杨柳煤矿太原组灰岩水对10煤层安全开采的影响及突水水源判别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安徽淮北杨柳煤矿位于安徽省淮北市濉溪县境内,杨柳集附近是其中心位置。有许多大型断层,像南部的杨柳断层,北部有小陈家、大辛家断层,同时它们也各自控制矿井的南北边界,西部以第4勘探线和太原组一灰顶界露头线为界,而且奥灰之上的太灰共有12层,太灰总计厚度133.93m左右。在1~4灰浅部灰岩处裂隙较发育且具有不均一性,主采煤层10组煤底板灰岩含水层富水具有不均一性。灰岩含水层在断层的错动下使主采煤层10煤与太灰断距拉近,结合高压太灰水会给开采10煤造成突水威胁。因此,我们要对采煤层10煤底板灰岩含水层的富水性进行评价。
     本文在查阅国内外文献、灰岩水赋存条件及其研究现状以及地下水研究方法的基础上,系统分析了灰岩水文地质条件,利用数值模拟分析井田断层的导水性,并通过模糊综合评判得出太灰水的径流极弱,最大涌水量593 m3 h,突水强度较大。对煤矿的安全生产的影响较大。最后,本文利用了两种水源判别理论,即灰色判别法和模糊判别法,对杨柳矿井突水水源判别进行了验证,表明两种水源判别方法精确度较高,杨柳煤矿在煤层开采突水的时候可以利用这两种方法对水源进行综合判别,从而为矿井防治水提供了科学依据。
Yangliu coal mine located at the Suixi county of Huaibei in Anhui province, which is next to Yangliu town.There are some larger faultages in the mining area, such as Yangliu fault, Xinchenjia normal fault, Daxinjia normal fault,which respectively control the North-south borderline of the coal mine. The exploration line No. 4 and Taiyuan mine group control the western borderline of the Yangliu coal mine,meanwhile,within the scope ordovician limestone, moreover having 12 layers Tai limestone above the Ordovician limestone, and the total thickness amounts to 133.93m. The filling cranny develop highly in No.1~4 shallow calcareous rock, which have heterogeneity. Because of the faultage moving out of original place,the calcareous rock water-bearing stratum causes the 10 main coal seam close to the Tai limestone coals, and the high-pressure Tai limestone water will cause flooding inrush threat when exploiting 10 coal seam. Therefore we must evaluate the character of calcareous rock water about the 10 main coal seam.
     Based on the of consulting domestic and foreign related literatures, limestone water storage conditions and the present research situation, as well as the research technique of ground water,this paper analyzed calcareous rock hydrology geological condition systematically, draw the conclusion of Tai limestone water with very weak runoff conditions using method of the Fuzzy and comprehensive judgment. Using the water bursting coefficient theory,and make using of the numerical simulation technology and evaluating the dredging characters of mine faultage, the result that the welling up water volume amounts to 593m3/h and the flooding intensity is certain big is provided.This situation does have serious influence on safe production in coal mine. Finally, this paper has usedtwo methods of Water source judgment, which is gray and fuzzy discrimination method, then validate the discrimination method of flooding water source, as a result, this two methods have high precision. It can use these two methods to distinguish synthetically on water source in Yangliu coal mining, when flooding water occur in the coal bed mining, thus adopt prevention measure correspondingly for the mine against bursting water, so as to provide scientific basis to the coal mining.
引文
[1]ReibiecM.S.,Hydrofracturing of rockas a method of water, mudmand gas inrush hazards in underground coalmining,4thIMWA,1991,1.
    [2]B.斯列萨列夫,水体下安全采煤的条件(国外矿山防治水技术的发展和实践) [M].冶金矿山设计院,1983.
    [3][波]M.鲍莱茨基,M.胡戴克著,于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社,1985.
    [4][苏]. A.多尔恰尼诺夫,赵义译.构造应力与井巷工程稳定性[M].北京:煤炭工业出版社,1984.8.
    [5] Show D.T., A parallel plates model of fractured permeable media, Ph D. Thesis.University of California, Berkcley, 1996.
    [6] Show D.T., Rock fracture spacing and porosities, J. Soil Mech. Found. Div.,Proc.ASCE,1968.
    [7] Louis C.,Rock Hydraulics in Rock mechanics,edited by L.Muller,Verlay wien,New york,1974.
    [8]Erichsen,C.,Gekppclte Spannungs-Sickerstromungsberechnungcn von Bauwerkenin luftigemfelsunderBerucksichtigungdcsnichtilinearcn p annung-Sverschungsverhaltens von Trennflachcn,Verofllentlichungen dcs Institutes fur Grundbau,Bodcnmechanik, Felsmechanik and Verchswasscrbau der RWTH Aachen,l987.
    [9] Oda M.,An equivalent continuum model for coupled stress and fluid flow analysisin jointed rock masses ,Water resources Research,l986(13).
    [10] Derek Elsworth, Mao Bai, Flow-deformation of dual-porosity media, Journal of Geotechnical Engineering,Vo1.18,No.1,1992.
    [11]葛亮涛,中国煤田水文地质基本特征与规[J],COALGEOLOGYOFCHINA,1996.(8):46-52.
    [12]刘明成.沈村煤矿水文地质条件及矿坑充水特性分析[J],中州煤炭,2004,(6):3-4.
    [13]刘希新,于克君.兖州西部奥陶系水文地质特征[J],煤田地质与勘探,2002,30(1):38-40.
    [14]谢中华,何健.童亭井田10煤层底板灰岩水的水文地质条件分析[J],淮南职业技术学院学报,2002,2(4):58-61.
    [15]赵慧玲.大同煤田岩溶地下水的水文地质特征分析[J],中国煤田地质,2004,16(1)26-35.
    [16]荆自刚,李白英.煤层底板突水机理的初步探讨[J].煤田地质与勘探,1980,(2):51~56.
    [17]李白英.预防采掘工作面底板突水的理论与实践.第22届国际采矿安全会议论文集[M].北京:煤炭工业出版社,1987. 12.
    [18]李白英.采动矿压与底板突水的研究[J].煤田地质与勘探,1986.(6):30~36.
    [19]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993.
    [20]张金才等,岩体渗流与煤层底板突水[M].地质出版社,1997.
    [21]Srinivas S,Rao A K. Flexure of Thick Rectangular Flates.Mechanies, March 1973.298~299of Applied.
    [22]黎良杰.采场底板突水机理的研究[D].北京:中国矿业大学,1995.
    [23]黎良杰等.断层突水机理的研究[J].煤炭学报,1996, 21(2)119-123.
    [24]王经明.承压水沿煤层底板递进导升突水机理的模拟与观测[J],岩土工程学报,1999, 21(5):546~549.
    [25]陈金方,于景村,李全,童宏树.矿井TEM探测导水陷落柱及检测注浆效果[J],江苏煤炭,2002(4), 7-8.
    [26]彭苏萍、王金安.承压水体上安全采煤[M],煤炭工业出版社,2001, 4.
    [27]施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J],矿山压力与顶板管理,2000(2) .
    [28]高延法.水压在底板突水中的力学作用[J],煤田地质与勘探,1996.
    [29]张文泉,刘伟韬,张红日等.煤层底板岩层阻水能力及其影响因素的研究[J],岩土力学,1998,19(4) .
    [30]王连国,宋杨.底板突水煤层的突变学特征[J],中国安全科学学报,2001, 9(5) .
    [31]吴基文.杨庄煤矿六煤底板采动效应研究[J],岩土力学,2003,24(4).
    [32]刘宗才.煤层底板破坏深度综合测试技术山东矿业学院学报[J].1986,l~7.
    [33]庞荫恒,王良.试论井烃地区溶承压水的“原始导高”与煤层底板突水[J].矿井地质,1991,31~37.
    [34]陈陆望.皖北矿区地下水水文地球化学特征研究[D].2003.
    [35]桂和荣,陈陆望.皖北矿区主要突水水源水文地质特征研究[J].煤炭学报, 2004 6.
    [36]Barth S R. Stable isotope geochemistry of sediment2hosted groundwater from a Late Paleozoic2early mesozoic in central Europe [J]. Journal of Hydrology , 2000 , 19 (7) : 80~81.
    [37]Darling W G, Edmunds W M , Smedley PL. Isotope evidence for palaeowaters in british isles [J]. Applied Geochemistry , 1997 , 12(8) : 813~829 .
    [38]李学礼.水文地球化学[M].北京:原子能出版社,1982.
    [39]葛晓光.临涣矿区地下水的环境同位素研究[J].安徽地质,1999,9(4) .
    [40]王经明.孙疃煤矿灰岩水害防治[科研报告].华北科技学院, 2006.
    [41]邵爱军,刘唐生等.煤矿地下水与底板突水[M]地震出版社,2001.
    [42]贲旭东,郭英海,解奕伟,沈玉林,张传风,平立华.模糊综合评判在矿井突水水源判别中的应用及探讨[J].煤矿安全与环保,2006(3).
    [43]涂敏.厚松散层及超薄覆岩放顶煤开采裂高模拟研究,矿山压力与顶板管理,2002(2):92~96.
    [44]桂和荣,周庆富等.综放开采导水裂隙带高度的应力法预测[J].煤炭学报,1997,2(4):375~379.
    [45]刘春平,郑长城.安庆铜矿矿坑涌水量分析与模拟[J].工程勘察,2000(1):3~5.
    [46]张永波,时红.灰色关联分析法在地下水动态类型划分中的应用[J].地下水,1994,16(3):136~138.
    [47]王大纯,张人权等.水文地质学基础[M].北京:地质出版社,1995.
    [48]刘增辉,杨本水.利用数值模拟方法确定导水裂隙带发育高度[J].矿井安全与环保,2006(5).
    [49]张杰,侯忠杰.浅埋煤层导水裂隙发展规律物理模拟分析[J].矿山压力与顶板管理,2004(4).
    [50]邹海,桂和荣,陈兆炎.导水裂隙带高度预测途径探讨[J].中国煤田地质,1997(2).
    [51]陈静.相对灰色关联度在城市污水处理工艺优选中的应用[J].环境科学导刊,2007(1).
    [52]付成祥.用灰色关联分析对老采空区渗水水源的判别[J].水力采煤与管道运输,2006(3).
    [53]吴晓鹏,石林国.灰色关联度法在峨八井涌水水源判别中的应用[J].江西煤炭科技,2000(3).
    [54]贲旭东,郭英海,任印国,李红玲.模糊综合评判在水源判别应用中对权重确定的探讨[J].中国煤田地质,2005(5).
    [55]王亮.焦作矿井突水地质灾害及其防治对策[J].安全生产与监督,2007(1).
    [56]王强,曹代勇.断层突水风险的数值模拟[J].煤炭工程,2007(3).
    [57]刘国林,尹尚先,王延斌.华北型煤田岩溶陷落柱顶底部剪切破坏突水模式,煤炭科学技术[J].2007(2).
    [58]董国文.祁东煤矿开采煤层上覆岩土体工程地质特征与突水溃砂机理研究[D].2006.
    [59]韩金炎.数学地质[M].北京:煤炭工业出版社,1987.
    [60]王世玲,杨作舟.辽宁砖庙硼矿区二人沟矿段的矿坑涌水量预测方法及预测结果[J].化工地质,1994,16(4):269~275.
    [61]陈志新,李云峰.大同市万泉河流域玄武岩地下水开发研究[J].西安工程学院学报,2002,24(3):23~27.
    [62]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986.
    [63]许明能.刘店煤矿太原组灰岩水对10煤层安全开采的影响及突水水源判别研究[D].2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700