硬硅钙石基复合相变储能材料的制备及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将相变材料同耐腐蚀性好的常规材料复合是高温相变材料的研究方向之一,目前对于高温蓄热材料(>600℃)的研究主要集中在采用无机盐和陶瓷基制备复合制备相变蓄热材料,但都普遍存在着复合材料中相变盐含量过低的缺点。
     本文创新性地以工业废渣电石渣和硅灰为原料,采用动态水热法制备了超轻硬硅钙石型硅酸钙,并对合成产物的微观结构和形貌、孔结构参数进行了考察,并探讨了其作为复合相变储能材料基体的可能性和优势。结果表明:含有微量杂质的工业废渣原料对合成的硬硅钙石晶体及微观形貌基本上没有影响,不必因杂质的存在而对水热合成工艺参数做特殊调整,且采用抽滤法制备的硬硅钙石基体的成型方法简单、基体形状可调,实验中制备出圆柱状、球状的基体材料。
     以无水硫酸钠、氯化钾、氯化钠作为相变材料,硬硅钙石作为基体材料,通过熔融浸渗法制备了浸渗率达到90%的三种复合储能材料。分析讨论了熔融浸渗法的制备机理,考察了浸渗温度、浸渗时间等影响因素对制备过程的影响,从而最终确定了最优制备条件。利用XRD、SEM等手段分析了相变材料和基体材料的结合情况,结果表明:两相结合紧密,并具有良好的高温化学稳定性,两相仅仅是因浸润结合而形成的机械嵌合作用。
     利用DSC、热膨胀仪、激光导热仪等手段综合考察了所制备的复合材料的储能性能、导热系数、热膨胀特性以及热循环稳定性等,结果表明:复合储能材料的热物理特性主要是由无机盐的含量和自身的特性决定的,相变潜热和储热密度(ΔT=100℃)、热膨胀系数与相变材料的质量百分含量(即浸渗率)成正比;三种复合储能材料的最大平均热膨胀系数高于一般陶瓷氧化物的热膨胀系数。复合相变储能材料的导热系数、比热容以及热扩散率并没有受到基体材料具有绝热特性的限制,其值均高于一般的显热陶瓷材料的热学性能指标。
     本研究成功制备出具有高浸渗率,较高使用温度范围的无机盐/硬硅钙石基复合储能材料,制备方法简单、操作容易;同时采用工业废渣作为原料制备了具有良好的环境友好性的超轻硬硅钙石材料,达到了废物利用和环保的目的,也使超轻质硅酸钙材料得到多用途的推广应用;该研究拓展了新型相变储能复合材料制备研究的领域,同时也为推进其更广泛的研发应用奠定了基础。
One of the main directions of preparing a high temperature phase change material is to make PCM complex in a common matrix with the feature of good corrosion resistance. Many studies present that inorganic salt/ceramic phase change materials will be a hopeful way to prepare a energy material for high temperature workplace(>600℃),but at present the main results show that the disadvantage is the low content of salt in composite phase change materials.
     Ultra-light xonotlite-calcium silicate was synthesized via hydrothermal processing, by novelly using carbide slag and silica fume as the raw materials, and the microstructure, parameters of pore structure of synthesized xonotlite were studied in this thesis, the possibility and superiority of xonotlite being used as the basic body of composited phase change energy storage materials were also discussed at the same time. The results indicated that the process parameters of hydrothermal synthesis did not need to adjust even though carbide slag and silica fume containing a small amount of impurities. The shape-stabilize xonotlite body was produced by vacuum forming technology, which has advantages of simple equipment and easy shape controls, and cylindrical xonotlite body and globular xonotlite body were produced in this thesis.
     Through infiltrating experiment, Na2SO4/Xonotlite composite phase change energy storage material, NaCl/Xonotlite composite phase change energy storage material, KCl/Xonotlite composite phase change energy storage material were fabricated successfully, and the infiltration percentage is 90%. The mechanism and influence factors of infiltrating process are studied in this thesis, the infiltration technology was ascertained after discussing the correlation of infiltration temperature, infiltration percentage. The practical combination of phase change material with xonotlite body was studied using XRD and SEM measurements, and the results showed that high temperature chemical compatibility and wetting between molten salt and xonotlite body, no new substance appeared, xonotlite body and molten salt were combined very well with wetting and mechanical inserting.
     The thermo-physical properties including latent heat, heat storage density, conductivity, specific heat, thermal diffusivity, thermal expansion coefficient and thermal cycle were studied by using Differential Scanning Calorimetry (DSC), laser thermal constant instrument and dilatometer. The results showed that the contents and the properties of PCM were major determinants of the thermodynamic properties of composite phase change energy storage materials, the latent heat, heat storage density and thermal expansion coefficient were proportional to PCM contents. The values of thermal expansion coefficient that all three prepared composite phase change energy storage materials showed were higher than common ceramics, and the thermal conductivities of composite materials were all higher than the value of common ceramics.
     Three new composite phase change energy storage materials with the advantage of high infiltration percentage and high temperature recycle scope were prepared successfully, it is also a good method to prevent pollution and make use of waste by synthesizing environmental friendliness xonotlite-calcium silicate via hydrothermal processing, by novelly using carbide slag and silica fume as the raw materials, and provided a new application for xonotlite at the same time. This work set a new direction for preparation of composite phase change energy storage materials,and laid the groundwork for practical applications in the future.
引文
[1]余晓福,张正国,王世平.复合蓄热材料研究进展[J].新能源, 1999, 21(9):35-38.
    [2]戴或,唐黎明.相变储热材料研究进展[J].化学世界, 2001(12):662-665.
    [3]崔海亭,袁修干,侯欣宾.蓄热技术的研究进展与应用[J].化工进展, 2002, 21(l):23-25.
    [4]Gulseren, Baran, Ahmet, et al. Phase change and heat transfer characteristics of eutectic mixture of palmitic and stearic acids as PCM in latent heat storage system[J]. Energy Conversion and Management, 2003(44):3227-3246.
    [5]李爱菊,张仁元,周晓霞.化学储能材料开发与应用[J].广东工业大学学报, 2002, 19(l):81-84.
    [6]张寅平,胡汉平,孔祥东等.相变储能一理论和应用[M].合肥:中国科学技术大学出版社, 1996.
    [7]Mohamed M F, Amar M K, Siddique A K R, et al. A review on phase Change energy storage: materials and applications[J].Energy Conversion and Management,2004(45):1597- 1615.
    [8]Belen Z, Jose M M, Luisa F C, et al. Review on thermal energy storage with Phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Energy, 2003(23):251- 283.
    [9]Dincer S D, Xiangguo L. Thermal energy storage application from an energy saving perspective[J]. International Journal of Global Energy Issues,1997, 9(46):351-364.
    [10]Hasnain S M. Review on sustainable thermal energy storage technology, Part l: Heat storage materials and techniques[J]. Energy conversion and Management, 1998, 39(11):1127-1138.
    [11]Jean P, Miehel F, Cecil V. Thermal storage by latent heat: available option for energy Conservation in buildings[J]. Energy Sources, 1993, 15(1):85-93.
    [12]Kmail K.Utilization of solar energy and waste heat[J]. Energy Sources, 1999, 21(7):595-610.
    [13]Marliacy P, Solimando R, Bouroukba M, et al. Thermodynamics of crystallization of sodium sulfate decahydrate in H2O-NaCl-Na2SO4: application to Na2SO4·10H2O-based latent heat storage materials[J]. Thermochimica Acta, 2000(344):85-94.
    [14]Accwrino C.V., Fioravnt T. A new system for heat storage utilizing salt hydrates [J]. Solar Energy, 1983, 30(2): 123-125.
    [15]Yagi J, Akiyama T. Storage of thermal energy for effective use of waste heat form industries[J]. Journal of Materials Processing Technology, 1995(48):793-804.
    [16]Dincer B. On thermal energy storage systems and applications in buildings[J]. Energy and Buildings, 2002(34):377-388.
    [17]付延钢,刘广波,郝金凤.关于余热资源的分类与合理利用的研究[J].一重技术, 2002(2): 206-207.
    [18]王建军,蔡九菊,陈春霞,等.我国钢铁工业余热余能调研报告[J].工业加热, 2007, 36(2):1-3.
    [19]蔡九菊,王建军,陈春霞,等.钢铁企业余热资源的回收与利用[J].钢铁, 2007, 42(6):1-7.
    [20]王维兴.钢铁工业的节能潜力分析[J].冶金能源, 2002, 21(3):5-6.
    [21]郭茶秀,魏新利.热能存储技术与应用[M].北京:化学工业出版社, 2005.
    [22]Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: materials and applications[J]. Energy Conversion and Management, 2004, 45(9-10):1597-1615.
    [23]尚燕,张雄.储能新技术-相变储能[J].上海建材, 2004(6): 18-20.
    [24]Notter W, Lechner T, Gross U, et al. Thermophysical properties of the composite ceramic-salt system (SiO2/Na2SO4)[J]. Thermochimica Acta, 1993, 218:455-463.
    [25]黄金,张仁元,李爱菊.无机盐/陶瓷基复合储能材料的制备技术[J].新技术新工艺, 2004(7): 49-51.
    [26]Steiner D, Wierse M, Groll M. Development and investigation of thermal energy storage systems for the medium temperature range proceedings[A]. 30th IECEC Meeting, New York, 1995: 193-198.
    [27]Strumpf H J, Coombs M G. Solar receiver for the space station Brayton engine[J]. J Solar Energy Engineering, 1988,110:295-300.
    [28]Strumpf H J, Coombs M G. Solar receiver experiment for the space station Brayton engine[J]. J Solar Energy Engineering, 1990,112: 12-18.
    [29]邢玉明,崔海亭,袁修干.太阳能吸热器换热管蓄热数值模拟与试验研究[J].太阳能学报, 2003, 24(3):325-329.
    [30]王华,何方,胡建杭,等.新型陶瓷与熔融盐复合蓄热材料放热特性数值模拟[J].中国稀土学报, 2002, 20:223-227.
    [31]Gong Z X, Mujumdar A S. Finite-element analysis of cyclic heat transfer in ashell-and-tube latent heat energy storage exchanger[J]. Applied Thermal Engineering, 1997, 17(6): 583-591.
    [32]Costa M, Oliva A, Eerez-Segarra C D P, et al. Numerical simulation of solid-liquid phase change phenomena[J]. Computer Methods in Applied Mechanics and Engineering, 1991,91:1123-1134.
    [33]Costa M, Oliva A, Eerez-Segarra C D P. Three-dimensional numerical study of melting inside an isothermal horizontal cylinder[J]. Numer Heat Transfer, Part A, 1997,32:531-553.
    [34]Lacroix M. Computation of heat transfer during melting of a pure substance from an isothermal wall[J]. Numer Heat Transfer, Part B, 1989,15:191-210.
    [35]Bjurstrom H., Carlsson B.. An energy analysis of sensible and latent heat storage[J]. Heat recovery system, V5: 233-250.
    [36]Asebiti G A. A second-law study on packed bed energy storage systems utilizing phase change materials [J]. J Solar Energy Engineering, 1992, 114:93-99.
    [37]王剑峰,陈光明,陈国邦,等.组合相变材料储热系统的储热速率研究[J].太阳能学报,2000(21):259-264.
    [38]Lucia M D, Bejan A. Thermodynamics of energy storage by melting due to conduction or natural convection[J]. J Solar Energy Engineering, 1990, 112: 110-116.
    [39]一色尚次等.余热回收利用系统实用手册(下册)[M].北京:机械工业出版社, 1989.
    [40]李庭寿,冯改山,戴龙大等.钢铁工业用节能降耗耐火材料[M].北京:冶金工业出版社,2000.
    [41]余际星,曾有鹏.旋转型蓄热式换热器蓄热体材料的选择[J].工业炉,1996, 18(2):37-40.
    [42]李爱菊,张仁元,王毅.新型陶瓷换热器用蓄热材料的选择[J].耐火材料2004,38 (3 ):208-210.
    [43] Lukitobudi A R, Akbarzadeh A, Johnson P W, et al. Design, construction and testing of a thermpsyphon heat exchanger for mediumtemperature heat recovery in bakeries[J]. Heat Recovery Systems & CHP, 1995, 15(5):481-491.
    [44]徐伟,陈思嘉,何燕,等.热管技术在化学工业余热回收中的应用研究进展[J].广东化工, 2007, 34(2):40-42.
    [45]Wang Y M, Sun Z Q, Peng L. Vertical wing slices of sleeve pipe inside become regenerative performance experiment of device[J]. Journal of Chongqing university, 1994, 17(5):122-126.
    [46]Kengo S. Effect of nature-convection on melting of a phase change material around offined tube[J]. Heat transfer, 1990,8(5):323-331.
    [47]Sparrow E M, Larson E D, Ramsey J W. Freezing on a fined tube for either conduction-contrlled or nature-convection-controlled heat transfer int.[J]. Heat mass transfer, 1991,24(2):109-115.
    [48]张仁元,柯秀芳,李爱菊.显热/潜热复合储能材料的制备工艺和热性能研究[J].新能源, 2000, 12 (12):29-31.
    [49]柯秀芳,张仁元.相变储热系统在工业加热过程的应用[J].冶金能源,2003,22(4): 46-49.
    [50]邹向.储热用高温相变复合材料[J].新能源,1995,17(12):27-29.
    [51]王华,何方,胡建杭,等.燃料工业炉用陶瓷与熔融盐复合蓄热材料的制备[J].工业加热,2002(4):20-22.
    [52]毛仲佳,盛建新.超轻型硅酸钙保温材料的研究[J].硅酸盐通报, 1997(1):50-54.
    [53]郑其俊,王伟.超轻憎水硬硅钙石型硅酸钙绝热制品的研制[J].新型建筑材料, 2000(10):25-27.
    [54]俞伟.耐高温硅酸钙保温材料[J].中国氯碱, 1996(6):38-39.
    [55]倪文,李建平,陈德平,等.矿物材料学导论[M].北京:科学出版社, 1998.
    [56]姚治才.硅酸钙隔热保温材料[J].陶瓷, 1992,99(5):33-36,11.
    [57]焦鸿阁,徐延臻.硅酸钙系保温材料的结构特性及应用[J].耐火材料, 1989(6):31-33.
    [58]倪文,邹一民,陈德平.利用天然粉石英制作耐高温硅酸钙保温材料的研究[J].矿物岩石, 1998,18(1):28-32.
    [59]方春霖,宋东生.耐高温硅酸钙保温材料[J].江西建材, 1995(4):11-14.
    [60]蔡子明.硅酸钙制品的性能及应用[J].保温材料与节能技术, 1996(4): 25-30.
    [61]焦志强.驼背莫来石型硅酸钙[J].房材与应用, 1996(3):25-29.
    [62]方春霖,宋冬生.超轻质无石棉耐高温硅酸钙保温材料研制, 1999(4):11-17.
    [63]倪文,张德信.我国绝热吸声材料发展现状[J].新型建筑材料, 2000(1):16-20.
    [64]李懋强.硅酸钙保温材料[J].上海建材, 1997(4):29-31.
    [65]刘述霞.无石棉耐高温硅酸钙制品[J].新型建筑材料, 1991(2):2-5.
    [66]王元纲,章春梅.用稻壳灰水热合成硬硅钙石的研究[J].硅酸盐通报, 1995(5): 60-64.
    [67]倪文.硅钙石型硅酸钙保温材料的特点与发展趋势[J].新材料产业, 2002(11): 32-35.
    [68]倪文,宋存义,刘凤梅.材料研究与制备过程中的几个矿物学岩石学问题[J]. 1999, 18(4):290-294.
    [69]李懋强,陈玉峰,夏淑琴,等.超轻微孔硅酸钙绝热材料的显微结构和工艺控制[J].硅酸盐学报, 2000, 28 (5):401-406.
    [70]王华,宋存义,曹贞源,等.硅酸钙保温材料的原料选择依据[J].墙材革新与建筑节能, 1999(4): 37-38.
    [71]Yasuo A, Tamotsu Y, Shigeti A, et.al. Effect of Additive on Crystal Shape and Control of Xonotlite[J]. Inorganic Material, 1995, 2(258): 310-319.
    [72]许晓玲,毛仲佳,王炜.生产轻质硅酸钙扳的一些基本条件[J].中国建材技术, 1997, 6(6): 1-9.
    [73]梁宏勋,李懋强.硬硅钙石水热合成的形成历程及硝酸锶对它的影响[J].硅酸盐学报, 2002,30(3): 294-299.
    [74]Qian G R, Xu G L, Li H Y, et al. Mg-Xonotlite and its coexisting phases[J]. Cement and Concrete Research, 1997, 27(3): 315-320.
    [75]Parker W J, Jenkins R J, Butler C P. Flash method of determining thermal dfifusivity, heat capacity and thermal conductivity [J]. Journal of Applied Physics, 1961, 32(9):1679-1684.
    [76]张克铭,赵延峰,徐春柏,等.高性能蜂窝式蓄热体的研制[J].冶金能源, 2005, 24(4): 26-28.
    [77]薛红亮.氧化铝基蜂窝陶瓷蓄热体的制备及其性能研究[D].武汉:武汉理工大学, 2004.
    [78]黄金,张仁元,伍彬.融盐自发浸渍用微米级多孔陶瓷预制体的烧制[J].材料导报, 2006, 20(5): 126-135.
    [79]曹建新. SiO2气凝胶-硬硅钙石型硅酸钙复合纳米孔超级绝热材料的制备与表征[D].广州:华南理工大学,2008.
    [80]Doerffer P, Bohning R. Shock Wave– Boundary Layer Interaction Control by Wall Ventilation[J]. Aerospace Science and Technology, 2003(7):171-179.
    [81]倪文,王寅生,王国清.对提高纤维质绝热材料绝热效果的探讨[J].保温材料与建筑节能, 2002(10):78-82.
    [82]久保田和雄,高桥正英,片平善晴,金森雄二.ゾノトラィト系成型体[P].日本特开昭60-204655, 1985.
    [83]久保和彦.高比强度硅酸カルミムウ成型体の制造方法[P].日本:特开昭55-29952, 1980.
    [84]孙抱真.托勃莫来石与硬硅钙石的晶体结构与性质[J].建筑节能, 1989(4):10-12.
    [85]Cui Y. Interface characterization of the discontinuously reinforced metal matrix composites based on wavelet analysis of acoustic emission behaviours[J]. Chinese Science Bulletin, 1998, 43(9): 791-792.
    [86]崔岩,耿林,姚忠凯.轻微界面反应对SiCp/6061Al复合材料弹性模量的影响[J].复合材料学报, 1998, 15(1):74-76.
    [87]Aghajanian M K, Rocazella M A, Burke J T, et al. The fabrication of metal matrix composites by a pressureless infiltration technique[J]. J Mater Sci, 1991, 26:447-455.
    [88]赵敬忠,高积强,金志浩.浸渗反应技术制备AlN基复合材料[J].西安交通大学学报, 2004, 38(1): 108-110.
    [89]张仁元.相变材料与相变储能技术专题报告.中国科学院广州分院学术报告会,广东,广州, 2001.
    [90]天津化工研究院.无机盐工业手册(下册)[M].北京:化学工业出版社, 1992.
    [91]Pilkington Solar International, Survey of thermal storage for parabolic trough power plants, Report NREL1EC24 (2002).
    [92]王连星,朱立刚,党桂彬.硅质多孔陶瓷制造新工艺的研究[J].西北轻工业学院学报,1997, 1(15): 17-21.
    [93]崔海亭,袁修干,侯欣宾.高温熔盐相变蓄热材料[J].太阳能. 2003(l):27-28.
    [94]邢玉明,崔海亭,袁修干.高温熔盐相变蓄热系统的数值模拟[J].北京航空航天大学学报, 2002, 28(3):295-297.
    [95]侯欣宾,崔海亭.高温相变蓄热在空间太阳能热动力发电系统的应用[J].河北科技大学学报, 2001,22(2):1-7.
    [96]吴人洁.复合材料[M].天津:天津大学出版社, 2000.
    [97]Muscat D, Drew R A L. The effect of pore size on the infiltration kinetics of aluminum in titanium carbide performs[J]. Acta Metal Mater,1994,42(12):4155-4163.
    [98]Dullien F A L. Porous media:Fluid Transport and Pore Structure[N]. Academic Press, INC. 1992.
    [99]Scheidegger A E. The Physics of Flow through Porous Media[M]. New York: The Macmillian Company, 1957
    [100]黄金,张仁元,伍彬.多晶Na2SO4/SiO2复合相变储能材料晶型转变及热膨胀特性分析[J].材料工程,2006(12):16-20.
    [101]王胜林,王华,祈先进,等.高温余热回收用熔融盐/多孔镍基复合相变蓄热材料[J].中山大学学报, 2005,44(2):7-10.
    [102]Washburn E W. The dynamics of capillary flow[J]. Physical Review,1921,17(3): 273-283.
    [103]陆佩文.无机材料科学基础[M].武汉:武汉大学出版社, 2001.
    [104]黄金.融盐自发浸渍过程与微米基多孔陶瓷基体复合相变储能材料研究[D].广州:广东工业大学, 2005.
    [105]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社, 1981.
    [106]关振铎.无机材料物理性能[M].北京:清华大学出版社, 1992.
    [107]李朝祥.陶瓷蓄热材料的开发研究[J].冶金能源,2002(1):46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700