基于数字图像测量的非饱和压实应力—应变特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于亚像素角点检测的数字图像测量方法在三轴试验试样变形测量中的应用,为三轴试验试样变形测量提供了一项新方法,该方法通过捕捉跟踪角点的位移对试样变形进行测量,测量结果能够达到较高的亚像素精度(0.02像素),精度分析结果表明应变测量精度可以达到10~(-4)数量级。应用该方法能够更加准确地测量饱和和非饱和三轴试验试样的局部变形,进而深入研究在三轴应力状态下的应力-应变特性。同时,还可以利用其独特的测量机理,获取相当于将试样表面离散化的变形试验数据,计算出三轴试样的表面应变场对三轴试样的变形性质进行研究。
     在控制吸力条件下的非饱和压实三轴试验中应用基于亚像素角点检测的数字图像测量方法,使非饱和压实三轴试验试样的局部变形测量更加简便,同时克服了接触式传感器会对试样产生径向约束、测量截面少等不足,提高了局部变形测量的精度。由于受到端部约束的影响,测量非饱和压实试样整体变形的试验结果相对真实情况而言强度被提高,变形能力被降低,由此获得的试验数据不能够真实地反映非饱和的强度和变形性质。通过比较控制吸力条件下非饱和压实三轴试验中试样整体与试样中部1/3区域的试验结果,证明测量试样中部1/3区域受端部约束的影响较小,其试验结果更能代表非饱和的基本受力变形特性,对于研究非饱和的应力-应变关系可以提供更为可靠的试验数据。采用双应力状态变量强度理论系统分析了试样的抗剪强度,结果表明端部约束对抗剪强度公式的参数取值有较大影响。应用非饱和Alonso弹塑性模型研究探讨了模型参数取值对非饱和数值计算结果的影响,使用包含端部约束影响的试样整体变形确定的模型参数进行有限元数值计算将产生误差,同时也高估了非饱和体的强度。
     在常吸力的各向等压压缩试验中,试样整体与试样中部1/3区域的变形测量结果趋势一致,同一平均净应力下前者变形小于后者;前者的屈服应力值大于后者,二者的屈服应力都是随着吸力的增加而增大。由试样整体与试样中部1/3区域变形确定的LC屈服曲线模型参数差别较大,试验值和模型计算的p—s平面LC屈服曲线的形式也存在差别,前者的弹性区域明显大于后者。针对Alonso模型中LC屈服轨迹方程中存在的计算结果与试验结果误差较大以及存在不具有普遍意义的假设的问题,基于局部变形试验结果深入研究了LC屈服轨迹方程的合理形式。
     在一系列常吸力的非饱和压实三轴剪切试验中,应用数字图像测量方法测量试样中部1/3区域的强度及变形的试验结果表明:吸力对非饱和抗剪强度的提高有重要影响,抗剪强度随着吸力的增加而增加。基于局部变形测量的常吸力非饱和压实三轴剪切试验结果,全面描述了非饱和p—g—s三维应力空间中临界状态面的合理形态:在p—q平面,临界状态线斜率M是与吸力无关的物理量;临界状态面与LC屈服面交线在三维应力空间中是一条存在极值的曲线;该交线在p—s平面的投影曲线在三轴压缩应力状态下应位于第一象限;该交线在q—s平面的投影曲线应存在渐近线;反映凝聚力与吸力关系的函数曲线也应存在渐近线。修正了Alonso模型中临界状态线的表达式,验证了其合理性。
     依据局部变形试验结果绘制的塑性体应变等值面形状为水滴形,并针对非饱和Alonso弹塑性模型的不足,将水滴形屈服面扩展到非饱和中,提出了非饱和水滴形屈服面函数,采用相关联的流动法则,应用合理的LC屈服轨迹方程和临界状态线的修正表达式,结合对偶应力硬化理论改进了模型,改进模型的计算结果与原模型及试验结果的对比表明,改进模型能够较好地对控制吸力条件下的非饱和三轴压缩试验进行模拟,其结果与试验结果吻合得较好,优于原模型,进而验证了改进模型是一种合理的形式。
Digital image measurement method, which is based on sub-pixel corner detection, is a new technique of triaxial specimen deformation measurement. This technique measures the specimen deformation through the tracking of corner detection displacement, and the result precision can be up to sub-pixel level (0.02 pixel), and the strain measurement precision can up to 10E-4. This new technique can measure the triaxial specimen deformation of both saturated and unsaturated soil more exactly, and can deeply analyze the soil stress-strain property under triaxial stress state. Due to the peculiar measurement mechanism, this technique obtains the deformation test data that discretize the specimen surface, which can be used to calculate the surface deformation field of the test specimen, and then analyze the surface deformation property.
     The application of sub-pixel corner detection measurement based digital image measurement technique in unsaturated and compacted soil triaxial test under the condition of suction control, makes it convenient to measure the local deformation of the soil specimen, overcomes such shortcomings as radial constraint caused by contact sensor and small measurement section, and improves the precision of local measurement. Because of the influence of end restraint, the integral measurement of unsaturated and compacted soil specimen overrates the specimen strength and underrates the deformation compared to the real situation; hence the test data cannot stand for the real strength and deformation property of unsaturated and compacted soil. The comparison of test result of the overall specimen and the middle 1/3 part of unsaturated and compacted soil specimen under suction control, reflects that end restraint has little influence on the middle 1/3 part, and the test result of this part can stand for the principal deformation property of unsaturated soil, and provides credible test data for the research of unsaturated soil stress strain relationship. The end restraint has great influence on parameter of the shear resistant strength formula, when using two stress state variable strength theory systems to analyze the shear resistant strength. This paper uses unsaturated soil Alonso elasto-plastic model to analyze the influence of model parameter value on numerical calculation. And the result shows that Finite Element numerical calculation which adopts the specimen integral deformation model parameter will generate errors, and overestimates unsaturated soil strength.
     Under the condition of isotropic compression condition with suction control, the measurement result of the integral specimen and the middle 1/3 part is consistent, and the deformation of the former is less than that of the latter under the critical net stress; the yield stress of the former is greater than that of the latter, and they both increases with the suction increase. But there is obvious difference between LC yield curve model parameters that are obtained from the integral specimen and the middle 1/3 part. And the LC yield curve formats in p - s plane in also different between experiment and model calculation, and the elastic zone of the former is greater than that of the latter. Due to this great error of Alonso model LC yield equation between calculation and experiment, and the uncommon assumption, the reasonable LC yield locus equation is analyzed based on the result of local deformation in this paper.
     In the unsaturated and compacted soil triaxial shear test, the strength and deformation measurement results of the specimen middle 1/3 part show that the suction greatly affects unsaturated soil strength, which increases with the increase of the suction. The unsaturated and compacted soil triaxial test result under constant suction describes the unsaturated soil critical state surface in p-q-s three dimensional space: in p - q plane, the slope M of critical state line is independent of suction; the cross line of LC yield surface and critical state surface is a curve with extremum in three dimensional stress space, and its projection in p-s plane is located in quadrant 1 in triaxial compression state; its projection in q-s plane has asymptote, and there should also be asymptote in respect of the curve that stands for the function relationship between cohesive and suction. This paper improves the expression format of the critical state line in Alonso model, and verifies its rationality.
     According to the drip type plastic volume strain isoline obtained by local deformation test result, and due to the defect of unsaturated soil elsato-plastic Alonso model, the drip type yield surface is expanded to unsaturated soil. This paper proposes unsaturated soil drip type surface function, adopts associated flow rule and reasonable LC yield lotus equation and critical state line expression, and improves the model with dual stress hardening principle. The comparison of the calculation result of the improved model and the original model shows that the improved model can better simulate the unsaturated soil triaxial compression test under suction controlled, and the result is better than that of the original model, which further demonstrates that improved model is more reasonable.
引文
[1] 黄文熙主编.的工程性质.北京:水利电力出版社,1983.
    [2] 钱家欢,殷宗泽.工原理与计算.北京:水利电力出版社,1996.
    [3] Fredlund D G, Rahadjo H. Soil mechanics for unsaturated soils. New York: John Wiley and Sons, 1993.
    [4] 陈希哲.力学地基基础.北京:清华大学出版社,1989.
    [5] 陈仲颐,周景星,王洪瑾.力学.北京:清华大学出版社,1994.
    [6] Lawton E C, Fragaszy R J, Hetherington M D. Review of wetting-induced collapse in compacted soil. Journal of Geotechnical Engineering-ASCE, 1992, 118(9): 1376-1394.
    [7] Fleureau J M, Verbrugge J C, Huergo P J, Correia A G, Kheirbek-Saoud S. Aspects of the behaviour of compacted clayey soils on drying and wetting paths. Canadian Geotechnical Journal, 2002, 39(6): 1341-1357.
    [8] Tadepalli R, Fredlund D G. The collapse behavior of a compacted soil during inundation. Canadian Geotechnical Journal, 1991, 28(4): 477-488.
    [9] Rahardjo H, Heng O B, Choon L E. Shear strength of a compacted residual soil from consolidated drained and constant water content triaxial tests. Canadian Geotechnical Journal, 2004, 41(3): 421-436.
    [10] Melinda F, Rahardjo H, Han K K, Leong E C. Shear strength of compacted soil under infiltration condition. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 807-817.
    [11] Sudhakar M. Raol and K Revanasiddappa. Role of matric suction in collapse of compacted clay soil. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(1): 85-90.
    [12] Jose H F Pereira and Delwyn G Fredlund. Volume change behavior of collapsible compacted gneiss soil. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10): 907-916.
    [13] S Tripathy, K S Subba Rao, and D G Fredlund. Water content-void ratio swell-shrink paths of compacted expansive soils. Canadian Geotechnical Journal, 2002, 39: 938-959.
    [14] 吴世明,杨挺,周健等编著.岩工程新技术.北京:中国建筑工业出版社,2001.
    [15] 包承纲.非饱和压实的气相形态及孔隙压力消散问题.第三届全国力学和基础工程会议论文集,北京:中国建筑工程出版社,1979.
    [16] Hogentogler A, Barber E S. Discussion in soil water phenomena. Highway Research Board. 1941, 21: 452-465.
    [17] Terzaghi K. Theoretical Soil Mechanics. New York: Wiley, 1943, 510.
    [18] Croney D, Coleman J D, Black W P M. The movement and distribution of water in soil in relation to highway design and performance. Highway Research Board, 1958, Special Report No. 40.
    [19] Coleman J D. Stress strain relation for partly saturated soils. Geotechnique, 1961, (12)4: 348-350.
    [20] Artchsor G D. Relationship of moisture stress and effective stress function in unsaturated soils. Proceeding of Pore Pressure and Suction in Soils, London, U. K,, 1961, 47-52.
    [21] Jennings J E. A revised effective stress law for use in the prediction of behavior of unsaturated soils. Proceeding of Pore Pressure and Suction in Soils, London, U. K., 1961, 26-30.
    [22] 陈正汉,王永胜,谢定义.非饱和的有效应力探讨.岩工程学报,1994,16(3):64-71.
    [23] Bishop W. The principle of effective stess. Teknisk Ukeblad, 1959, 106(39): 859-863.
    [24] Bishop A W, Blight G E. Some aspects of effective stress in saturated and partly saturated soils. Geotechnique, 1963, (13)3: 177-196.
    [25] Bishop A W, Donald I B. The experimental study of partly saturated soil in the triaxial apparatus. Proceeding of 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, France, 1961, 1: 13-21.
    [26] Fredlund D G, Morgenstern N R. Stess state variables for unsaturated soils. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(GT5): 447-466.
    [27] Fredlund D G, Morgenstern N R, Widget R A. The shear strength of unsaturated soils. Canadian Geotechnical Journal, 1978, 15(3): 313-321.
    [28] E E Aloaso, A Gens and A Josa. A constitutive model for patially saturated soils. Geotechnique, 1990, 40(3): 405-430.
    [29] Toll D G. A framework for unsaturated soil behavior, Geotechnique, 1990, 40(1): 31-44.
    [30] Li X K, Zienkiewicx O C and Xie Y. A numerical model for immiscible two phase fluid flaw in a porous medium and its time domain solution. Int. J. for Num. Method in Eng, 1990, 30: 1195-1221.
    [31] Chen Z H, Xie D Y and Liu Z D. The consolidation of unsaturated soil. In: 7th Int. Conf. Computer Methods and Advances in Geomech, Cairns, 1931, 2: 1617-1621.
    [32] 陈正汉,谢定义,刘祖德.非饱和固结的混合物理论(Ⅰ).应用数学和力学,1993,14(2):127-137.
    [33] 陈正汉.非饱和固结的混合物理论(Ⅱ).应用数学和力学,1993,14(8):687-697.
    [34] Chen Z H, etal. A non-linear model for unsaturated soils. In: 2nd Int. Conf. Unsaturated Soils, Beijing, 1998, 1: 461-466.
    [35] Yang D Q, Shen Z J. Two-dimensional numerical simulation of generalized consolidation problem of unsaturated soils. In: 7th Int. Conf. Computer Methods and Advances in Geomeeh, Cairns, 1991, 2: 1261-1266.
    [36] Yang D Q, Shen Z J. Study on generalised consolidation theory of unsaturated sails. In: 7th Int. Conf. Expansive Soils, Dallas, 1992: 158-162.
    [37] 沈珠江.关于黄力学的研究途径.中加非饱和力学术研讨会,武汉,1994:153-160.
    [38] 沈珠江.广义吸力和非饱和的统一变形理论.岩工程学报,1996,18(2):1-8.
    [39] 徐永福.非饱和膨胀的力学特性及其工程应用:(博士学位论文).南京:河海大学博士学位论文,1997.
    [40] P Delage, M Andiguier, e tal. Microstructure of a compacted silt. Can. Geotech. J., 1996, Vol. 33: 150-158.
    [41] A Gens, E E Alonso. A framework for the behavior of unsaturated expansive clays. Cana. Geotech. J., 1992: 1013-1032.
    [42] J A Gili and E E Alonso. Microstructural deformation mechanisms of unsaturated granular soils. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 433-468.
    [43] 施斌.击实粘性微结构特性的定量评价.科学通报,1986,41(5):438-441.
    [44] 施斌.击实粘性微结构的定量评价.岩工程学报,1996,18(4):57-63.
    [45] Croney D, Coleman J D, Black W P M. The movement and distribution of water in soil in relation to highway design and performance. Highway Research Board. Special Report No. 40, 1958.
    [46] Coleman J D. Stress strain relation for partly saturated soils. Geotechnique, 12(4), 1961: 348-350.
    [47] Artchsor G D. Relationship of moisture stress and effective stress function in unsaturated soils. Pore pressure and suction in soils, London, 1961: 47-52.
    [48] Jennings J E. A revised effective stress law for use in the prediction of behavion of unsaturated soils, Pore pressure and suction in soils, London, 1961: 26-30.
    [49] Richards B C, Peter P Matin R. The determination of volume change properties in expansive soils. 5th. Int. Conf. on Expansive Soils. Adelade, Ads. Mitchell, 1984: 179-186.
    [50] 陈正汉,王永胜,谢宝义.非饱和的有效应力探讨.岩工程学报,1994,16(3):64-71.
    [51] Fredlund D G and Morgensten N R. Constitutive relative for volume change in unsaturated soils. Canadian Geotechnicat Journal, 1976, 8: 261-276.
    [52] Shen Z J. Reduced suction and simplified consolidation theory for expansive soil. In: Fist Int. conf. on Unsaturated soils, Paris, 1995.
    [53] Gulhati S K. Effective stress in partly saturated soils.
    [54] 俞培基,陈愈炯.非饱和的水气形态及其力学性质的关系.水利学报,1965,1:16-23.
    [55] 包承纲.非饱和压实的气相形态及孔隙压力消除问题.第三届全国力学和基础工程会议论文集,1979.
    [56] Yoshimi Y and Osterberg J O. Compression partially saturated cohesive soils. Proc. ASCE, vol. 89, SM4.
    [57] Brooks R H & Corey A T. Properties of porous medies effecting fluid flow. J. Irrig Drain, Div. Aus. Soe. Civ. Engrs, 1966, 92, IR2: 61-88.
    [58] King L G. Description of soil charcteristics for partially saturated flow. Soil science society of Aweriea, Proceedings, 965, 29(4): 359-362.
    [59] Barden L & Pavlakis G. Air and water permeagility of compacted unsaturated Cohesive soils. Journal of soil science, 1971, 22(3).
    [60] Bishop A W and I B Donald. The exprimental study of partly saturated soils in the triaxial apparatus. Proc. 5th ICOSMFE, 1961, 1: 13-20.
    [61] Matyas E L & Radhakrshne H S. Volume change characteristics of partially saturated soils. Geotechnique, 1968, 18: 432-448.
    [62] Lloet A, Alonso E E. State surfaces for partially saturated soils. Proc. of the 11th Int. Conf. Soils Mechanics and foundation Engineering, San Francisco, 1985, 2: 557-562.
    [63] Yang D Q, Shen Z J. On strength and deformation for unsaturated compacted clay. Proc. of the 7th, Int conf on Expansive soils Dallas, 3-5 August, 1992: 196-200.
    [64] Wheeler S J, Sivakumar V. An elasto-plastic critical state framework for unsaturated soil. Geotechnique, 1995, 45(1): 35-53.
    [65] 杨代泉.非饱和广义固结理论及其数值模拟与试验研究:(博士学位论文).南京:南京水利科学研究院,1992.
    [66] Fredlurd D G. Appropriate conception and technology for unsaturated soils. Cana. Geotech. J. 1979, 16: 121-129.
    [67] Fredlund D G & Hasan J U. One dimensional consolidation theory unsaturated soils. Cana. Geoteech. J. 1979, 16(3): 521-531.
    [68] Alonso E E, Gens A and Hight D W. Special problems Soils. General report. Proc. 9th Eur. Conf. Soil Mech. Dublin, 1987, 3: 1087-1147.
    [69] Josa A, Balmaceda A, Cens A, et al. An elasto-plastic model for partially saturated soils exhibiting a maximum of collapse. Proc 3rd International Comference on Computational Plasticity, Barcelona: [s.n.], 1992: 815-826.
    [70] Chen Z H, Zhou H Q, Fredlund D G, e tal. An nonlinear model for unsaturated soils. Proc. 2nd Int. Conf. on Unsaturated Soil, 1998, Beijing.
    [71] Shen Z J. Devleopment of structural model for soil. 9th Int. Conf. on Comp. Meth. and Adv. in Geom., 2, Wuhan, 1997: 235-240.
    [72] Shen Z J. Advances in numerical modelling of deformation behaviour of unsaturated soils. Proc. 2nd Int. Conf. on Unsaturated Soil, 1998, Beijing.
    [73] Scott R F. Principles of soil mechanics. Addison. Wesly Pub. Co. Int. Mass USA, 1963: 177-184.
    [74] Bruggeman J R, Zanger C N, Brahtz J H A. Notes on analysis soil mechanics, 1939.
    [75] Barden L. Consolidation of compacted and unsaturated clays. Geotechnique, 1965, 15(3).
    [76] 杨代泉,沈珠江.非饱和一维固结简化计算.岩工程学报,1991,13(5):70-78.
    [77] Change C S, J M Duncan. Consolidation analysis for partly saturated clay by using an elastic plastic effective stress strain model. Int. J. of Numerical and Analytical Methods in Mechanics, 1983, 7: 39-55.
    [78] 孙长龙.膨胀变形理论试验研究及数值模拟:(博士学位论文).南京:河海大学,1995.
    [79] 殷宗泽.非饱和的固结变形.岩工程新进展,国资源部岩工程开放研究实验年报(1997-1998).西安:西北大学出版社,2000:17-24.
    [80] Jennings J E B, J B Burland. Limitation to the use of effective stresses in partly saturated soils. Geotechnique, 1962, 12(2): 125-144.
    [81] S K Vamapalli, D G Fredlund, e tal. Model for the mediction of shear strength with respect to soil suction can Geotech., 5, 1996, 33: 378-392.
    [82] Vanapalli S K, Pufahl D G and Fredlund D G. Effect of compaction on the unsaturated shear strength of a compacted till. Proc. 2nd Int. Conf. on Unsaturated Soil, 1998, Beijing.
    [83] 包承纲,龚碧卫,詹良通.非饱和的特性和膨胀边坡的稳定问题.第二届国际非饱和学术会议论文集,北京,1998,8.
    [84] 沈珠江.当前非饱和力学研究中的若干问题.“区域性的岩工程问题”学术讨论会议论文集,原子能出版社,1996,南京.
    [85] 卢肇钧,张惠明.非饱和的抗剪强度与膨胀压力.岩工程学报,1996,33:379-392.
    [86] 卢肇钧,吴肖茗,孙玉珍等.膨胀力在非饱和强度理论中的作用.岩工程学报,1997,19(5):20-27.
    [87] Wheeler, S J. The stress-strain behaviour of soils containing gas bubbles. Ph. D. Thesis, University of Oxford, Oxford, 1986.
    [88] Sivakumar V. A critical state framework for unsaturated soil. Ph. D. Thesis, University of Sheffield, Sheffield, 1993.
    [89] 殷建华.新双室三轴仪用于非饱和体积变化的连续测量和三轴压缩试验.岩工程学报,2002,24(5):552-555.
    [90] 徐永福,刘松玉.非饱和强度理论及其工程应用.南京:东南大学出版社,1999.
    [91] NG C W W, ZHAN L T, CUI Y J. A new simple system for measuring volume changes in unsaturated soils. Canadian Geotechnical Journal, 2002, 39(2): 757-764.
    [92] 詹良通,吴宏伟.新双室非饱和体积变化量测系统.中国木工程学会第9届力学及岩工程学术会议论文集.北京:清华大学出版社,2003:401-405.
    [93] 詹良通,吴宏伟.非饱和膨胀变形和强度特性的三轴试验研究.岩工程学报,2006,28(2):196-201.
    [94] Sun D A, Matsuoka H, Xu Y F. Collapse behavior of compacted clays in suction-controlled triaxial tests. Geotechnical Testing Journal, ASTM, 2004, 27(4): 362-370.
    [95] D A Sun, H Matsuoka, H B Cui and Y F XU. Three-dimensional elasto-plastic model for unsaturated compacted soils with different initial densities. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27: 1079-1098.
    [96] Escario V and Uriel S. Optical methods of measuring the cross-section of samples in the triaxial test. Proc. 5th ICSMFE, 1961, 1.
    [97] Morgan J R, and Moore P J. Experimental Techniques, in Soil Mechnics, Selected Topics. Edited by Lee I K, American Elsevier Publishing Company, 1968.
    [98] JUCA J F T, FRYDMAN S. State of the art report-Experimental techniques. Encontro Sobre Solos Nao Saturados. 1995: 76-111.
    [99] Emir J M, Nicholas C C, Joey K P. Digital Image Techniques for Volume Change Measurements in Triaxial Tests. Proceedings of the Conference on Digital Image Processing Techniques and Applications in Civil Engineering, 1993: 211-219.
    [100] Khalid A Alshibli, Mohammad Z. A1-Hamdan. Estimating Volume Change of Triaxial Soil Specimens from Planar Images. Computer-Aided Civil and Infrastructure Engineering, 2001, 16(6): 415-421.
    [101] 邵龙潭,王助贫,韩国城等.三轴试验样径向变形的计算机图像测量.岩工程学报,2001,23(3):337-341.
    [102] 邵龙潭,王助贫,刘永禄.三轴样局部变形的数字图像测量方法.岩工程学报,2002,24(2):159-163.
    [103] 王助贫,邵龙潭,刘永禄等.三轴试样变形数字图像测量误差和精度分析.大连理工大学学报,2002,42(1):98-103.
    [104] 王助贫.三轴试验样变形的数字图像测量方法及其应用:(博士学位论文).大连:大连理工大学,2002.
    [105] 刘永禄.三轴实验样变形数字图像测量的实现:(硕士学位论文).大连:大连理工大学.2002.
    [106] 邵龙潭,孙益振,王助贫等.数字图像测量技术在工三轴试验中的应用研究.岩力学,2006,27(1):29-34.
    [107] 孙益振.基于三轴试样局部变形测量的体应力应变特性研究:(博士学位论文).大连:大连 理工大学,2005.
    [108] Christoph Stock, Ulrich Mühlmann. Subpixel Corner Detection for Tracking Applications using CMOS Camera Technology. 26th Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR): Graz, Austria, September 2002: 191-199.
    [109] LongTan Shao, YongLu Liu and JianJun Dong. Strain Measurement of Soil Specimen in Triaxial Test with Digital Image Processing Technology. 6th International Symposium on Test and Measurement, Edited by Wen TD, Dalian, China, 2005, 6: 4368-4371.
    [110] Liu Yonglu, Shao Longtan and Yao Li. Limitation of Edge Location. 6th World Congress on Intelligent Control and Automation, vols 1-12, Conference Proceedings, Dalian, China, 2006, 6: 5236-5240.
    [111] (加)格雷西(Gracie.G.,),(加)米克黑尔(Mikhail.E.M.)著,游祖吉等译.测量数据分析与平差.北京:测绘出版社,1987.
    [112] 武汉大学测绘学院测量平差学科组.误差理论与测量平差基础.武汉:武汉大学出版社,2003.
    [113] 费业泰.误差理论与数据处理.北京:北京机械工业出版社,1995.
    [114] 陈春霖,张惠明.饱和砂三轴试验中的若干问题.岩工程学报,2000,22(6):659-663.
    [115] 袁聚云.工试验与原理.上海:同济大学出版社,2003.
    [116] 南京水利科学研究院主编.工试验规程,中华人民共和国行业标准SL237-1999.北京:中国水利水电出版社,1999.
    [117] Wheeler S J, Karube D. Constitutive Modeling. Unsaturated Soils, Proceedings of the First International Conference on Unsaturated Soils, Alonso E E, Delage P, eds. Rotterdam: Balkema, 1995: 1323-1356.
    [118] Sivakumar V, Wheeler S J. Influence of compaction procedure on the mechanical behaviour of an unsaturated compacted clay Part 1: wetting and isotropic compression. Geotechnique, 2000, 50(4): 359-368.
    [119] Wheeler S J, Sivakumar V. Influence of compaction procedure on the mechanical behaviour of an unsaturated compacted clay Part 2: shearing and constitutive modelling. Geotechnique, 2000, 50(4): 369-376.
    [120] V Sivakumar, I G Doran. Yielding characteristics of unsaturated compacted soils. Mechanics of Cohesive-Frictional Materials, 2000, 5: 291-303.
    [121] 周建.非饱和Barcelona模型修正及存在问题探讨.浙江大学学报(工学版),2006,40(7):1243-1261.
    [122] 陈正汉.重塑非饱和黄的变形、强度、屈服和水量变化特性.岩工程学报,1999,21(1):82-90.
    [123] 黄海,陈正汉,李刚.非饱和在p-s平面上屈服轨迹及-水特征曲线的探讨.岩力学,2000,21(4):316-321.
    [124] Lloret A & Alonso E E. State surfaces for partially saturated soils. Proc. 11th Int. Conf. Soil Mech. Fdn Engng, San Francisco, 1985, 2: 557-562.
    [125] Emir Jose Macari, Laureano Rene Hoyos, Pedro Arduino. Constitutive modeling of unsaturated soil behavior under axisymmetric stress States using a stess/suction-controlled cubical test cell. International Journal of Plasticity, 2003, 19(10): 1481-1515.
    [126] Alonso E E, Gens A & Hight D W. Special problem soils. Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering. Rotterdam: Balkema, 1987: 1087-1146.
    [127] Alonso E E, Gens A, Josa A, 杨代泉.非饱和弹塑性应力变特性模拟.岩工程学报,1995,17(6):42-51.
    [128] 沈珠江.理论力学.北京:中国水利水电出版社,2000.
    [129] 殷宗泽,周建,赵仲辉等.非饱和本构关系及变形计算.岩工程学报,2006,28(2):137-146.
    [130] 陈正汉.非饱和的应力状态与应力状态变量.第七届全国力学及基础工程学术会议论文集,北京:中国建筑工业出版社,1994,186-191.
    [131] 陈正汉,周海清.非饱和的非线性模型及其应用.岩工程学报,1999,21(5):603-608.
    [132] 蒋彭年.非饱和工程性质.岩工程学报,1989,11(1),39-59.
    [133] 徐永福.非饱和本构模型研究综述.水利水电科技进展,1996,16(5):4-9.
    [134] 沈珠江.三种硬化理论的比较.岩力学,1994,15(2):13-19.
    [135] 黄文熙.硬化规律对的弹塑性应力-应变模型影响的研究.岩工程学报,1980,2(1):1-11.
    [136] 黄文熙,濮家骝,陈愈炯.的硬化规律和屈服函数.岩工程学报,1981,3(3):19-26.
    [137] 沈珠江.关于破坏准则和屈服函数的总结.岩工程学报,1995,17(1):1-8.
    [138] 张学言.岩塑性力学.北京:人民交通出版社,1993.
    [139] 李广信.高等力学.北京:清华大学出版社,2004.
    [140] 郑颖人,沈珠江,龚晓南.岩塑性力学原理.北京:中国建筑工业出版社,2002.
    [141] 朱百里,沈珠江.计算力学.上海:上海科学技术出版社,1990.
    [142] Wood D M. Soil behaviour and critical state soil mechanics. Cambridge: Cambridge University Press, 1990.
    [143] 郑颖人.关于岩塑性的几点认识.岩工程界,2002,5(4):14-16.
    [144] 郑颖人.岩塑性力学的新进展-广义塑性力学.岩工程学报,2003,25(1):1-10.
    [145] 章根德.的本构模型及其工程应用.北京:科学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700