kawamoto T., Tanaka K., et al. Growth and Structure Analysis of TungstenOxide Nanorods Using Environmental TEM [J]. Nanoscale Research Letters,2012, V7(1):1-7
    [21]Jia Z., Ren D., Xu L., et al. Preparation, Characterization and Photocatalytic Activity ofPorous Zinc Oxide Superstructure [J]. Materials Science in Semiconductor Processing,2012, V15(3):270-276
    [22]Shao K., Yang W., Ma Y., et al. Novel Hexagonal Tungsten Oxide SuperstructuresTemplated by1,10-diaminodecane and N-mylamine [J]. Synthetic Metals,2003, V139(2):311-315
    [23]Ahsan M., Ahmad M. Z., Tesfamichael T., et al. Low Temperature Response ofNanostructured Tungsten Oxide Thin Films Toward Hydrogen and Ethanol [J]. Sensors&Actuators: B. Chemical,2012, V173:789-796
    [24]Cho S.. Structural, Optical, and Electrical Properties of RF-Sputtered Indium Oxide ThinFilms [J]. Journal of the Korean Physical Society,2012, V60(12):2058-2062
    [25] mietana M., Grochowski J., My liwiec M., et al. Compact Alcohol Vapor Sensor basedon Zinc Oxide Nano-coating Deposited by Atomic Layer Deposition method on OpticalFiber End-face[J]. Procedia Engineering,2012, V47:1081-1084
    [26]Hamdy A. S., Ibrahim A.. Microstructure, Corrosion, and Fatigue Properties ofAlumina-Titania Nanostructured Coatings [J]. Journal of Surface Engineered Materialsand Advanced Technology,2011, V01(03):101-106
    [27]Kim D.. Effects of Phase and Morphology on the Electrochromic Performance ofTungsten Oxide Nano-urchins. Solar Energy Materials and Solar Cells,2012, V107:81-86
    [28]Yan Q., Li X., Zhao Q., et al. Shape-Controlled Fabrication of the Porous Co3O4Nanoflower Clusters for Efficient Catalytic Oxidation of Gaseous Toluene [J]. Journal ofHazardous Materials,2012, V209-210:385-391
    [29]Zhu H., Deng L., Wang J., et al. Hydrothermal Preparation and the Capacitance ofHierarchical MnO2Nanoflower [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2013, V434:42-48
    [30]张立德,牟季美.纳米材料与纳米结构[M].北京:科技出版社,2001
    [31]McKelvy M. J., Sharma R., Chizmeshy V. G., et al. Magnesium HydroxideDehydroxylation: In Situ Nanoscale Observations of Lamellar Nucleation and Growth [J].Chemistry of Materials,2001,13(3),921-926.
    [32]周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].北京:国防工业出版社,2003
    [33]顾宁,付德刚,张海黔.纳米技术与应用[M].北京:人民邮电出版社,2002
    [34]Cao H. Q., Xu Y., Hong J. M., et al. Sol-gel Template Synthesis of an Array of SingleCrystalCdS Nanowires on a Porous Alumina Template [J]. Advanced Materials,2001,V13(18):1393-1394
    [35]Zhang M., Bando Y., Wada K.. Sol-gel Template Preparation of TiO2Nanotubes andNanorods [J]. Journal of Materials Science Letters,2001,20(2):160-167
    [36]李晓红,张校刚,力虎林. TiO2纳米管的模板法制备及表征[J],高等学校化学学报,2001,22(1):130-132
    [37]Xu L., Ding Y. S., Chen C. H., et al.3D Flowerlike α-Nickel Hydroxide with EnhancedElectrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method [J].Chemistry of Materials,2008, V20(1):308-316
    [38]Jung J. H., Kobayashi H., Kjeld J. C., et al. Creation of Novel Helical Ribbon andDouble-Layered Nanotube TiO2Structures Using Anorganogel Template [J]. Chemistryof Materials,2002, V14(4):1445-1447
    [39]Bai X., Song H., Yu L., et al. Luminescent Properties of Pure Cubic Phase Y2O3/Eu3+Nanotubes/Nanowires Prepared by a Hydrothermal Method [J]. The Journal of PhysicalChemistry B,2005, V109(32):15236-15242
    [40]Sun X., Liu J., Li Y. D.. Use of Carbonaceous Polysaccharide Microspheres as Templatesfor Fabricating Metal Oxide Hollow Spheres [J]. Chemistry,2006, V12(7):2039-2047
    [41]Sugimoto, T. Preparation of Monodispersed Colloidal Particles [J]. Advances in Colloidand Interface Science,1987, V28:65-108
    [42]Shi W., Song S., Zhang H.. Hydrothermal Synthetic Strategies of InorganicSemiconducting Nanostructures [J]. Chemical Society Reviews,2013,42(13):5714-5743
    [43]嵇天浩,侯少凡,杜海燕,等.六方相WO3纳米带的制备与表征[J].无机化学学报,2009,25(5):818-822
    [44]Sun M., Xu N., Cao Y. W., et al. Preparation Microstructure and Photochromism of aNewNanocrystalline WO3Film [J]. Journal of Materials Science Letters,2000, V19(16):1407-1049
    [45]Stankova M., Vilanova X., Llobet E., et al. Influence of the Annealing and OperatingTemperature on the Gas-Sensing Properties of Sputtered WO3Thin-Film Sensor Ⅲ[J].Sensors and Actuators B, V105(2005):271-277
    [46]陈志刚,苏静.纳米三氧化钨的制备与应用[J].江苏大学学报,2005,26(1):57-60
    [47]Siciliano T., Tepore A., SMicocci G., et al. WO3Gas Sensorsprepared by ThermalOxidization of Tungsten [J]. Sensor and Actuator B, V133(2008):321-326
    [48]傅小明,杨在志,徐艳.水热条件对合成WO3纳米棒形貌和光吸收特性的影响[J].人工晶体学报,2011,40(1):242-246
    [49]Wang J., Khoo E., Lee P. S., et al. Synthesis, Assembly, and Electrochromic Properties ofUniform Crystalline WO3Nanorods [J]. The Journal of Physical Chemistry C,2008,V112:14306-14312
    [50]Zhou L., Zou J., Yu M., et al. Green Synthesis of Hexagonal-Shaped WO3·0.33H2ONanodiscs Composed of Nanosheets [J]. Crystal Growth&Design,2008, V8(11):3993-3998
    [51]胡汉祥,何晓梅,丘克强.铋蒸气氧化法制备三氧化二铋纳米粉体的研究[J].武汉理工大学学报,2006,28(2):10-13
    [52]王留刚,张俊英,李春芝,等.三氧化二铋薄膜的制备及光催化性能研究[J].功能材料,2011,42(2):355-358
    [53]陈建龙,罗元香,刘孝恒,等.室温固相法制备纳米氧化秘[J].材料导报,2003,17(7):82-83
    [54] Nadaud N., Lequeux N., Nanot M., et al. Structural Studies of Tin-Doped Indium Oxide(ITO) and In4Sn3O12[J]. Journal of Solid State Chemistry,1998, V135(1):140-148
    [55] Jeong J. S., Lee J. Y., Lee C. J., et al. Synthesis and Characterization of High-QualityIn2O3Nanobelts via Catalyst-Free Growth Using a Simple Physical Vapor Deposition atLow Temperature[J]. Chemical Physics Letters,2004,384(4-6):246-250
    [56]徐甲强,王晓华,王国庆,等.三氧化二铟纳米材料的水热合成结构表征及其气敏性能研究[J].传感技术学报,2007,20(01):22-27
    [57]Majeed Khana M. A., Khan W., Ahamed M., et al. Structural and Optical Properties ofIn2O3Nanostructured Thin Film [J]. Materials Letters,2012, V79:119-121
    [58]Fujishima A. Honda K.. Electrochemical Photolysis of Water at a SemiconductorElectrode [J]. Nature,1972, V238(5358):37-38
    [59]Yu J. C., Yu J., Ho W., et al. Effects of F-doping on the Photocatalytic Activity andMicrostructures of Nanocrystalline TiO2Powders [J]. Chemistry of Materials,2002,V14(9):3808-3816
    [60]Choi W., Termin A., Hoffmann M. R.. The Role of Metal Ion Dopants in Quantum-SizedTiO2: Correlation Between Photoreactivity and Charge Carrier Recombination Dynamics[J]. The Journal of Physical Chemistry,1994, V98(51):13669-13679
    [61]Linsebigler A. L., Lu G., Yates Jr J. T.. Photocatalysis on TiO2Surfaces: Principles,Mechanisms, and Selected Results [J]. Chemical Reviews,1995, V95(3):735-758
    [62]Iwaski M., Hara M., Kawada H., et al. Cabalt Ion-dopede TiO2Photocatalyst Respone toVisible Lingt [J]. Journal of Colloid and Interface Science,2000, V224(1):202-204
    [63]Hoffman M. R., Martin S.T., Choi w., et al. Environmental Application of SemiconductorPhotocatalysis [J]. Chemical Reviews,1995, V95:69-96
    [64]Irie H., Watanabe Y., Hashimoto K.. Carbon-doped Anatase TiO2Powders as aVisible-light Sensitive Photocatalyst [J]. Chemistry Letters,2003, V32(8):772-773
    [65]Zhao Q., Li M., Chu J., et al. Preparation, Characterization of Au (or Pt)-loaded TitaniaNanotubes and Their Photocatalytic Activities for Degradation of Methyl Orange [J].Applied Surface Science,2009, V255(6):3773-3778
    [66]Akurati K. K., Vital A., Klotz U. E., et al. Synthesis of Non-Aggregated TitaniaNanoparticles in Atmospheric Pressure Diffusion Flames [J]. Powder Technology,2006,V165(2):73-82
    [67]Peng T. Y., Zhao D., Dai K., et al. Synthesis of Titanium Dioxide Nanoparticles withMesoporous Anatase Wall and High Photocatalytic Activity [J]. The Journal of PhysicalChemistry B,2005, V109(11):4947-4952
    [68]Lu C.Y., Guan W. S., Zhang G. H., TiO2/Fe2O3/CNTs Magnetic Photocatalyst: a Fast andConvenient Synthesis and Visible-light-driven Photocatalytic Degradation of Tetracycline[J]. Micro&Nano Letters,2013, V8(10):749-752
    [69]Watkinson A. J., Murby E. J., Costanzo S. D.. Removal of Antibiotics in Conventionaland Advanced Wastewater Treatment: Implications for Environmental Discharge andWastewater Recycling[J]. Water Res,2007, V41(18):4164-4176
    [70]Farrington W. H. H., Tarbin J., Bygrave J., et al. Analysis of Trace Residues ofTetracyclines in Animal Tissues and Fluids Using Metal Chelate AffinityChromatography/HPLC[J]. Food Additives and Contaminants,1991, V8(1):55-64
    [71] Liu H. J., Yang Y., Kang J., et al. Removal of Tetracycline from Water by Fe–Mn BinaryOxide[J]. Journal of Environmental Sciences,2010, V24(2):242-247
    [72]Baquero F., Martinez J. L., Canton R.. Antibiotics and Antibiotic Resistance in WaterEnvironments[J]. Curr Opin Biotechnol,2008, V19(3):260-265
    [73]Michal R., Alvarez P. J. J.. Amplification and Attenuation of Tetracycline Resistance inSoil Bacteria: Qauifer Column Experiments[J]. Water Research,2004, V38:3705-3712
    [74] Picó Y., Andreu V.. Fluoroquinolones in Soil-Risks and Challenges[J]. Analytical andBioanalytical Chemistry,2007, V387:1287-1299
    [75]Richardson B. J., Lam P. K. S., Martin M.. Emerging Chemicals of Concern:Pharmaceuticals and Personal Care Products(PPCPs) in Asia, with Particular Reference toSouth Ern China[J]. Marine Pollution Bulletin,2005, V50:913-920
    [76]Migliore L., Brambilla G., Gasoria P., et al. Effects of Sulphadim Ethoxine on Barley inLaboratory Terrestrial Models[J]. Agriculture Ecosystems and Environment,1996, V60:121-128.
    [77]Gobel A., Thomsen A., McArdell C. S., et al. Occurrence Andsorption Behavior ofSulfonamides, Macrolides, and Trim Ethoprimin Activated Sludget Reatment [J].Environmental Science and Technology,2005, V39(11):3981-3989
    [78]梁凤颜,尹平河,赵玲等.水体中微污染磺胺嘧啶光催化降解行为[J].2009,V18(4):1227-1230
    [79]Abellan M. N., Bayarri B., Giménez J., et al. Photocatalytic Degradation ofSulfamethoxazole in Aqueous Suspension of TiO2[J]. Applied Catalysis B:Environmental,2007, V74(3-4):233-241
    [80]Kratky V., Kralik M., Mecarova M., et al. Effect of Catalyst and Substituents on theHydrogenation of Chloronitrobenzenes [J]. Applied Catalysis A-General,2002,V235(1-2):225-231
    [81]Hoffmann M. R., Martin S. T., Choi W., et al. Environmental Applications ofSemiconductor Photocatalysis[J]. Chemical Reviews,1995, V95(1):69-96
    [82]Lee H., Choi J., Lee S., et al. Kinetic Enhancement in Photocatalytic Oxidation ofOrganic Compounds by WO3in the Presence of Fenton-Like Reagent[J]. AppliedCatalysis B:Environmental,2013, V138-139:311-317
    [83]Singh S. A., Madras G.. Photocatalytic Degration with Combustion Synthesized WO3andWO3-TiO2Mixed Oxides Under UV and Visible Light[J]. Separation and PurificationTechnology,2013, V105:79-89
    [84]Katsumata H., Oda Y., Kaneco S., et al. Photocatalytic Activity of Ag/CuO/WO3UnderVisible-Light Irradiation[J]. RSC Advances,2013, V3:5028-5035
    [85]Pei C. C., Leung W. W.. Photocatalytic Degradation of Rhodamine B by TiO2/ZnONanofibers Under Visible–Light Irradiation[J]. Separation and Purification Technology,2013, V114:108-116
    [86]Jiang Y., Amal R.. Selective Synthesis of TiO2-Based Nanoparticles with Highly ActiveSurface Sites for Gas-Phase Photocatalytic Oxidation[J]. Applied CatalysisB:Environmental,2013, V138-139:260-267
    [87]Liu Y., Gan X., Zhou B., et al. Photoelectrocatalytic Degradation of Tetracycline byHighly Effective TiO2Nanopore Arrays Electrode[J]. Journal of Hazardous Materials,2009, V171(1-3):678-683
    [88]Palominos R. A., Mondaca M. A., Giraldo A., et al. Photocatalytic Oxidation of theAntibiotic Tetracycline on TiO2and ZnO Suspensions[J]. Catalysis Today,2009,V114(1-2):100-105
    [89]Reyes C., Fernández J., Freer J., et al. Degradation and Inactivation of Tetracycline byTiO2Photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,V184(1-2):141-146
    [90]Jeong J., Song W., Cooper W. J., et al. Degradation of Tetracycline Antibiotics:Mechanisms and Kinetic Studies for Advanced Oxidation/Reduction Processes[J].Chemosphere,2010, V78(5):533-540
    [91]Huang J., Xiao L., Yang X.. WO3Nanoplates, Hierarchical Flower–Like Assemblies andTheir Photocatalytic Properties[J]. Materials Research Bulletin,2013, V48(8):2782-2785
    [92]Wang P., Yap P. S., Lim T. T.. C-N-S Tridoped TiO2for Photocatalytic Degradation ofTetracycline Under Visible-Light Irradiation[J]. Applied Catalysis A:General,2011,V399(1-2):252-261
    [93]Park K. W., Choi J. H., Ahn K. S., et al. PtRu Alloy and PtRu-WO3NanocompositeElectrodes for Methanol Electrooxidation Fabricated by a Sputtering DepositionMethod[J]. The Journal of Physical Chemistry B,2004, V108(19):5989-5994
    [94]Solis J. L., Saukko S., Kish L., et al. Semiconductor Gas Sensors Based onNanostructured Tungsten Oxide[J]. Thin Solid Films,2001, V391(2):255-260
    [95]Alexander B. D., Kulesza R.J., Rutkowska L., et al. Metal Oxide Photoanodes for SolarHydrogen Production[J]. Journal of Materials Chemistry,2008, V18:2298-2303
    [96]Kalantar-zadeh K., Sadek A. Z., Zheng H. D., et al. Nanostructured WO3Films UsingHigh Temperature Anodization[J]. Sensors and Actuators B:Chemical,2009, V142(1):230-235
    [97]Widenkvist E., Quinlan R. A., Hollowway B. C., et al. Synthesis of NanostructuredTungsten Oxide Thin Films[J]. Crystal Growth&Design,2008, V8(10):3750-3753
    [98]Peng T. Y., Ke D. N., Xiao J. R., et al. Hexagonal phase WO3nanorods: HydrothermalPreparation, Formation Mechanism and its Photocatalytic O2Production UnderVisible-Light Irradiation[J]. Journal of Solid State Chemistry,2012, V194:250-256
    [99]高小青,饶雪辉,王吉德,等.水热法制备微纳结构氧化钨[J].化学进展,2013,25(1):105-114
    [100]Bolz á n A. E.. An Interpretation of the Different Processes Involved in theElectroreduction of Thick Palladium Oxide Films[J]. Journal of ElectroanalyticalChemistry,1997, V437(1-2):199-208
    [101]Tanaka D., Oaki Y., Imai H.. Enhanced Photocatalytic Activity of Quantum-ConfinedTungsten Trioxide Nanoparticles in Mesoporous Silica[J]. Chemical Communications,2010, V46(29):5286-5288
    [102]Qu W., Xiong X., Hu W., et al. Surface Enhancement of WO3Nanowires Toward theOxidation and Electrochemical Detection of Honokiol in Traditional ChineseMedicine[J]. Colloids and Surfaces B: Biointerfaces,2012, V100:103-106
    [103]Waller M. R., Townsend T. K., Zhao J., et al. Single-Crystal Tungsten Oxide Nanosheets:Photochemical Water Oxidation in the Quantum Confinement Regime[J]. ChemistryMaterials,2012, V24(4):698-704
    [104]Corma A., Serna P.. Chemoselective Hydrogenation of Nitro Compounds withSupported Gold Catalysts [J]. Science,2006, V313(5785):332-334
    [105]Zhao F. Y., Zhang R., Chatterjee M., et al. Hydrogenation of Nitrobenzene withSupported Transition Metal Catalysts in Supercritical Carbon Dioxide [J]. AdvancedSynthesis&Catalysis,2004, V346(6),661-668
    [106]Raja R., Golovko V. B., Thomas J. M., et al. Highly Efficient Catalysts for theHydrogenation Ofnitro-Substituted Aromatics [J]. Chemical Communications,2005,(15):2026-2028
    [107]Guo C., Guo J., He W., et al. Photodegradation of Rhodamine B and Methyl Orangeover One-Dimensional TiO2Catalysts under Simulated Solar Irradiation [J]. AppliedSurface Science,2011,257(8):3798-3803
    [108]彭志宏,吴旭,周秋生,等.水热法制备超细焦绿石型三氧化钨及其表征[J].中国有色金属学报,2012,22(2):579-584
    [109]Yoon M., Seo M., Jeong C., et al. Synthesis of Liposome-Templated Titania Nanodisks:Optical Properties and Photocatalytic Activities. Chemistry of Materials,2005, V17(24):6069-6079
    [100]Gui M. S., Zhang W. D., Chang Y. Q., et al. One-Step Hydrothermal PreparationStrategy for Nanostructured WO3/Bi2WO6Heterojunction with High Visible LightPhotocatalytic Activity[J]. Chemical Engineering Journal,2012, V197:283-288
    [111]李文章,李洁,王旋,等.柠檬酸对聚合物前驱体法制备WO3薄膜光电性质的影响[J].中南大学学报,2012,43(5):1638-1644
    [112]杨友文,朱文斌,李天应等. InSb纳米线阵列的可控制备与光谱表征[J].高等学校化学学报,2014,35(3):466-470
    [113]Puntes V. F., Krishnan K. M., Alivisatos A. P.. Colloidal Nanocrystal Shape and SizeControl: The Case of Cobalt[J]. Science,2001, V291(5511):2115-2117
    [114]Wang W. Q., Xi G. C., Liu Y. K., et al. Controllable Synthesis of PbSeNanostructures and Growth Mechanisms[J]. Crystal Growth&Design,2008, V8(4):1406-1411
    [115]Abe R., Takami H., Murakami N., et al. Pristine Simple Oxides as Visible Light DrivenPhotocatalysts: Highly Efficient Decomposition of Organic Compounds overPlatinum-Loaded Tungsten Oxide[J]. Journal of the American Chemical Society,2008,V130(25):7780-7781
    [116]Qamar M., Gondal M. A., Yamani Z. H.. Removal of Thodamine6G Induced by Laserand Catalyzed by Pt/WO3Nanocomposite[J]. Catalysis Communications,2010, V11(8):768-772
    [117]Zhao Z. G., Miyauchi M.. Nanoporous-Walled Tungsten Oxide Nanotubes as HighlyActive Visible-Light-Driven Photocatalysts[J]. Angewandte Chemie-InternationalEdition,2008, V47(37):7051-7055
    [118]Kim J., Lee C. W., Choi W.. Platinized WO3as an Environmental Photocatalyst thatGenerates OH Radicals Under Visible Light[J]. Environmental Science&Technology,2010, V44(17):6849-6854
    [119]Sclafani A., Palmisano L., Marc G., et al. Influence of Platinum on CatalyticActivity of Polycrystalline WO3Employed for Phenol Photodegradation in AqueousSuspension[J]. Solar Energy Materials and Solar Cells,1998, V51(2):203-219
    [120]Kim S., Hwang S. J., Choi W.. Visible Light Active Platinum-Ion-Doped TiO2Photocatalyst[J]. The Journal of Physical Chemistry,2005, V109(51):24260-24267
    [121]Zhang J., Tu J. P., Du G. H., et al. Pt Supported Self-Assembled Nest-Like-Porous WO3Hierarchical Microspheres as Electrocatalyst for Methanol Oxidation[J]. ElectrochimicaActa,2013, V88:107-111
    [122]Xu Z., Tabata I., Hirogaki K., et al. Preparation of Platinum-Loaded Cubic TungstenOxide: A Highly Efficient Visible Light-Driven Photocatalyst[J]. Materials Letters,2011,V65(9):1252-1256
    [123]Yan Y., Liu X., Fan W., et al. InVO4Microspheres: Preparation, Characterization andVisible-Light-Driven Photocatalytic Activities[J]. Chemical Engineering Journal,2012,V200-202:310-316
    [124]Meunier B.. Catalytic Degradation of Chlorinated Phenols [J]. Science,2002,296(5566):270-271
    [125]Ho W. K., Yu J. C., Lee S. C.. Synthesis of Hierarchical Nanoporous F-doped TiO2Spheres with Visible Light Photocatalytic Activity [J]. Chemical Communications,2006,(10):1115-1117
    [126]Niu J., Ding S., Zhang L., et al. Visible-Light-Mediated Sr-Bi2O3Photocatalysis ofTetracycline: Kinetics, Mechanisms and Toxicity Assessment[J]. Chemosphere,2013,V93(1):1-8
    [127]Lu Z., Luo Y., He M., et al. Preparation and Performance of a Novel MagneticConductive Imprinted Photocatalyst for Selective Photodegradation of AntibioticSolution[J]. RSC Advances,2013, V3(40):18373-18372
    [128]Valencia S., Cata o F., Rios L., et al. A New Kinetic Model for HeterogeneousPhotocatalysis with Titanium Dioxide: Case of Non-Specific Adsorption ConsideringBack Reaction[J]. Applied Catalysis B: Environmental,2011, V104(3-4):300-304
    [129]Zhao C., Pelaezb M., Duan X., et al. Role of pH on Photolytic and PhotocatalyticDegradation of Antibiotic Oxytetracycline in Aqueous Solution Under Visible/SolarLight: Kinetics and Mechanism Studies[J]. Applied Catalysis B: Environmental,2013,V134-135:83-92
    [130]Yan Y., Wu Y. F., Yan Y. T., et al. Inorganic-Salt-Assisted Morphological Evolution andVisible-Light-Driven Photocatalytic Performance of Bi2WO6Nanostructures[J]. TheJournal of Physical Chemistry C,2013, V117(39):20017-20028
    [131]Liu X. L., Ma C. C., Yan Y., et al. Hydrothermal Synthesis of CdSe Quantum Dots andTheir Photocatalytic Activity on Degradation of Cefalexin[J]. Industrial&EngineeringChemistry Research,2013, V52(43):15015-15023
    [132]Qamar M., Gondal M. A., Yamani Z. H.. Synthesis of Highly Active NanocrystallineWO3and its Application in Laser-Induced Photocatalytic Removal of a Dye fromWater[J]. Catalysis Communications,2009, V10(15):1980-1984
    [133]Joshi U. A., Darwent J. R., Yiu H. H. P., et al. The Effect of Platinum on thePerformance of WO3Nanocrystal Photocatalysts for the Oxidation of Methyl Orange andSo-Propanol[J]. Journal of Chemical Technology and Biotechnology,2011, V86(8):1018-1023
    [134]Liu S. Q., Zhang N., Tang Z. R., et al. Synthesis of One-Dimensional CdS@TiO2Core-Shell Nanocomposites Photocatalyst for Selective Redox: The Dual Role of TiO2Shell[J]. ACS Applied Materials&Interfaces,2012, V4(11):6378-6385
    [135]Yan S. C., Li Z. S., Zou Z. G.. Photodegradation of Rhodamine B and Methyl Orangeover Boron-Doped g-C3N4under Visible Light Irradiation[J]. Langmuir,2010, V26(6):3894-3901
    [136]Wang X. C., Maeda K., Chen X. F., et al. Polymer Semiconductors for ArtificialPhotosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride withVisible Light. Journal of the American Chemical Society,2009, V131(5):1680-1681
    [137]Ye L. Q., Liu J. Y., Gong C. Q., et al. Two Different Roles of Metallic Ag onAg/AgX/BiOX (X=Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonanceand Z-Scheme Bridge[J]. ACS Catalysis,2012, V2(8):1677-1683
    [138]Xiao X. Y., Jiang J., Zhang L. Z.. Selective Oxidation of Benzyl Alcohol intoBenzaldehyde over Semiconductors under Visible Light: The Case of Bi12O17Cl2nanobelts[J]. Applied Catalysis B: Environmental,2013, V142-143:487-493
    [139]Widiyandari H., Purwanto A., Balgis R., et al. CuO/WO3and Pt/WO3Nanocatalysts forEfficient Pollutant Degradation Using Visible Light Irradiation[J]. Chemical EngineeringJournal,2012, V180:323-329
    [140]Jones O. A. H., Voulvoulis N., Lester J.N.. Aquatic Environmental Assessment of theTop25English Prescription Pharmaceuticals [J]. Water Research,2002, V36(20):5013-5022
    [141]Brown K. D., Kulis J., Thomson B., et al. Occurrence of Antibiotics in Hospital,Residential, and Dairy Effluent, Municipal Wastewater, and the Rio Grande in NewMexico [J]. Science of the Total Environment,2006, V366(2-3):772-783
    [142]Pena A., Chmielova D., Lino C. M., et al. Determination of Fluoroquinolone Antibioticsin Surface Waters from Mondego River by High Performance Liquid ChromatographyUsing A Monolithic Column [J]. Journal of Separation Science,2007, V30(27):2924-2928
    [143]Pena A., Albert-Garcia J. R., Silva L. J. G., et al. Photo-induced Fluorescence ofMagnesium Derivatives of Tetracycline Antibiotics in Wastewater Samples [J]. Journalof Hazardous Materials,2010, V179(1-3):409-414
    [144]彭伟校,王开军,蔡晓兰等.纳米氧化铟制备的研究进展[J].材料导报,2013,27(21):6-10
    [145]Caruntu D., Yao K., Zhang Z. X., et al. One-step Synthesis of Nearly Monodisperse,Variable-shaped In2O3Nanocrystals in Long Chain Alcohol Solutions [J]. The Journal ofPhysical Chemistry C,2010, V114(11):4875-4886
    [146]Lin S. E., Wei W. C. J.. Synthesis and Growth Kinetics of Monodispersive IndiumHydrate particles [J]. Journal of the American Ceramic Society,2006, V89(2):527-533
    [147]Du J., Yang M., Cha S. N., et al. Indium Hydroxide and Indium Oxide Nanospheres,Nanoflowers, Microcubes, and Nanorods: Synthesis and Optical Properties [J]. CrystalGrowth&Design,2008, V8(7):2312-2317
    [148]Kominami H., Nakamura T., Sowa K., et al. Low Voltage CathodoluminescentProperties of Phosphors Coated with In2O3by Sol-gel Method [J]. Applied SurfaceScience,1997, V113-114:519-522
    [149]Yuan Z., Zhang J., Liu G.. Synthesis of In2O3Nanocrystals via Hydro/SolvothermalRoute and Their Photoluminescence Properties [J]. International Journal ofElectrochemical Science,2013, V8:1794-1801
    [150]Yin W. Y., Cao M. H., Luo S. J., et al. Controllable Synthesis of Various In2O3Submicron/Nanostructures Using Chemical Vapor Deposition [J]. Crystal Growth&Design,2009, V9(5):2173-2178
    [151]Choi W.. Pure and Modified TiO2Photocatalysts and Their Environmental Applications[J]. Catalysis surveys from Asia,2006,10(1):16-28
    [152]Peller J., Wiest O., Kamat P.V.. Synergy of Combining Sonolysis and Photocatalysis inthe Degradation and Mineralization of Chlorinated Aromatic Compounds [J].Environmental Science&Technology,2003, V37(9):1926-1932
    [153]Addamo M., Bellardita M., Carriazo D., et al. Inorganic Gels as Precursors of TiO2Photocatalysts Prepared by Low Temperature Microwave or Thermal Treatment [J].Applied Catalysis B: Environmental,2008, V84(3-4):742-748
    [154]Neppolian B., Choi H., Sakthivel S., et al. Solar/UV-Induced Photocatalytic Degradationof Three Commercial Textile Dyes [J]. Journal of Hazardous Materials,2002, V89(2-3):303-317
    [155]Xu Y., Schoonen M. A. A.. The Absolute Energy Positions of Conduction and ValenceBands of Selected Semiconducting Minerals [J]. American Mineralogist,2000, V85(3-4):543-556
    [156]Zhao M., Chen X., Ma Y., et al. Bi2O3Nanosquaresheets Grown on Si Substrate [J].Applied Physics A: Materials Science&Processing,2004, V78(3):291-293
    [157] Vila M., Díaz-Guerra C., Piqueras J.. α-Bi2O3Microcrystals and Microrods: ThermalSynthesis, Structural and Luminescence Properties [J]. Journal of Alloys and Compounds,2013, V548:188-193
    [158]Wu C., Shen L., Huang Q., et al. Hydrothermal Synthesis and Characterization of Bi2O3Nanowires [J]. Materials Letters,2011, V65(7):1134-1136
    [159]Skoumal M., Cabot P. L., Centellas F., et al. Mineralization of Paracetamol by OzonationCatalyzed with Fe2+, Cu2+and UVA Light [J]. Applied Catalysis B: Environmental,2006,V66(3-4):228-240
    [160]Bautitz I. R., Nogueira R. F. P.. Photodegradation of Lincomycin and Diazepam inSewage Treatment Plant Effluent by Photo-Fenton Process [J]. Catalysis Today,2010,V151(1-2):94-99
    [161]Klauson D., Babkina J., Stepanova K., et al. Aqueous Photocatalytic Oxidation ofAmoxicillin [J]. Catalysis Today,2010, V151(1-2):39-45
    [162]Wang C., Shao C., Wang L., et al. Electrospinning Preparation, Characterization andPhotocatalytic Properties of Bi2O3Nanofibers [J]. Journal of Colloid and InterfaceScience,2009, V333(1):242-248
    [163]Wu X., Qin W., He W.. Thin Bismuth Oxide Films Prepared Through the Sol-GelMethod as Photocatalyst [J]. Journal of Molecular Catalysis A: Chemical,2007, V261(2):167-171
    [164]Reddy J. K., Srinivas B., Kumari V. D., et al. Sm3+-Doped Bi2O3Photocatalyst Preparedby Hydrothermal Synthesis [J]. CHEMCATCHEM,2009, V1:492-496
    [165]Shi, W. D., Yu, J. B., Wang, H. S., et al. Hydrothermal Synthesis of Single-CrystallineAntimony Telluride Nanobelts [J]. Journal of the American Chemical Society,2006,V128(51):16490-16491
    [166]Yin Y. D., Rioux R. M., Erdonmez C. K., et al. Formation of Hollow NanocrystalsThrough the Nanoscale Kirkendall Effect [J]. Science,2004, V304(5671):711-714
    [167]Peng S., Sun S. H.. Synthesis and Characterization of Monodisperse Hollow Fe3O4Nanoparticles [J]. Angewandte Chemie-International Edition,2007, V46(22):4155-4158
    [168]Yu X. L., Cao C. B., Zhu H. S., et al. Nanometer-Sized Copper Sulfide Hollow Sphereswith Strong Optical-Limiting Properties [J]. Advanced Functional Materials,2007,V17(8):1397-1401
    [169]Fan H. J., Knez M., Scholz R., et al. Monocrystalline Spinel Nanotube FabricationBased on the Kirkendall Effect [J]. Nanoscale materials,2006, V5:627-631
    [170]Zhang G. Q., Wang W., Yu Q. X., et al. Facile One-Pot Synthesis of PbSe and NiSe2Hollow Spheres: Kirkendall-Effect-Induced Growth and Related Properties [J].Chemistry of Materials,2009, V21(5):969-974
    [171]Valencia S., Cata o F., Rios L., et al. A New Kinetic Model for HeterogeneousPhotocatalysis with Titanium Dioxide: Case of Non-Specific Adsorption ConsideringBack Reaction [J]. Applied Catalysis B: Environmental,2011, V104(3-4):300-304
    [172]Niu J., Ding S., Zhang L., et al. Visible-Light-Mediated Sr-Bi2O3Photocatalysis ofTetracycline: Kinetics, Mechanisms and Toxicity Assessment [J]. Chemosphere,2013,V93(1):1-8
    [173]Lu Z., Luo Y., He M., et al. Preparation and Performance of a Novel MagneticConductive Imprinted Photocatalyst for Selective Photodegradation of AntibioticSolution [J]. RSC Advances,2013, V3(40):18373-18372
    [174]Zhao C., Pelaezb M., Duan X., et al. Role of pH on Photolytic and PhotocatalyticDegradation of Antibiotic Oxytetracycline in Aqueous Solution Under Visible/SolarLight: Kinetics and Mechanism Studies [J]. Applied Catalysis B: Environmental,2013,V134-135:83-92
    [175]Tamaki Y., Furube A., Murai M., et al. Direct Observation of Reactive Trapped Holes inTiO2Undergoing Photocatalytic Oxidation of Adsorbed Alcohols: Evaluation of theReaction Rates and Yields [J]. Journal of the American Chemical Society,2006, V128(2):416-417
    [176]Reddy J. K., Srinivas B., Kumari V. D., et al. Sm3+-Doped Bi2O3PhotocatalystPrepared by Hydrothermal Synthesis [J]. CHEMCATCHEM,2009, V1(4):492-496
    [177]Wu S., Fang J., Xu W., et al. Hydrothermal Synthesis, Characterization ofVisible-Light-Driven α-Bi2O3Enhanced by Pr3+Doping [J]. Journal of ChemicalTechnology and Biotechnology,2013, V88(10):1828-1835
    [178]Li P., Wei Z., Wu T., et al. Au-ZnO Hybrid Nanopyramids and Their PhotocatalyticProperties [J]. Journal of the American Chemical Society,2011, V133(15):5660-5663
    [179]Ho, W. K., Yu J. C., Lee S. C.. Synthesis of Hierarchical Nanoporous F-doped TiO2Spheres with Visible Light Photocatalytic Activity [J]. Chemical Communications.2006,V(10):1115-1117
    [180]Lei Y. Q., Song S. Y., Fan W. Q., et al. Facile Synthesis and Assemblies of FlowerlikeSnS2and In3+-Doped SnS2: Hierarchical Structures and Their Enhanced PhotocatalyticProperty [J]. The Journal of Physical Chemistry.2009, V113(4):1280-1285
    [181]Testino A., Bellobono I. R., Buscaglia V., et al. Optimizing the Photocatalytic Propertiesof Hydrothermal TiO2by the Control of Phase Composition and Particle Morphology. ASystematic Approach [J]. Journal of the American Chemical Society,2007, V129(2):3564-3575
    [182]Zhao Y. B., Ma W. H., Li Y., et al. The Surface-Structure Sensitivity of DioxygenActivation in the Anatase-Photocatalyzed Oxidation Reaction [J]. AngewandteChemie-International Edition,2012, V51:3188-3192
    [183]Mandlmeier B., Szeifert J. M., Fattakhova-Rohlfng D., et al. Formation ofInterpenetrating Hierarchical Titania Structures by Confined Synthesis in Inverse Opal[J]. Journal of the American Chemical Society,2011, V133(43),17274-17282
    [184]Tong H., Ouyang S. X., Bi Y. P., et al. Nano-photocatalytic Materials: Possibilities andChallenges [J]. Advanced Materials,2012, V24(2):229-251
    [185]Lei Y. Q., Wang G. H., Song S. Y., et al. Room Temperature, Template-Free Synthesis ofBiOI Hierarchical Structures: Visible-light Photocatalytic and Electrochemical HydrogenStorage Properties [J]. Dalton Transactions,2010, V39:3273-3278
    [186]Zhao J. C., Chen C. C., Ma W. H.. Photocatalytic Degradation of Organic PollutantsUnder Visible Light Irradiation [J]. Topics in Catalysis,2005, V35(3-4):269-278
    [187]Huang Y. P., Ma W. H., Li J., et al. A Novel β-CD Hemin Complex Photocatalyst forEfficient Degradation of Organic Pollutants at Neutral pHs under Visible Irradiation [J].The Journal of Physical Chemistry B,2003, V107(35):9409-9414
    [188]Yablonovitch E.. Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J]. Physical Review Letters,1987, V58(20):2059-2062
    [189]John S.. Strong Localization of Photons in Certain Disordered Dielectric Superlattices[J]. Physical Review Letters,1987, V58(23):2486-2489
    [190]Chen J. I. L.,Von Freymann G., Choi S. Y., et al. Slow Photons in the Fast Lane inChemistry [J]. Journal of Materials Chemistry,2008, V18:369-371
    [191]Soten I., Miguez H., Yang S. M., et al. Barium Titanate Inverted Opals-Synthesis,Characterization, and Optical Properties [J]. Advanced Functional Materials,2002,V12(1):71-77
    [192]Yang P. D., Rizvi A. H., Messer B., et al. Patterning Porous Oxides within MicrochannelNetworks. Advanced Materials,2001, V13(6):427-431
    [193]Vlasov Y. A., Yao N., Norris D. J.. Synthesis of Photonic Crystals for OpticalWavelengths from Semiconductor Quantum Dots [J]. Advanced Materials,1999, V11(2):165-169
    [194]Wang C., Geng A., Guo Y., et al.Three-dimensionally Ordered MacroporousTi1-xTaxO2+x/2(x=0.025,0.05, and0.075) Nanoparticles: Preparation and EnhancedPhotocatalytic Activity [J]. Materials Letters,2006, V60(21-22):2711-2714
    [195]Kim Y. N., Kim S. J., Lee E. K., et al. Large Magnetoresistance in Three DimensionallyOrdered Macroporous Perovskite Manganites Prepared by a Colloidal TemplatingMethod [J]. Journal of Materials Chemistry,2004, V14:1774-1777
    [196]Gallery J., Ginzburg M., Miguez H., et al. Replicating the Structure of a CrosslinkedPolyferrocenylsilane Inverse Opal in the Form of a Magnetic Ceramic [J]. AdvancedFunctional Materials,2002, V12(5):382-388
    [197]Liu Y., Wang S..3D Inverted Opal Hydrogel Scaffolds with Oxygen Sensing Capability[J]. Colloids and Surfaces B: Biointerfaces,2007, V58(1):8-13
    [198]Withnall R., Ireland T. G., Martinez-Rubio M. I., et al. Rare-earth Element Anti-StokesEmission from Three Inverse Photonic Lattices [J]. Journal of Modern Optics,2002,V49(5-6):965-976
    [199]Ghadimi A., Cademartiri L., Kamp U., et al. Plasma within Temp lMateosld:ingFlexible Nanocrystal Solids into Multifunctional Architectures [J]. Nano Lett.,2007,V7(12):3864-3868
    [2001]Su B. L., Zhang Q. J., Bonifazi D., et al.Advanced Materials for Sustainable Energyand a Greener Environment [J]. ChemSusChem,2011, V4(10):1327-1331
    [201]Chen J. I. L., Von Freymann G., Choi S. Y., et al. Amplified Photochemistry with SlowPhotons [J]. Advanced Materials,2006, V18(14):1915-1919
    [202]Liu J., Liu G. L., Li M. Z., et al. Enhancement of photochemical hydrogen evolutionover Pt-loaded hierarchical titania photonic crystal [J]. Energy&Environmental Science,2010, V3(10):1503-1506
    [203]Wang Q., Chen C. C., Ma W. H., et al. Pivotal Role of Fluorine in Tuning Band Structureand Visible-Light Photocatalytic Activity of Nitrogen-Doped TiO2[J]. Chemistry-aEuropean Journal,2009, V15(19):4765-4769
    [204]Cowan A. J., Barnett C. J., Pendlebury S. R., et al. Activation Energies for theRate-Limiting Step in Water Photooxidation by Nanostructured α-Fe2O3and TiO2[J].Journal of the American Chemical Society,2011, V133(26):10134-10140
    [205]Navarro Yerga R. M., Alvarez Galvan M. C., del Valle F., et al. Water Splitting onSemiconductor Catalysts under Visible-Light Irradiation [J]. ChemSusChem,2009,V2(6):471-485
    [206]Chen X. B., Shen S. H., Guo L. J., et al. Semiconductor-based Photocatalytic HydrogenGeneration [J]. Chemical Reviews,2010, V110(11):6503-6570
    [207]Chen X., Mao S. S.. Titanium Dioxide Nanomaterial s:Synthesis, Properties,Modifications, and Applications [J]. Chemical Reviews,2007,107(7):2891-2959
    [208]Kim D. H., Choi D. K., Kim S. J. et al. The Effect of Phase Type on PhotocatalyticActivity in Transition Metal Doped TiO2Nanoparticles [J]. Catalysis Communications,2008, V9(5):654-657
    [209]Hwang D. W., Kim H. G., Lee J. S., et al. Photocatalytic Hydrogen Production fromWater over M-Doped La2Ti2O7(M=Cr, Fe) under Visible Light Irradiation (λ>420nm)[J]. The Journal of Physical Chemistry B,2005,109(6):2093-2102
    [210]Borgarello E., Kiwi J., Gr tzel M., et al. Visible Light Induced Water Cleavage inColloidal Solutions of Chromium-doped Titanium Dioxide Particles [J]. Journal of theAmerican Chemical Society,1982, V104(11):2996-3002
    [211]Konta R., Ishii T., Kato H., et al. Photocatalytic Activities of Noble Metal Ion DopedSrTiO3under Visible Light Irradiation [J]. The Journal of Physical Chemistry B,2004,V108(26):8992-8995
    [212]Butler E. C., Davis A. P.. Photocatalytic Oxidation in Aqueous Titanium DioxideSuspensions: The Influence of Dissolved Transition Metals [J]. Journal ofPhotochemistry and Photobiology A: Chemistry,1993, V70(3):273-283
    [213]Chen G., Chen J., Peng J. H., et al. Dissociation of Ti2O3from Titania Slag underMechanical Activation [J]. Journal of Alloys and Compounds,2011, V509(24):L244-L247
    [214]Wang X. H., Li J.-G., Kamiyama H., et al. Pyrogenic Iron(III)-Doped TiO2NanopowdersSynthesized in RF Thermal Plasma: Phase Formation, Defect Structure, Band Gap, andMagnetic Properties [J]. Journal of the American Chemical Society,2005, V127(31):10982-10990
    [215]Wang Y. Q., Cheng H. M., Hao Y. Z., et al. Preparation, Characterization andPhotoelectrochemical Behaviors of Fe(III)-doped TiO2Nanoparticles [J]. Journal ofMaterials Science,1999, V34(15):3721-3729
    [216]Gracia F., Holgado J. P., Caballero A. Structural, Optical, and PhotoelectrochemicalProperties of Mn+-TiO2Model Thin Film Photocatalysts [J]. The Journal of PhysicalChemistry B,2004, V108(45):17466-17476
    [217]Zhou X. M., Yang H. C., Wang C. X., et al. Visible Light Induced PhotocatalyticDegradation of Rhodamine B on One-Dimensional Iron Oxide Particles [J]. The Journalof Physical Chemistry C,2010, V114(40):17051-17061
    [218]Cao F., Shi W. D., Zhao L. J., et al. Hydrothermal Synthesis and High PhotocatalyticActivity of3D Wurtzite ZnSe Hierarchical Nanostructures [J]. The Journal of PhysicalChemistry C,2008, V112(44):17095-17101
    [219]Maji S. K., Mukherjee N., Mondal A., et al. Synthesis, Characterization andPhotocatalyticActivity of α-Fe2O3Nanoparticles [J]. Polyhedron,2012, V33(1):145-149
    [220]Chen C. C., Ma W. H., Zhao J. C.. Semiconductor-mediated Photodegradation ofPollutants under Visible-light Irradiation [J]. Chemical Society Reviews,2010, V39(11):4206-4219
    [221]Zhang G. Y., Feng Y., Xu Y. Y., et al. Controlled Synthesis of Mesoporous α-Fe2O3Nanorods and Visible Light Photocatalytic Property [J]. Materials Research Bulletin,2012, V47(3):625-630
    [222]Bi D., Xu Y.. Improved Photocatalytic Activity of WO3through Clustered Fe2O3forOrganic Degradation in the Presence of H2O2[J]. Langmuir,2011, V27(15):9359-9366
    [223]Ge M., Zhu N., Zhao Y. P., et al. Sunlight-Assisted Degradation of Dye Pollutants inAg3PO4Suspension [J]. Industrial&Engineering Chemistry Research,2012, V51(14):5167-5173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700