交替灌溉对间作群体水分利用特征的影响及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间作种植具有充分利用多种资源、提高单位面积作物产量的优点,在我国西北地区广泛应用。近年来,受水资源紧缺的严重制约,间作应用面临重大挑战,间作节水灌溉技术亟待深入研究。交替灌溉具有提高作物水分利用效率,创造提高作物水分利用效率的根系系统,有利于提高水分补偿效应、降低无效蒸发和渗漏。本研究通过大田试验和根箱试验,研究了交替灌溉对西北主导间作模式小麦/玉米、小麦/蚕豆的水分利用特征,并对影响间作群体水分利用效率的机理进行了探讨。主要结论如下:
     1、交替灌溉小麦间作玉米可显著提高土地利用率和作物产量,交替灌间作比之传统灌间作具有更大的提高土地利用率的潜力。连续四年的大田试验表明,交替灌溉小麦间作玉米的土地当量比(LER)变化在1.22~1.52,且除2008年外,其它年度的交替灌溉间作LER比同等灌水水平下的常规灌溉提高了2.33%~17.83%。交替灌溉间作有利于提高小麦、玉米的经济产量,间作小麦产量达到了单作的55.37%~74.88%、间作玉米产量达到了单作的66.63%~78.87%。
     2、交替灌溉间作并未显著增加复合群体的耗水量。2006-2009年度,与单作耗水量的加权平均相比,交替灌间作耗水量分别增加了0.28%~0.92%、4.29%~5.94%、14.36%~19.19%、12.72%~18.13%;交替灌间作耗水量较同等灌水水平下常规灌间作的增幅分别为0.44%、4.43%、3.59%、-19.28%。交替灌溉可显著提高间作作物的水分利用效率,各年度交替灌溉间作水分利用效率分别较单作水分利用效率的加权平均提高了32.70%~47.10%、31.16%~34.39%、7.84%~20.30%、14.42%~22.52%;与常规灌溉间作水分利用效率相比,中灌水水平交替灌溉间作水分利用效率分别增加了17.55%、0.09%、0.53%、27.10%。
     3、影响交替灌溉间作作物水分利用效率变化的因子主要包括土壤棵间蒸发量占总耗水量比重、叶日积和根密度。2008年交替灌溉间作在低、中、高三个灌水水平下的棵间蒸发量占总耗水量比重分别较单作小麦提高了11.71%、9.55%、6.00%,较单作玉米分别提高了5.72%、6.19%、6.18%。2009年中、低灌水水平交替灌溉间作棵间蒸发量占总耗水量比重较单作小麦增加了7.17%、4.13%,较单作玉米增加了2.01%、3.50%。2007和2008年度,交替灌溉间作叶日积(LAID)在低、中、高三个灌水水平下分别较单作小麦提高了102.79%、105.83%、109.14%和60.04%、54.49%、54.18%。2009年度交替灌溉间作LAID在低、中两个灌水水平下分别较单作小麦提高了76.16%、61.31%。
     交替灌溉间作影响作物根系的时空分布,并在不同时期形成了对土壤空间的叠加利用。小麦灌浆期,间作小麦根系遍布两作物根区地下部的整个剖面,纵向分布已达80 cm以下,横向分布已进入玉米根区整个地下部空间,表现为根重密度为0.07的等值线深达50 cm以下,根重密度为0.01的等值线最大深度达到80 cm以下,根重密度为0.04的根系侧向进入玉米根区20-40 cm。
     4、交替灌溉影响间作群体产量和水分利用效率的主要生理生化机制是提高了脯氨酸含量、增强了SOD活性、POD活性和根系活力。交替灌溉间作小麦的脯氨酸含量较常规灌溉平均提高了38.26%,交替灌溉单作小麦和蚕豆分别平均增加了35.31%和24.07%。生育期内交替灌溉单作小麦、单作蚕豆、间作小麦、间作蚕豆SOD活性分别较常规灌溉增加了17.24%~22.62%、21.53%~41.35%、7.86%~25.11%、7.92%~16.14%;POD活性分别较常规灌增加了3.88%~24.53%、0.44%~29.76%、13.73%~35.36%、8.79%~22.74%;根系活力分别较常规灌溉提高了6.41%~29.98%、5.71%~11.39%、6.09%~22.65%、7.62%~20.08%。
Intercropping, due to the more effective use of resources and high productivity, is practiced widely in northwestern China. In recent years, however, the shortage of water resources is increasing continually; the application of intercropping has become big challenge. Therefore, water-saving irrigation technologies for intercropping pending further study. Alternative irrigation technology can significantly improve water use efficiency of crops, creates special root system favorable for improving crop water use efficiency and helps to improve water compensate effects. Our works reported here are aiming at investigating yield, water use efficiency and water use mechanism in wheat/maize intercropping and wheat/faba-bean intercropping through field experiment and simulation experiment. The main results were obtained as the following:
     1. Land utilization rate, crops yield of wheat/maize intercropping were significantly increased under alternate irrigation. Land equivalent ratio (LER) of wheat/maize intercropping under alternate irrigation was varying in the range of 1.22~1.52 during 2006-2009, indicating that wheat/maize intercropping under alternate irrigation can improve land utilization rate. Apart from 2008, LER of alternative irrgated wheat/maize intercropping at medium irrigation level was increased by 2.33%~17.83% than conventional irrigation during consecutive four years. Yield of wheat/maize intercropping under alternate irrigation was increased by 51.12%~99.44% than sole wheat, and increased by 2.01%~31.74% than sole maize.
     2. Water consumptionn of wheat and maize was not significantly influenced by alternative irrigated wheat/maize intercropping. Compared to weighted average water consumption of sole cropping, water consumption of alternative irrigated wheat/maize intercropping was increased by 0.28%~0.92%, 4.29%~5.94%, 14.36%~19.19%, 12.72%~18.13% in 2006-2009 growing seasons, and water consumption of alternative irrigated wheat/maize intercropping was increased by 0.44%, 4.43%, 3.59%, -19.28% than wheat/maize under conventional irrigation at the same irrigation level. Water use efficiency of alternative irrigated wheat/maize intercropping was increased by 32.70%~47.10%, 31.16%~34.39%, 7.84%~20.30%, 14.42%~22.52% than weighted average sole cropping, and increased by 17.55%, 0.09%, 0.53%, 27.10% than wheat/maize intercropping under conventional irrigation at the medium irrigation level.
     3. The changes of water use efficiency in the alternative irrigated wheat/maize intercropping could be attributed to amount of soil evaporation propotion to evapotranspiration (E/ET), leaf area duration (LAID) and root weight density. In 2008 growing seasons, compared to sole wheat, E/ET of wheat/maize intercropping under alternate irrigation was increased by 11.71%, 9.55%, 6.00%, and increased by 5.72%, 6.19%, 6.18% than sole maize at low, medium, high irrigation level, respectively. E/ET of wheat/maize intercropping under alternate irrigation was increased by 7.17%, 4.13% than sole wheat, and 2.01%, 3.50% than sole maize at medium, low irrigation in 2009 growing seasons. LAID of alternative irrigated wheat/maize intercropping was improved by 102.78%, 105.83%, 109.14% and 60.04%, 54.49%, 54.18% than sole wheat at low, medium, high irrigation level respectively in 2007 and 2008 growing seasons. In 2009 growing season, LAID of alternative irrigated wheat/maize intercropping was improved by 76.16%、61.31% than sole wheat at medium, low irrigation level respectively.
     The niche differentiation in time and space of root distribution is the main mechanism for yield and water use efficiency. Root of intercropped wheat extended maize underground space in the coexistance period of wheat and maize, and root growth reached 80 cm in soil depth. Root weight density with its 0.07 root isoline reaching above 50 cm, and root isoline of 0.04 extend maize rootzone 20-40 cm.
     4. Increased proline content, SOD activity, POD activity and root activity were the main mechanism for improved yield and water use efficiency in alternative irrigated intercropping system. The proline content of intercropped wheat under alternate irrigation was increased by 38.3%, and sole wheat, sole faba bean averagely increased by 35.31%, 24.07% than conventional irrigation respectively. SOD activity of sole wheat, sole faba bean, intercropped wheat, intercropped faba bean under alternate irrigation was increased by 17.24%~22.62%, 21.53%~41.35%, 7.86%~25.11%, 7.92%~16.14%, POD activity was increased by 3.88%~24.53%, 0.44%~29.76%, 13.73%~35.36%, 8.79%~22.74%, and root activity was increased by 6.41%~29.98%, 5.71%~11.39%, 6.09%~22.65%, 7.62% ~20.08% than conventional irrigation during the growing period, respectively.
引文
[1]刘昌明,何希吾,任鸿遵.中国水问题研究[Z].北京:气象出版社, 1996.
    [2]段爱旺,张寄阳.中国灌溉农田粮食作物水分利用效率的研究[J].农业工程学报. 2000, 16(4): 41-44.
    [3]贺恒丽,赵东利.渠道防渗技术的应用与推广[J].中国农村水利水电. 2003(6): 62-63.
    [4]刘群昌.低压管道输水灌溉技术[J].中国水利. 2008(23): 63-65.
    [5]尹娟,费良军,朱悦发.灌水定额对波涌灌溉土壤中硝态氮浓度的影响[J].农业工程学报. 2009, 25(5): 30-34.
    [6]于利鹏,黄冠华,刘海军,等.喷灌冬小麦耗水与棵间蒸发试验[J].中国农业科学. 2009, 42(9): 3179-3186.
    [7]刘海军,黄冠华,王鹏超,等.再生水滴灌对滴头堵塞的影响[J].农业工程学报. 2009, 25(9): 15-20.
    [8]袁德玲,张玉龙,唐首锋,等.不同灌溉方式对保护地土壤水稳性团聚体的影响[J].水土保持学报. 2009, 23(3): 125-128.
    [9]裴艳婷,田奇卓,李娜娜,等.不同渗灌覆膜方式对冬小麦水分利用效率及产量的影响[J].麦类作物学报. 2009, 29(5): 867-871.
    [10]陈亚新,康绍忠.非充分灌溉原理[Z].北京:水利电力出版社, 1995.
    [11]吴永成,周顺利,王志敏.氮肥运筹对华北平原限水灌溉冬小麦产量和水氮利用效率的影响[J].麦类作物学报. 2008, 28(6): 1016-1020.
    [12] Vazifedoust M, van Dama J C, Feddes R A, et al. Increasing water productivity of irrigated crops under limited water supply at field scale[J]. Agricultural water management. 2008, 95: 89-102.
    [13]杨磊,杜太生,李志军,等.调亏灌溉条件下紫花苜蓿生长、作物系数和水分利用效率试验研究[J].灌溉排水学报. 2008, 27(6): 102-105.
    [14] Zhang B C, Li F M, Huang G B, et al. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area[J]. Agricultural Water Management. 2006, 79: 28-42.
    [15]杨杰,魏邦龙.精确灌溉中作物需水量的研究进展[J].甘肃农业科技. 2008, 11: 34-37.
    [16]高照阳,李保谦,杨东英.精确灌溉概述[J].节水灌溉. 2003, 3: 1-3.
    [17]陈兆波.生物节水研究进展及发展方向[J].中国农业科学. 2007, 40(7): 1456-1462.
    [18] Willey R W. Intercropping-Its importance and research needs. Part II. Agronomy and researchapproaches[J]. Field Crops Abstract. 1979, 32(2): 73-85.
    [19]黄高宝.一熟制灌区带田群体受光结构及生产力研究[D].北京:中国农业大学, 1996.
    [20]刘广才,杨祁峰,李隆,等.小麦/玉米间作优势及地上部与地下部因素的相对贡献[J].植物生态学报. 2008, 32(2): 477-484.
    [21]赵秉强,余松烈,李风超.间套带状小麦高产原理与技术[Z].北京:中国农业科学技术出版社, 2004.
    [22] Li L, Sun J H, Zhang F S, et al. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients[J]. Field Crops Research. 2001, 71(2): 123-137.
    [23]佟屏亚.我国耕作栽培技术成就和发展趋势.[J].耕作与栽培. 1994, 65(4): 1-7.
    [24] Trenbath B R. Resource use by intercrops[J]. NewYork:Maemillan Publishing. 1986: 57-81.
    [25] Francis C A. Multiple cropping system[Z]. New York: Macmillan Publishing Company, 1986, 376-383.
    [26]刘巽浩. 90年代我国耕作制度发展展望[J].耕作与栽培. 1992, 63(2): 1-9.
    [27]郝艳如,劳秀荣,孟庆强,等.玉米/小麦间作对根际土壤和养分吸收的影响[J].中国农学通报. 2002, 18(4): 20-23.
    [28]柴良植,刘世铎,李得举.大力发展间作套种提高灌区综合效益[J].干旱地区农业研究. 1997, 15(2): 37-43.
    [29]胡恒觉,黄高宝.新型多熟种植研究[Z].甘肃科学技术出版社, 1999, 18-204.
    [30]李守谦.关于甘肃省“吨粮田”建设的几点看法[J].甘肃农业科技. 1992, 1: 1-3.
    [31]韩金强.甘肃内陆河流域水问题及对策研究[J].中国水利. 2002, 2: 58-59.
    [32]赵致禧,姚正良,肖占文.张掖地区应压缩小麦/玉米带田种植面积[J].甘肃农业科技. 2002(4): 12-13.
    [33] Morris R A, Garrity D P. Resource capture and utilization in intercropping: water[J]. Field Crops Research. 1993, 34: 303-317.
    [34]康绍忠.控制性交替灌溉—一种新的农田节水调控思路[J].干旱地区农业研究. 1997, 15(1): 1-6.
    [35] Kang S Z, Zhang J H. Controlled alternate partial rootzone irrigation: its physiological consequences and impact on water use efficiency[J]. J Exp Bot. 2004, 55(407): 2437-2446.
    [36]孙华银,康绍忠,胡笑涛,等.根系分区交替灌溉对温室甜椒不同灌水下限的响应[J].农业工程学报. 2008, 24(6): 78-84.
    [37]杜太生,康绍忠,闫博远,等.干旱荒漠绿洲区葡萄根系分区交替灌溉试验研究[J].农业工程学报. 2007, 23(11): 52-58.
    [38] Marsal J, Mata M, Campo J, et al. Evaluation of partial root-zone drying for potential field use as a deficit irrigation technique in commercial vineyards according to two different pipeline layouts[J]. Irrigation Science. 2008, 26(4): 347-356.
    [39]杜太生,康绍忠,张建华.不同局部根区供水对棉花生长与水分利用过程的调控效应[J].中国农业科学. 2007, 40(11): 2546-2555.
    [40] Kang S Z, Liang Z S, Hu W, et al. Water use efficiency of controlled alternate irrigation on root-divided maize plants[J]. Agricultural Water Management. 1998, 38: 69-76.
    [41]康绍忠,许迪.我国现代农业节水高新技术发展战略的思考[J].中国农村水利水电. 2001, (10): 25-29.
    [42]许迪,康绍忠.现代节水农业技术研究进展与发展趋势[J].高技术通讯. 2002, (12): 103-108.
    [43]刘巽浩,牟正国.中国耕作制度[Z].北京:农业出版社, 1993, 134-164.
    [44]王立祥.农作学[G].北京:科学出版社, 2003.
    [45]杜太生,康绍忠,胡笑涛,等.果树根系分区交替灌溉研究进展[J].农业工程学报. 2005, 21(2): 172-178.
    [46]杨启良,张富仓,刘小刚.根系分区交替滴灌对苹果幼苗生理特性和水分利用效率的影响[J].西北植物学报. 2009, 29(7): 1364-1372.
    [47]魏钦平,刘松忠,王小伟,等.分根交替不同灌水量对苹果生长和叶片生理特性的影响[J].中国农业科学. 2009, 42(8): 2844-2851.
    [48]龚道枝,康绍忠,佟玲,等.分根交替灌溉对土壤水分分布和桃树根茎液流动态的影响[J].水利学报. 2004, (10): 112-118.
    [49]王志平,李昌伟,黄以华,等.隔沟交替灌溉在甘蓝、青花菜和大白菜上的应用[J].中国蔬菜. 2006, (10): 16-18.
    [50]刘小刚,张富仓,杨启良,等.控制性分根区灌溉对玉米根区水氮迁移和利用的影响[J].农业工程学报. 2009, 25(11): 62-67.
    [51]刘永贤,李伏生,农梦玲.烤烟不同生育时期分根区交替灌溉的节水调质效应[J].农业工程学报. 2009, 25(1): 16-20.
    [52]潘丽萍,李彦,唐立松.局部根区灌溉对棉花主要生理生态特性的影响[J].中国农业科学. 2009, 42(8): 2982-2986.
    [53]吴燕,梁银丽.灌溉方式对黄瓜结果期根系特征与产量的影响[J].干旱地区农业研究. 2009, 27(3): 66-70.
    [54] Martin R C, Voldeng H D, Smith D L. Intercropping corn and soybean for silage in a cool-temperature region: Yield, protein and economic effects[J]. Field Crops Research. 1986, 23(2): 295-310.
    [55] Carruthers K, Prithiviraj B, Fe Q, et al. Intercropping corn with soybean, lupin and forages: yield component responses[J]. European Journal of Agronomy. 2000, 12(2): 103-115.
    [56] Fininsa C, Yuen J. Temporal Progression of Bean Common Bacterial Blight (Xanthomonas Campestris pv. phaseoli) in Sole and Intercropping Systems[J]. European Journal of Plant Pathology. 2002, 108(6): 485-495.
    [57] Ghosh P K, Manna M C, Bandyopadhyay K K, et al. Interspecific Interaction and Nutrient Use in Soybean/Sorghum Intercropping System[J]. Agronomy Journal. 2006, 98: 1097-1108.
    [58] Chowdhury M K, Rosario E L. Comparison of nitrogen, phosphorus and potassium utilization efficiency in maize/mungbean intercropping[J]. Journal of Agricultural Science. 1994, 122(2): 193-199.
    [59] Sangakkara R. Growth, yield and nodule activity of mungbean intercropped with maize and cassava[J]. Journal of the Science of Food and Agriculture. 1994, 66(3): 417-421.
    [60] Chowdhury M K, Rosario E L. Utilization efficiency of applied nitrogen as related to yield advantage in maize/mungbean intercropping[J]. Field Crops Research. 1992, 30(2): 41-51.
    [61] Banik P, Midya A, Sarkar B K, et al. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering[J]. European Journal of Agronomy. 2006, 24(4): 325-332.
    [62] Baker C M, Blamey F P C. Nitrogen fertilizer effects on yield and nitrogen uptake of sorghum and soybean, grown in sole cropping and intercropping systems[J]. Field Crops Research. 1985, 12: 233-240.
    [63] Carruthers K, Fe Q, Cloutier D, et al. Intercropping corn with soybean, lupin and forages: weed control by intercrops combined with interrow cultivation[J]. European Journal of Agronomy. 1998, 8(4): 225-238.
    [64] Ghosh P K, Tripathi A K, Bandyopadhyay K K, et al. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system[J]. European Journal of Agronomy. 2009, 31(1): 43-50.
    [65] Keswani C L, Kibani T H M, Chowdhury M S. Effect of intercropping on rhizosphere population in maize (Zea mays L.) and soybean (Glycine max Merill)[J]. Agriculture and Environment. 1977, 3(4): 363-368.
    [66] Li L, Sun J H, Zhang F S, et al. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting[J]. Field Crops Research. 2001, 71(3): 173-181.
    [67] Zhang F, Li L, Sun J. Contribution of above- and below-ground interactions to intercropping[J]. InHorst et al. (eds) Plant Nutrition–Food security and sustainability of agroecosystems. Kluwer Academic Publishers, 2001: 978-979.
    [68]李隆,李晓林,张福锁.小麦-大豆间作中小麦对大豆磷吸收的促进作用[J].生态学报. 2000, 20(4): 629-633.
    [69]孙建好,李隆,李娟.小麦/大豆间作氮磷肥效的双变量分析[J].干旱地区农业研究. 2007, 25(4): 183-186.
    [70] Li L, Sun J H, Zhang F S, et al. Root distribution and interactions between intercropped species[J]. Oecologia. 2006, 147(2): 280-290.
    [71]叶优良,李隆,孙建好.小麦/玉米间作和氮肥对水分利用的影响[J].干旱地区农业研究. 2007, 25(4): 176-182.
    [72]叶优良,孙建好,李隆,等.小麦/玉米间作根系相互作用对氮素吸收和土壤硝态氮含量的影响[J].农业工程学报. 2005, 21(11): 33-37.
    [73]邱云生,冯爱丽,王惠滨,等.棉菜间作条件下叶枝结铃的增产效应[J].中国棉花. 2002, (8): 33-34.
    [74]邱云生,高繁荣,王惠滨,等.棉菜间作条件下叶枝结铃的增产效应[J].中国种业. 2002, (7): 29-30.
    [75] Blaise D, Majumdar G, Tekale K U. On-farm evaluation of fertilizer application and conservation tillage on productivity of cotton + pigeonpea strip intercropping on rainfed Vertisols of central India[J]. Soil and Tillage Research. 2005, 84(1): 108-117.
    [76] Watiki J M, Fukai S, Banda J A, et al. Radiation interception and growth of maize/cowpea intercrop as affected by maize plant density and cowpea cultivar[J]. Field Crops Research. 1993, 35(2): 123-133.
    [77] Whitmore A P, Schrvder J J. Intercropping reduces nitrate leaching from under field crops without loss of yield: A modelling study[J]. European Journal of Agronomy. 2007, 27(1): 81-88.
    [78] Awal M A, Koshi H, Ikeda T. Radiation interception and use by maize/peanut intercrop canopy[J]. Agricultural and Forest Meteorology. 2006, 139: 74-83.
    [79] Li Y Y, Yu C B, Cheng X, et al. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean[J]. Plant and Soil. 2009, 323(1): 295-308.
    [80] Willey R W. Resource use in intercropping systems[J]. Agricultural Water Management. 1990, 17: 215-231.
    [81]刘巽浩,高旺盛.集约持续农业工程技术[Z].郑州:河南科学出版社, 2000, 1-450.
    [82]潘启明.春小麦带状套种玉米黄豆亩产吨粮初步示范[J].新疆农业科学. 1990, 6: 252-253.
    [83] Li L, Yang S C, Li X L, et al. Interspecific complementary and competitive interactions betweenintercropped maize and faba bean[J]. Plant and Soil. 1999, 212(2): 105-114.
    [84] Li L, Zhang F S, Li X L, et al. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean[J]. Nutrient Cycling in Agroecosystems. 2003, 65(1): 61-71.
    [85]李隆.间作作物种间促进与竞争作用机理研究[D].中国农业大学博士学位论文, 1999.
    [86] Morris R A, Garrity D P. Resource capture and utilization in intercropping; non-nitrogen nutrients[J]. Field Crops Research. 1993, 34(1): 319-334.
    [87] Mandal B K, Dagupta S, Ray P K. Yield of wheat, mustard and chickpea grown as sole crop and intercrop with 4 moisture regimes[J]. Indian Journal of Agricultural Science. 1986, 56(3): 187-193.
    [88]王仰仁,李明思,康绍忠.立体种植条件下作物需水规律研究[J].水利学报. 2003, (7): 90-95.
    [89]王仰仁,杨丽霞.作物组合种植的需水量研究[J].灌溉排水. 2000, 19(4): 64-67.
    [90]王仰仁,张建中,王丽霞.作物组合种植需水量与灌溉制度研究[J].中国农村水利水电. 2000, (11): 9-11.
    [91]王仰仁,杨丽霞,胡焱,等.作物组合种植节水增产试验研究[J].人民黄河. 2000, 22(11): 34-36.
    [92]赵印英.作物组合种植高效用水试验[J].山西农业科学. 2004, 32(1): 72-75.
    [93] Snaydon R W, Harris P M. Interaction below ground -the use of nutrients and water[Z]. ICRISAT: Proceedings of international workshop on intercropping[C].Hyderabad: ICRISAT, 1981, 188-201.
    [94]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间作农田根、水肥时空协调性研究[J].农业工程学报. 2002, 18(1): 53-56.
    [95]张恩和,黄高宝.间套种植复合群体根系时空分布特征[J].应用生态学报. 2003, 8(14): 1301-1304.
    [96]孙建好,李隆,张福锁,等.不同施氮水平对小麦/玉米间作产量和水分效应的影响[J].中国农学通报. 2007, 23(7): 345-348.
    [97]刘巽浩,韩湘玲.华北平原地区麦田两熟的光能利用[J].作物学报. 1981, 7(1): 63-72.
    [98]张训忠,王伯航.高肥力条件下玉米大豆间混作物互补与竞争效应研究[J].中国农业科学. 1987, 20(2): 34-41.
    [99]叶优良,肖焱波,黄玉芳,等.小麦/玉米和蚕豆/玉米间作对水分利用的影响[J].中国农学通报. 2008, 24(3): 445-449.
    [100]叶优良,李隆,孙建好.三种豆科作物与玉米间作对水分利用的影响[J].灌溉排水学报. 2008, 27(4): 33-36.
    [101] Huxley P A, Pinney A, Akunda E, et al. A tree/crop interface orientation experiment with a Grevillea robusta hedgerow and maize[J]. Agrofroestry Systems. 1994, 26: 23-45.
    [102] Clothier B E, Green S R. Rootzone processes and the efficient use of irrigation water[J]. Agricultural Water Management. 1994, 25(1): 1-12.
    [103]杨培岭,罗远培,陆锦文.冬小麦根系吸水功能的研究:土壤水和养分的有效利用[Z].李韵珠,陆锦文,罗远培等.北京:北京农业大学出版社, 1994: 5, 42-48.
    [104]宋同清,肖润林,彭晚霞,等.亚热带丘陵茶园间作白三叶草的保墒抗旱效果及其相关生态效应[J].干旱地区农业研究. 2006, 24(6): 39-43.
    [105] Muhr L, Leihner D E, Hilger T H, et al. Intereropping of cassava with herbaceous legumes. I.Rooting Patterns and their potential importance for belowground competition[J]. Angewandte Botany. 1995, 69: 17-21.
    [106] Gregory P T, Reedy M S. Root Growth in an intercrop of mille/roundnut[J]. Field Crops Research. 1982, 5: 241-252.
    [107] Lovenstein H M, Berlinerand P R, Keulen H V. Runoff agrofroestry in arid lands[J]. Forest Eeology and Management. 1991, 45: 59-70.
    [108]张恩和,李玲玲,黄高宝,等.供肥对小麦间作蚕豆群体产量及根系的调控[J].应用生态学报. 2002, 13(8): 939-942.
    [109]张礼军,张恩和,黄高宝,等.灌溉与施磷对小麦-玉米-马铃薯间套群体作物生理特征的影响[J].甘肃农业大学学报. 2005, 40(1): 53-58.
    [110]黄高宝.集约栽培条件下间套作的光能利用理论及其应用[J].作物学报. 1999, 25(1): 16-24.
    [111]焦念元,宁堂原,赵春,等.玉米花生间作复合体系光合特性的研究[J].作物学报. 2006, 32(6): 917-923.
    [112]焦念元,陈明灿,付国占,等.玉米花生间作复合群体的光合物质积累与叶面积指数变化[J].作物杂志. 2007, 1: 34-35.
    [113]柴强,黄高宝.集雨补灌冬小麦套作玉米复合群体生理生态特性研究[J].中国生态农业学报. 2004, 12(2): 70-72.
    [114]柴强,黄高宝.集雨补灌对冬小麦套玉米复合群体生长特性研究[J].干旱地区农业研究. 2002, 20(4): 76-79.
    [115]杨彩红,柴强.间甲酚对不同供水条件下小麦蚕豆的化感作用[J].农业现代化研究. 2007, 28(5): 614-617.
    [116]高阳,段爱旺.冬小麦间作种植方式下棵间蒸发规律试验研究[J].灌溉排水学报. 2005, 24(2): 13-17.
    [117] Reddy M S, Willey R W. Growth and resource use studies in an intercrop of pearl millet/groundnut[J]. Field Crops Research. 1981, 174: 13-24.
    [118]许振柱,周广胜.农业水分利用率及其对环境和管理活动的响应[J].自然资源学报. 2003, 18(3): 294-303.
    [119]张劲松,宋兆民,孟平,等.银杏-小麦间作系统水热效应的研究[J].林业科学研究. 2002, 15(4): 457-462.
    [120] Wallace J S, Jackson N A, Ong C K. Modelling soil evaporation in an agroofrestry system in Lenya[J]. Agric. For. Meteorol. 1999, 49: 189-202.
    [121] Brenner A J. Micro-climatic modification in aroforestry: Tree-Crop Interaction—A Physiological Approach[Z]. Ong C K, Huxley P A E. UK: CAB International, Wallingford, 1996.
    [122]杜雄,窦铁岭,冯丽肖,等.华北农牧交错带退耕区榆树幼林-南瓜间作的农田生态效应[J].中国农业科学. 2008, 41(9): 2710-2719.
    [123]李守谦,兰念军.干旱地区作物需水量及节水灌溉研究[Z].兰州:甘肃科学技术出版社, 1992, 7-13.
    [124]曹诗瑜.河西绿洲灌区带田微垄沟灌节水技术研究[J].甘肃农业科技. 2002, 7: 23-24.
    [125]杨秀英,石培泽.沙漠绿洲灌区主要粮经作物需水规律及灌溉制度试验研究[J].甘肃水利水电. 1997, 1: 60-64.
    [126] Blackman P G, Davies W J. Root to shoot communication in maize plants of the effects of soil drying[J]. Journal of Experimental Botany. 1985, 36: 39-48.
    [127] Zhang J, Davies W J. Control of stomatal behaviour by abscisic acid which apparently originates in roots[J]. Journal of Experimental Botany. 1987, 38: 1174-1181.
    [128]胡田田,康绍忠,原丽娜,等.不同灌溉方式对玉米根毛生长发育的影响[J].应用生态学报. 2008, 19(6): 1289-1295.
    [129] Skinner R H, Hanson J D, Benjamin J G. Nitrogen uptakes and partitioning under alternate-and every-furrow irrigation[J]. Plant Soil. 1999, 210: 11-20.
    [130]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水. 2001, 20(2): 5-7.
    [131]于保静,石培泽,杨秀英.干旱区大田玉米控制性交替隔沟灌溉需水量及需水规律研究[J].甘肃水利水电技术. 2006, 42(3): 209-212.
    [132]李志军,张富仓,康绍忠.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报. 2005, 21(8): 17-21.
    [133]连彩云.春小麦垄作交替隔沟灌溉研究[J].甘肃农业科技. 2006, (8): 21-22.
    [134]黄冬芬,奚岭林,王志琴.结实期灌溉方式对水稻品质和不同器官镉浓度与分配的影响[J].作物学报. 2008, 34(3): 456-464.
    [135]杨建昌,袁莉民,唐成.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响[J].作物学报. 2005, 31(8): 1052-1057.
    [136] Zegbe J A, Behboudiana M H, Clothier B E. Partial rootzone drying is a feasible option for irrigating processing tomatoes[J]. Agricultural Water Management. 2004, 68(3): 195-206.
    [137] Zegbe-Domcngueza J A, Behboudian M H A, Lang A, et al. Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in 'Petopride' processing tomato (Lycopersicon esculentum, Mill.)[J]. Scientia Horticulturae. 2003, 98(4): 505-510.
    [138]汪耀富,蔡寒玉,张晓海,等.分根交替灌溉对烤烟生理特性和烟叶产量的影响[J].干旱地区农业研究. 2006, 24(5): 93-98.
    [139]蔡寒玉,汪耀富,李进平,等.烤烟控制性分根交替灌水的生理基础研究[J].节水灌溉. 2006, (2): 11-15.
    [140]罗慧,李伏生,韦彩会,等.灌水方式对不同施肥水平烤烟产量和品质的影响[J].中国农业科学. 2009, 42(1): 173-179.
    [141]张永胜,成自勇,张芮,等.控制性交替隔沟灌溉对甜椒农田蒸散特征的影响[J].水土保持学报. 2009, 23(2): 223-227.
    [142]王志平,李昌伟,黄以华,等.隔沟交替灌溉在甘蓝、青花菜和大白菜上的应用[J].中国蔬菜. 2006, (10): 16-18.
    [143] Tang L S, Li Y, Zhang J H. Physiological and yield responses of cotton under partial root zone irrigation[J]. Field Crops Research. 2005, 94: 214-223.
    [144]王振昌,杜太生,杨秀英,等.隔沟交替灌溉对棉花耗水、产量和品质的调控效应[J].中国生态农业学报. 2009, 17(1): 13-17.
    [145]康绍忠,胡笑涛,Goodwin I.,等.地下水位较高条件下不同根区湿润方式对梨树根茎液流及其水分平衡的影响[J].农业工程学报. 2001, 17(3): 15-23.
    [146] Kang S Z, Hu X T, Jerie P, et al. The effects of partial rootzone drying on root, trunk sap flow and water balance in an irrigated pear (Pyrus communis L.) orchard[J]. Journal of Hydrology. 2003, 280(1-4): 192-206.
    [147]康绍忠,潘英华,石培泽,等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报.2001(11): 80-86.
    [148] Loveys B, Grant J, Dry P, et al. Progress in the development of partial root zone drying[J]. The Australian Grapegrower and Winemaker. 1997, 403: 18-20.
    [149]毕彦勇,高东升,王晓英,等.根系分区灌溉对设施油桃生长发育、产量及品质的影响[J].中国生态农业学报. 2005, 13(4): 88-90.
    [150] Dos Santos T P, Lopes C M, Rodrigues M L, et al. Partial rootzone drying: effects on growth and fruit quality of field grown grapevines (Vitis vinifera)[J]. Functional Plant Biology. 2003, 30(6): 663-671.
    [151] Kirda C, Cetin M, Dasgan Y, et al. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation[J]. Agricultural Water Management. 2004, 69(3): 191-201.
    [152] Tan C S, Buttery B R. Response of stomatal conductance, transpiration, photosynthesis, and leaf water potential in peach seedlings to different watering regimes[J]. HortScience. 1982, 17(2): 222-223.
    [153] Green S R, Clothier B E. Water use of Kiwifruit vines and apple trees by heat-pulse technique[J]. Journal of Experimental Botany. 1988, 39(198): 115-123.
    [154] Green S R, Clothier B E. Root water uptake by Kiwifruit vines following partial wetting of the root zone[J]. Plant and Soil. 1995, 173: 317-328.
    [155]程福厚,赵志军,张纪英,等.分区交替灌溉对梨生长结果及水分利用效率的影响[J].干旱地区农业研究. 2007, 25(4): 130-133.
    [156]杜太生,康绍忠,王振昌,等.隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报. 2007, 33(12): 1982-1990.
    [157]梁宗锁,康绍忠,石培泽,等.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学. 2000, 33(6): 26-32.
    [158] Davies W J, Zhang J H. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual Review of Plant Physiology and Plant Molecular Biology. 1991, 42: 55-76.
    [159] Shahnazari A, Liu F, Andersen M N, et al. Effects of partial root-zone drying on yield,tuber size and water use efficiency in potato under field conditions[J]. Field Crops Research. 2007, 100: 117-124.
    [160] Du T S, Kang S Z, Zhang J H, et al. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China[J]. Irrigation Science. 2008, 26(2): 147-159.
    [161]武永军,刘红侠,梁宗锁,等.分根区干湿交替对玉米光合速率及蒸腾速率的影响[J].西北植物学报. 1999, 19(4): 605-611.
    [162]段爱旺,肖俊夫,张寄阳,等.控制交替沟灌中灌水控制下限对玉米叶片水分利用效率的影响[J].作物学报. 1999, 25(6): 766-771.
    [163]唐立松,张建龙,李彦,等.植物对土壤水分变化的响应与控制性分根交替灌溉[J].干旱区研究. 2005, 22(1): 90-93.
    [164] Claudio L, Wolfram H, Andrea S. Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines[J]. Functional Plant Biology. 2002, 29: 1349-1356.
    [165] Tiago P S, Carlos M L, Lucília R, et al. Partial rootzone drying: effects on growth and fruit quality of field - grown grapevines (Vitis vinifera)[J]. Functional Plant Biology. 2003, 30(6): 663-671.
    [166] Gu S L, David Z, Simon G, et al. Effect of partial rootzone drying on vine water relations, vegetative growth, mineral nutrition, yield and fruit quality in field-grown mature sauvignon blanc grapevine[Z]. Fresno: California Agricultural Technology, InstituteCalifornia State University, 2000.
    [167]康绍忠,蔡焕杰.作物根系分区交替灌溉和调亏灌溉的理论和实践[Z].北京:中国农业出版社, 2002.
    [168]杜太生,康绍忠,张宝忠,等.石羊河流域干旱荒漠绿洲区不同滴灌模式下葡萄茎液流变化及其与环境因子的关系[J].应用生态学报. 2008, 19(2): 299-305.
    [169] Claudia R S, Joao P M, Tiago P S, et al. Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel)[J]. Functional Plant Biology. 2003, 30(6): 653-662.
    [170] Kang S Z, Liang Z S, Hu W, et al. Water use efficieney of controlled alternate irrigation on root-divided maize plants[J]. Agricultural Water Management. 1998, (38): 69-76.
    [171]梁宗锁,康绍忠,张建华,等.控制性分根交替灌水对作物水分利用率的影响及节水效应[J].中国农业科学. 1998, 31(5): 88-90.
    [172]史文娟,康绍忠.分根区垂向交替供水对玉米生长影响的研究[J].中国生态农业学报. 2001, 9(2): 44-46.
    [173]胡田田,康绍忠.局部灌水方式对玉米不同根区土-根系统水分传导的影响[J].农业工程学报. 2007, 23(2): 11-16.
    [174] Mackay A D, Barber S A. Effect of cyclic wetting and drying of a soil on root hair growth of maize roots.[J]. Plant and soil. 1987, 104: 291-293.
    [175] Kang S Z, Hu X T, Du T S, et al. Transpiration coefficient and ratio of transpiration to evapotranspiration of pear tree (Pyrus communis L) under alternative partial rootzone drying condition.[J].Hydrol Processes. 2003, 17(6): 1165-1176.
    [176]王健,蔡焕杰,康燕霞,等.夏玉米棵间土面蒸发与蒸发蒸腾比例研究[J].农业工程学报. 2007, 23(4): 17-22.
    [177]刘昌明,于沪宁.土壤一植物一大气系统水分运行实验研究[Z].北京:气象出版社, 1996.
    [178]张利.作物棵间土壤蒸发及叶面蒸腾量的研究[J].生态农业研究. 1995, 3(1): 76-78.
    [179]张喜英,刘昌明.华北平原农田节水途径分析:节水农业应用墓础研究进展[Z].石元春,刘昌明,龚元石.北京:中国农业出版社, 1995, 156-163.
    [180]高阳,段爱旺,刘祖贵,等.玉米/大豆不同间作模式下土面蒸发规律试验研究[J].农业工程学报. 2008, 24(7): 44-48.
    [181]刘浩,段爱旺,高阳.间作种植模式下冬小麦棵间蒸发变化规律及估算模型研究[J].农业工程学报. 2006, 22(12): 34-38.
    [182]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报. 2000, 16(1): 39-43.
    [183]潘英华,康绍忠.交替隔沟灌溉水分入渗特性[J].灌溉排水. 2000, 19(1): 1-4.
    [184] Gretchen B N, Park S N. Changes in hydraulic conductivity and anatomy caused by drying and reweting roots of agavedeserti(agavaceae)[J]. American Journal of Botany. 1991, 78: 906-915.
    [185] Bruce R R. Cotton row spacing as it affects soil water utilization and yield[J]. Agronomy Journal. 1965, 57: 319-321.
    [186] Hawkins B S, Peaeock H A. Effeet of skip-row culture on agronomic and fiber properties of upland cotton (Gossypiumhirsutum) varieties[J]. AgronomyJournal. 1968, 60: 189-191.
    [187] Longenecker D E, Thaxton E L, Lyerly P J. Variable row spacing of irrigated cotton as a means for reducing production costs and conserving water[J]. Agronomy Journal. 1969, 61: 101-104.
    [188] Tsegaye T, Stone J F, Reeves H E. Water use charaeteristics of wide-spaced furrow irrigation[J]. Soil Sci. Soe. Am.J. 1993, 57: 240-245.
    [189] Stone J F, Nofziger D L. Water use and yields of cotton grown under wide-spaced furrow irrigation[J]. Agricultural Water Management. 1993, 24: 27-28.
    [190]刘凯,张耗,张慎凤,等.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因[J].作物学报. 2008, 34(2): 268-276.
    [191] Weaver J E, Kramer J, Reed M. Development of root and shoot ofwinterwheat under field environment[J]. Ecological Society of America. 1924, 5: 26-50.
    [192]冯光龙,刘昌明.土壤水分对作物根系生长及分布的调控作用[J].生态农业研究. 1996, 4(3): 5-9.
    [193]王志芬,陈学留,余美炎,等.冬小麦根系活力变化动态的研究[J].华北农学报. 1993, 8(增刊): 70-73.
    [194]凌启鸿,陆卫平,蔡建中,等.水稻根系分布与叶角关系的研究初报[J].作物学报. 1989, 15(2): 123-135.
    [195] Narayan D. Root growth and productivity of wheat cultivals under different soil moisture condition[J]. International Journal of Ecology and environmental sciences. 1991, 17(1): 19-26.
    [196] Karrou M, Maranville J W. Response of wheat cultivars to different soil nitrogen and moisture regimes:I. Dry matter partitioning and root growth[J]. Journal of Plant Nutrition. 1994, 17(5): 729-744.
    [197] Blum A, Sullivan C Y. The effect of plant size on wheat response to agents of drought stress[J]. Australian Journal of Plant Physiology. 1997, 24: 35-41.
    [198] Passioura J B. Root and drought resistance[J]. Agricultural Water Management. 1983, 7: 265-280.
    [199]李话,张大勇.半干旱地区春小麦根系形态特征与生长冗余的初步研究[J].应用生态学报. 1999, 10(1): 26-30.
    [200] Rajaniemi T K, Allison V J, Goldberg D E. Root competition can cause a decline in diversity with increased productivity[J]. Journal of Ecology. 2003, 91: 407-416.
    [201]刘殿英.土壤水分对冬小麦根系的影响[J].山东农业大学学报. 1991, 22(2): 103-110.
    [202] Brouwer R. Function equilibrium:sense or nonsense[J]. Netherlands Journal of Agricultural Science. 1983, 31: 335-348.
    [203] Babu R C, Pathan M S, Blum A, et al. Comparison of measurement methods of osmotic adjustment in rice cultivars[J]. crop science. 1999, 39: 150-158.
    [204]李德全,邹琦,程炳篙.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报. 1992, 18(1): 37-44.
    [205]韩建民.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系[J].河北农业大学学报. 1990, 13(1): 17-21.
    [206]李德全,邹琦,程炳篙.冬麦叶片的渗透调节能力与产量及抗旱性的关系[J].植物学通报. 1996, 1(增刊): 46-50.
    [207]黎裕.植物的渗透调节与其它生理过程的关系及其在作物改良中的应用[J].植物生理学通讯. 1994, 30: 377-385.
    [208] Shackel K A, Foster K W, Hall A E. Genotypic differences in leaf osmotic potential among grainsorghum cultivars grown under irrigation and drought[J]. Crop Sci. 1982, 22: 1121-1125.
    [209]沈秀英,徐世昌,戴俊英.干旱对玉米SOD CAT及酸性磷酸脂酶活性的影响[J].植物生理学通讯. 1995, 31(3): 183-184.
    [210]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报. 1989, 6(4): 211-217.
    [211]汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯. 1983, 4: 1-7.
    [212]杜太生,康绍忠,张霁,等.不同沟灌模式对沙漠绿洲区葡萄生长和水分利用的效应[J].应用生态学报. 2006, 17(5): 805-810.
    [213] Wang L, Kroon H, B?gemann G M, et al. Partial root drying effects on biomass production in Brassica napus and the significance of root responses[J]. Plant and Soil. 2005, 276(1/2): 313-326.
    [214] Leib B G, Caspari H W, Redulla C A, et al. Partial rootzone drying and deficit irrigation of 'Fuji'apples in a semi-arid climate[J]. Irrigation science. 2006, 24(2): 85-89.
    [215]孙宏勇,刘昌明,张喜英,等.不同长度Micro-lysimeter-对测定土壤蒸发的影响[J].西北科技大学(自然科学版). 2003, 31(4): 167-170.
    [216]许迪,Schmid R.,Mermoud A.耕作方式对土壤水动态变化及夏玉米产量的影响[J].农业工程学报. 1999, 15(3): 101-106.
    [217]张宝林.晋西旱塬地区覆盖耕作农田土壤水分有效性及其利用研究[D].北京:中国农业大学, 2005.
    [218]刘广才.不同间套作系统种间营养竞争的差异性及其机理研究[D].兰州:甘肃农业大学, 2005.
    [219] Willey R W. Intercropping-its importance and research needs. Part I. Competition and yield advantages[J]. Field Crops Abstr. 1979, 32(1): 1-10.
    [220] Willey R W, Rao M R. A competitive ratio for quantifying competition between intercrops[J]. Experimental Agriculture. 1980, 16: 117-125.
    [221]山仑.水分利用效率:当代生物学[Z].邹承鲁.北京:中国致公出版社, 2000, 399-400.
    [222] Zhang H, Wang X, You M, et al. Water-yield relations and water-use efficiency of winter wheat in the North China Plain [J]. Irrigation Science. 1999, 19(1): 37-45.
    [223] Zhang J Y, Sun J S, Duan A W, et al. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China[J]. Agricultural Water Management. 2007, 92(1): 41-47.
    [224] Bandyopadhyay P K, Mallick S, Rana S K. Water balance and crop coefficients of summer-grown peanut Arachis hypogaea L in a humid tropical region of India[J]. Irrigation Science. 2005, 23(4): 161-169.
    [225]张志良.植物生理学实验指导第二版[Z].北京:高等教育出版社, 1990.
    [226]邹奇.植物生理学实验指导[Z].北京:中国农业出版社, 1995.
    [227]王爱国,邵从本,罗广华.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯. 1986, (2): 55-57.
    [228]高俊凤.植物生理学实验技术[Z].西安:世界图书出版公司, 2000.
    [229]山东农学院,西北农学院.植物生理学实验指导[Z].济南:山东科学技术出版社, 1980.
    [230]黄仲冬,齐学斌,樊向阳,等.根区交替地下滴灌对马铃薯产量及水分利用效率的影响[J].应用生态学报. 2010, 21(1): 79-83.
    [231]山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报. 1991, 2(1): 70-76.
    [232]李荣生,许煌灿,尹光天,等.植物水分利用效率的研究进展[J].林业科学研究. 2003, 16(3): 366-371.
    [233]武志杰,王仕新,张玉华.玉米和小麦间作农田水分动态变化的研究[J].玉米科学. 2001, 9(2): 61-63.
    [234] Taylor H M, Jordan W R, Sinclair T R. In limitations to efficient water use in crop production[J]. American Society of Agronomy. 1983: 45-64.
    [235] Clothier B E, Green S R. Rootzone processes and the efficient use of irrigation water[J]. Agricultural Water Management. 1994, 25: 1-12.
    [236] Kuchenbuch R O, Barber S A. Yearly variation of root distribution with depth in relation to nutrient uptake and corn yield[J]. Communications in Soil Science and Plant Analysis. 1987, 18: 225-263.
    [237] Rasse D P, Smucker A. Root recolonization of previous root channels in corn and alfafa rotations[J]. Plant and Soil. 1998, 204: 203-212.
    [238]刘浩,段爱旺,高阳,等.间作种植模式下冬小麦根系生长的时空分布及变化规律研究[J].灌溉排水学报. 2006, 25(1): 20-24.
    [239]赵秉强,张福锁,李增嘉,等.间作冬小麦根系数量与活性的空间分布及变化规律[J].植物营养与肥料学报. 2003, 9(2): 214-219.
    [240] Hsiao T C. Plant responses to water stress [J]. Ann Rer Plant Physiol, 1973,24(1):519-570. 1973, 24(1): 519-570.
    [241]汤章城.植物对水分胁迫的反应性和适应性[J].植物生理学通讯. 1983, (4): 1-7.
    [242] Morgan J M, Aust J M. Osmoregulation and water stress in higher plant[J]. Ann Rev Plant Phvsiol. 1984, (5): 299-319.
    [243] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytol. 1993, 125: 27-58.
    [244] Dhindsa R S, Wandeakyim. Drounht tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation[J]. J Rxp Bota. 1981, 32(126): 79-91.
    [245]张武.马铃薯叶绿素含量、CAT活性与品种抗旱性关系的研究[J].农业现代化研究. 2007, 28(5): 622-624.
    [246]侯晓林,吕金印,山仑.水分胁迫对抗旱性不同小麦品种叶片光合及根呼吸等生理特性的影响[J].干旱地区农业研究. 2007, 25(6): 37-44.
    [247] Bouslama M, Schapaugh J W T. Stress tolerance in soybeans. 1. Evaluation of the three screening techniques for heat and drought tolerance[J]. Crop Sci., 24: 933-937.
    [248]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报. 1989, 6(4): 211-217.
    [249] Elster E F. Oxygen activition and oxygen toxicity[J]. Ann Rev Plant Physiol. 1992, 43: 73-96.
    [250]蒋明义,荆家海,王韶唐.渗透胁迫对水稻膜脂过氧化及体内保护酶系统的影响[J].植物生理学报. 1991, 17(1): 80-84.
    [251]李锦树,王洪春.干旱对玉米叶片细胞透性及质膜的影响[J].植物生理学报. 1983, 9(3): 223-228.
    [252]沈允钢,施教耐,许大全.动态光合作用[Z].北京:科学出版社, 1998.
    [253] Shigesaburo J. Photosynthetic Efficiency in Rice and Wheat. Rice Breeding[Z]. Manila: IRRI, 1972.
    [254] Eehide M, Shigesaburo J. Photosynthetic heterosis in maize[J]. Japan. J. Breed. 1979, 29(2): 159-165.
    [255] Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants[J]. plant J. 1993, 4: 215-223.
    [256] Van R L, Kruger G H J, Kruger H. Proline accumulation as drought-tolerance selection criterion: Its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L[J]. Plant Physiol. 1993, 141: 188-194.
    [257] Hanson A D, Nelson C E, Peersen A R, et al. Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance[J]. Crop sci. 1979, 19: 489-493.
    [258]蒋明义,荆家海,王韶唐.渗透胁迫对水稻膜脂过氧化及体内保护酶系统的影响[J].植物生理学报. 1991, 17(1): 80-84.
    [259]陈立松,刘星辉.水分胁迫对荔枝叶片活性氧代谢的影响[J].园艺学报. 1998, 25(3): 241-246.
    [260]陆序春,刘振之.玉米间套花生的节水增产效果研究[J].湖南农业科学. 2005, 2: 27-29.
    [261]康绍忠,刘昌明.裸地蒸发和麦田蒸散的预报方法[J].中国农业气象. 1992, 13(2): 33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700