微波诱导下Ferrihydrite催化相转化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁氧化物用途非常广泛,也是种重要的化工原料。有关铁氧化物的研究中,以Ferrihydrite转化过程的研究较为引人注目。本研究室一直从事铁氧化物的研究,前期的研究表明了微量Fe(Ⅱ)对Ferrihydrite的相转化具有明显的催化作用。
     本实验室前期有关Ferrihydrite相转化行为的研究,都是在常规加热的方式下进行的,前期研究表明温度及升温速率对Ferrihydrite的催化相转化行为有很大影响。探讨不同加热方式对Ferrihydrite催化相转化过程的影响,全面了解在各种条件和环境中Ferrihydrite的催化相转化规律,对控制反应过程、为工业生产纳米铁红提供指导,是我们要达到的目标之一。
     本文旨在近中性条件下,采用微波加热的方式,研究Fe(Ⅱ)离子存在时Ferrihydrite的相转化规律,实现由Ferrihydrite快速、低能耗地制备出超细、均一、各种形貌的α-Fe2O3粒子。,因此该研究结果一方面对于全面了解Ferrihydrite的催化相转化机理具有重要的理论意义;另一方面,该研究结果对指导各种形貌α-Fe2O3的控制合成具有实际指导价值。本论文主要研究内容及结果如下:
     (1)系统研究了以氢氧化钠为沉淀剂、氯化铁为原料制备的Ferrihydrite在微波加热下的催化相转化过程。考察了初始pH、Ferrihydrite的微结构、Fe(Ⅱ)离子和Fe(Ⅲ)离子浓度等因素对相转化过程的影响。结果表明:在微波加热下Ferrihydrite的相转化产物为α-Fe2O3。
     (2)通过对Ferrihydrite在两种加热方式下催化相转化行为的比较发现:微波加热与常规加热下Ferrihydrite催化相转化的行为大致相同,产物的物相及形貌相同,但粒径大小及相转化时间有差异。微波加热制备出的α-Fe2O3粒子,粒径更小、相转化时间更短、能耗低。
     (3)分析Ferrihydrite在两种加热方式下相转化行为的异同得出: Ferrihydrite在微波加热下比在常规加热下,经历固相转化机制的比重增大,形成α-Fe2O3粒子过程中α-Fe2O3晶核的生长过程为速控过程。
     (4)在研究中发现Fe(Ⅱ)加入量(β= nFe(Ⅱ)/nFe(Ⅲ))对制得的α-Fe2O3微粒的形貌有影响。当pH=7时随β值的变化(由0.02-0.07),α-Fe2O3粒子的形貌由球形变为纺锤形。pH=9时随β值的变化(由0.02-0.07),α-Fe2O3粒子的形貌由球形变为准立方体形。Ferrihydrite在pH近中性环境下,形成非球形的α-Fe2O3粒子的机理是由于加入的Fe(Ⅱ)离子在α-Fe2O3晶核上发生配位吸附,导致了α-Fe2O3晶的非等轴生长,从而形成了非球形的(如纺锤体、准立方体等)α-Fe2O3粒子。
The use of iron oxides is very broad and iron oxides are also important industrial chemicals. Much attention has been paid to the transformation of ferrihydrite in the study on iron oxides. Our group has been engaged in the study on iron oxides, and we found that the presence of trace Fe(II) has obvious catalytic role in the phase transformation of ferrihydrite. Our pre-research on the phase transformatiom behaviour of ferrihydrite was carried out under the conditions of the conventional heating manner. Preliminary study discovered that the temperature and heating rate have a great effect on the phase transformation behaviour of ferrihydrite.
     One of our goals is to investigate the effects of the different heating methods on the catalytic phase transformation of ferrihydrite and comprehensive understand the laws of the transformation under different conditions and environment. So that we can control the transformation from ferrihydrite to the goal product and provide guidance for the industrial production of nano-iron oxide red.
     The present work aims at understanding the nature of the transformation of ferrihydrite induced by microwave in the presence of trace Fe(II). We try to reach the goal to fastly and low power prepare ultra-fine, homogeneous, various morphologies ofα-Fe2O3 particles from ferrihydrite. Not only is this study of academic importance but also of practical value. The main research aspects are summarized as follows.
     (1) The phase transformation of ferrihydrite, prepared by using ferric chloride and sodium hydroxide as raw materials, was studied in the presence of trace Fe(II) in detail. The effect of various factors such as the initial pH, the conditions of ferrihydrite formation as well as the concentrations of Fe(II) and Fe(III) ions was discussed. The results show that the poducts obtained are hematite.
     (2)Comparing ferrihydrite phase transformation by microwave heating with by conventional heating, it was found that their mechanisms are same. Theα-Fe2O3 particles prepared in microwave heating are smaller size, shorter time to phase transformation and lower energy consumption than in conventional heating.
     (3)Analysising the difference of phase transformation behaviors by the two heating methods, it shows that the proportion of the solid state transformation from ferrihydrite to hematite is more enlarged in microwave heating than in conventional heating. The growth process ofα-Fe2O3 nuclei is the rate-determining process in the formation processes ofα-Fe2O3 particles.
     (4) The results showed that Fe (II) addition amount (β= nFe(Ⅱ)/nFe(Ⅲ)) influences the morphology ofα-Fe2O3 particles. When pH=7 along withβvalue variety (by 0.02-0.07), the morphology ofα-Fe2O3 particle varies from sphere to spindle. When pH=9 along withβvalue variety(by 0.02-0.07), the morphology ofα-Fe2O3 particles varies from sphere to quasi-cube. The formation of non-spherical-shapedα-Fe2O3 particles from ferrihydrite is due to Fe2+ cation ligand adsorption on the surface ofα-Fe2O3 nuclei, which results inα-Fe2O3 crystalline non-equiaxed growth, thus the formation of a non-spherical (eg, spindle, quasi-cube, etc.)α-Fe2O3 particles.
引文
[1]Towe k.M. and Bradley W. F., Mineralogical constitution of colloidal“hydrous ferric oxides”, J. Colloid Interf. Sci., 1967,24:384-392.
    [2]F. Marc, Michel, et al. The Structure of Ferrihydrite, a Nanocrystalline Material[J].Science, 2007, 316 :1726-1729.
    [3]Schwertmann U. and Murad E., Effect of pH on the formation of goethite and hematite from ferrihydrite[J]. Clays Clay Miner., 1983,31:277-284.
    [4]Chukhrov F. V., Zvyagin B. B., Gorshkov A. I., Ermilva L. P. and Balashvoa V. V., Ferrihydrite, Izvest. Akad. Nauk, SSSR Ser. Geol. 1973,4:23-33.
    [5]Sugimoto T. Sakata K. and Muramatsu A., Formation mechanism of monodisperse pseudocubicα-Fe2O3 particles from condensed ferric hydroxide gel,J.Colloid Interf. Sci., 1993,159:372-382.
    [6]杨丽娟,氨(铵、胺)介质中Ferrhydrite的催化相转化研究[D].石家庄:河北师范大学, 2008年.
    [7]Saric A , Music S., Nomura K. and Popovic S., Microstructural properties of Fe-oxide powders obtained by precipitation from FeCl3 solutions[J]. Mater. Sci. Eng. B, 1998, 56: 43-52.
    [8]Sugimoto T. and Muramatsu A, Formation mechanism of monodispersedα-Fe2O3 particles in dilute FeCl3 solutions[J], J.Colloid Interf. Sci. 1996, 184:626-638.
    [9] Motoyuki Iijima , Yuichi Yonemochi, Mayumi Tsukada,el at. Microstructure control of iron hydroxide nanoparticles using surfactantswith different molecular structures,Journal of Colloid and Interface Science.2006,298:202-208
    [10] Hui Liu , Hui Guo , Ping Li, et al. The transformation of ferrihydrite in the presence of trace Fe(II): The effect of the anionic media,Journal of Solid State Chemistry,2008, 181: 2666-2671.
    [11]郭广生,张九岭,高晓云,等.激光气相制备Fe2O3超微粒子[J].无机材料学报,1993,8(3):377-381.
    [12]胡鸿飞,李大成,吉红兵,等.纳米氧化铁的制备方法及进展[J].四川有色金属, 2001(1):15-20.
    [13]杨宗志.世界合成氧化铁颜料工业概况(Ⅰ)[J].涂料工业,1994,(6):3.
    [14]朱骥良等.颜料工艺学[M].北京:化学工业出版社,1989年:184-194.
    [15]江体乾.化工工艺手册[M].上海:上海科学技术出版社,1992年:206-211.
    [16]苗玉芳等.天然碱制备无机颜料铁红[J].化学与粘合,1991,(1):35.
    [17]郑雅杰,刘昭成.氧化铁的制备方法及其应用[J].粉末冶金材料科学与工程, 2007,12(4):197-204.
    [18]张顺利,马同森,吴志申,等.硫铁矿烧渣制备氧化铁黄和氧化铁红[J].化工研究,1999, 10(1): 47-50.
    [19]孟哲,魏雨.δ-FeOOH的制备及研究进展[J].微纳电子技术,2005,11:511-514.
    [20]Okamoto S. Structure ofδ-FeOOH [J]. Am Ceram Soc,1968,51:594-599.
    [21]牛新书,徐荭,徐甲强.溶胶-凝胶法纳米α-Fe2O3材料的合成、结构及气敏性能[J].功能材料,2001,32(6):649-654.
    [22]吕莉,纳米α-Fe2O3和α-FeOOH尺寸效应对结构的影响[D].包头:内蒙古大学,2006年.
    [23]魏雨,刘晓林,郑学忠.均分散超微细α-Fe2O3水溶胶的制备[J].物理化学学报,1996,12(6):551-553.
    [24]沙菲,宋宏昌.纳米α-Fe2O3的制备方法及应用概况[J].江苏化工,2003,31(5):12-15.
    [25]陈兴,邓兆祥.水热法制备超顺磁性铁氧体纳米微粒[J].无机化学学报,2002,(5):460-464.
    [26]钟红梅,杨延钊,张卫民,等.回流法制备纳米氧化铁的研究[J].山东大学学报(理学版),2002,37(2):160-162.
    [27]魏雨,赵建路,武瑞涛,等.一种液相制备均匀α-Fe2O3微粉的新方法[J].功能材料, 2000, 31(1): 105-106.
    [28]陈龙武,甘礼华,岳天仪,等.微乳液反应法制备α-Fe2O3超细粒子的研究[J].物理化学学报,1994,10(8):750-753
    [29]张秀丽,刘辉,魏雨,等.纺锤形α-Fe2O3粒子的溶液催化合成[J].化学学报,2005,63(12):1141-1146.
    [30]马子川,魏雨,郭祀远,等.添加离子对δ-FeOOH相转化的影响[J].华南理工大学学报,1998,26(2):13-16.
    [31]马子川,魏雨,郑学忠,等.亚铁盐氧化法合成纺锤形α-Fe2O3微粒条件的研究[J].功能材料,1998,29(5):465-467.
    [32]马子川,魏雨,郑学忠,等. Fe(Ⅱ)离子对γ-FeOOH相转化为α-Fe2O3的影响[J].河北师范大学学报,1998,22(2):223-225.
    [33]马子川,魏雨,郑学忠,等. Fe(Ⅱ)浓度及pH值对γ-FeOOH相转化为α-Fe2O3时间的影响[J].磁性材料及器件,1997,29(2):43-45,49.
    [34]孟哲,贾振斌,魏雨.δ-FeOOH的制备及热处理产物的FTIR光谱[J].过程工程学报,2004,4(2):146-149.
    [35]孟哲,张萍.纯相δ-FeOOH制备合成超细粉体α-Fe2O3的新工艺[J].邢台师范高专学报,2002,17(4):66-67.
    [36]孟哲,贾振斌,魏雨.非晶态δ-FeOOH液相合成纳米级α-Fe2O3粉体的历程研究[J].化学学报,2004,62(5):485-488.
    [37]孟哲,魏雨.微量Fe(Ⅱ)离子加速δ-FeOOH相转化历程的研究[J].应用科技,2005,32(1):56-58,61.
    [38]刘辉,铁氧化物形成的新途径及机理研究[D].山西:中国科学院山西煤炭化学研究所博士论文,2005年.
    [39]H. Liu, Y. Wei , Y. Sun. The formation of hematite from ferrihydrite using Fe(II) as a catalyst[J]. Mol. Catal. A: Chem. 2005,226,135-140.
    [40]郭慧,氢氧化铁和羟基氧化铁的催化相转化机理研究[D].石家庄:河北师范大学,2006年.
    [41]马苗锐, Ferrihydrite的亚微观结构及其相转化行为研究[D].石家庄:河北师范大学, 2008年.
    [42]Jeon B. H., Dempsey B. A. and Burgos W. D., Kinetics and Mechanisms for Reactions of Fe(II) with iron(III)Oxides[J]. Environ.Sci.Technol.,2003,37:3309-3315.
    [43]Williams A. G. B. and Scherer M. M., Spectroscopic Evidence for Fe(II)-Fe(III) Electron Transfer at the Iron Oxide-Water Interface[J]. Environ. Sci. Technol., 2004,38: 4782-4790.
    [44]Mazzetti L.and Thistlethwaite P.J., Raman spectra and thermal transformations of ferrihydrite and schwertmannite[J], Raman Spectrosc., 2002,33:104-111.
    [45]杨华明,黄承焕,宋晓岚等.微波合成无机纳米材料的研究进展[J].材料导报,2003,11(17):36-39.
    [46]王鹏.环境微波化学技术[M].北京:化学工业出版社,2003:5-7.
    [47]景红霞,α-Fe2O3纳米粒子的可控制备与性能测试[D].太原:中北大学, 2006年.
    [48]王纪业,许赤兵,宋会花等.微波加热在无机固相反应中的应用[J].河北师范大学学报(自然科学版),2004,28(4):396-399
    [49]谭民水,李大光,李秀艳等.微波在无机合成中的应用[J]无机盐工业,2003, 35( 4) : 48-53
    [50] Li S.-Z., Zhang H., Wu J.-B.,et al. Shape-Control Fabrication and Characterization of the Airplane-like FeO(OH) and Fe2O3 Nanostructures[J].Cryst. Growth Des. 2006, 6, 351.
    [51] Hu X.-L., Yu J.-C., Gong J.-M., Fast Production of Self-Assembled Hierarchicalα-Fe2O3 Nanoarchitectures[J]. Phys. Chem. C 2007,111, 11180..
    [52] Wu C.-Z., Yin P.,Zhu X., et al. Synthesis of Hematite (α-Fe2O3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors[J]. Phys. Chem. B 2006, 110, 17806.
    [53] Sapieszko R. S.,Matijevic E. Preparation of well-defined colloidal particles by thermal decomposition of metal chelates. I. Iron oxides[J]. Colloid Interface Sci. 1980,74,405.
    [54] Liu Q.-Y., Osseo-Asare K. Synthesis of Monodisperse Al-Substituted Hematite Particles from Highly Condensed Metal Hydroxide Gels[J]. Colloid Interface Sci. 2000,231, 401.
    [55] Schwertmann U., Friedl J., Schulae D. G.The Effect of Al on Fe oxides. XIX. Formation of Al-substituted Hematite from Ferrihydritr at 25°C and pH 4 to 7[J]. Clays Clay Miner. 2000,48,159.
    [56] Schwertmann U., Fitzpatrick R. W.,Taylor R. M. et al.The influence of aluminum on iron oxides; Part II, Preparation and properties of Al-substituted hematites[J]. Clays Clay Miner.1979,27,105.
    [57]曹付玲,刘辉,魏雨.掺铝铁饼状α-Fe2O3微粒的制备及性能[J].化学学报,2008,66(12):1405-1410.
    [58]王欣,刘辉,魏雨等.硅酸盐对Ferrihydrite相转化为α-Fe2O3微粒形貌的调控作用[J].化学学报,2008,66(6):685-689.
    [59]张秀丽,液相催化相转化法合成纺锤形α-Fe2O3超微粒子及其机理的研究[D].石家庄:河北师范大学,2004年.
    [60] Liu H.,Li P.,Wei Y., et al. Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite[J]. Solid State Chem. 2007, 180, 2121..
    [61] Liu H., Wei Y., Li P., et al.Catalytic synthesis of nanosized hematite particles in solution[J]. Mater.Chem. Phys.2007, 102, 1.
    [62]刘辉,李平,胡进勇等.纳米α-Fe2O3粒子的液相催化合成及表面状态控制[J].人工晶体学报,2006,(6),1283.
    [63] Liu Q.-Y., Osseo-Asare K. Synthesis of Monodisperse Al-Substituted Hematite Particles from Highly Condensed Metal Hydroxide Gels[J]. Colloid Interface Sci. 2000,231, 401.
    [64] Kunaljeet S. Tanwar, Sarah C. Petitto, Sanjit K. Ghose, et al. Structural study of Fe(II) adsorption on hematite [J].Geochim. Cosmochim. Acta.2008,(72):3311-3325.
    [65] Tronc E., Belleville P., Jolivet J. P and Livage J., Transformation of ferric hydroxide into spinel by Fe(II) adsorption[J]. Langmuir, 1992,8:313-319.
    [66] Kazuhiko K., Sanae U., Sachiko K., et al. Effects of silicate and phosphate ions on the formation of ferric oxide hydroxide particles[J].Mater. Sci.1992,27,719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700