两种水生萤火虫幼虫呼吸系统及呼吸行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萤火虫泛指鞘翅目萤科(Coleoptera:Lampyridae)昆虫,全世界已记录2,000多种,而水生萤火虫是萤火虫种类中稀少的一类,目前仅记录7种。雷氏黄萤是在武汉发现的一新种水生萤火虫,幼虫主要生活在水底,属底栖类水生昆虫,而条背萤幼虫主要漂浮在水面,通过游泳活动,属浮游类水生昆虫。两种水生萤火虫主要生活在清澈、干净的、水流缓慢且浅的湖泊、小溪或稻田中,以多种小型螺类为食,是有害螺类的生物天敌。同时幼虫对水质的要求较高,可作为一种水质监测昆虫。由于城市化进程的加快,以及人类对自然环境的破坏,致使对环境污染敏感的两种水生萤火虫分布范围逐步缩小。本文研究这两种水生萤火虫幼虫呼吸系统构造及呼吸行为的差别,利用雷氏黄萤的呼吸行为特性研究适合雷氏黄萤幼虫饲养的水环境参数,为室内规模化饲养条件提供参考依据,同时研究雷氏黄萤幼虫对不同水质的呼吸行为反应,为利用其呼吸行为指标监测水质奠定基础。总而言之是为雷氏黄萤的人工“复育”和利用提供参考依据。
     通过显微解剖,结合透射电镜和扫描电镜,观察比较了条背萤Luciola substriata(鞘翅目Coleoptera:萤科Lampyridae)幼虫两个不同龄期呼吸系统的差异。1-2龄幼虫的呼吸系统中只有气管无气囊,3-6龄幼虫的呼吸系统中气管和气囊并存。1-2龄幼虫的尾气门和3-6龄幼虫的腹部侧气门及尾气门结构没有差异。透射电镜观察发现条背萤1-2龄幼虫体壁上的毛状物为气管鳃。
     研究了雷氏黄萤Luciola leii(鞘翅目Coleoptera:萤科Lampyridae)幼虫的呼吸系统及其呼吸行为。雷氏黄萤幼虫的呼吸系统中只有气管无气囊。前胸、中胸和后胸均分布有气门,无气管鳃,腹部1-8节分布有气门和气管鳃,气门腔基部和气管鳃基部相连,呈“√”状,气管鳃内气管与气门气管相连通。
     通过观察和室内实验发现,雷氏黄萤和条背萤幼虫将气门伸出水面都与呼吸相关。雷氏黄萤幼虫的呼吸行为分为3种:利用胸部气门呼吸、腹部气门呼吸和气管鳃呼吸,其中以腹部气门呼吸为主。腹部气门呼吸可分为5种方式,其中呼吸时间最长的可达8 h-12 h。条背萤幼虫在仰泳的过程中,利用惯性可将具气门的腹节暴露于空气中,即游泳行为与呼吸行为同时发生。条背萤1-2龄幼虫体壁上布满气管鳃,主要营气管鳃呼吸,也可停留在水生植物叶片下方,将尾气门从叶片边缘伸出暴露于空气中,但它一般不会爬出水面将整个体躯暴露于空气中。3-6龄幼虫无气管鳃,只有腹气门,且气门外无疏水性绒毛。在仰泳过程中可利用惯性通过7个步骤将具气门的各腹节定期地暴露于空气中。除此之外,3-6龄幼虫还可爬至水生植物叶片上面,将整个体躯暴露于空气中。
     研究了水温、水深度及饲养密度对雷氏黄萤幼虫呼吸行为的影响。结果表明,水温可导致幼虫爬出水面呼吸时间最长可达8.83±1.34 h,呼吸频率(FR)最高达2.3次/h,两次呼吸间隔时间(SI)最小为0.53±0.27 h。5-70 cm的水深均不会导致1-6龄幼虫死亡,且不影响幼虫的呼吸行为。不同饲养密度对幼虫呼吸行为的影响较大,最有利于幼虫呼吸的饲养密度约为1-3头/64.8cm~3。
     选择武汉城区4种不同水质,研究其对雷氏黄萤幼虫呼吸行为的影响。探讨利用雷氏黄萤幼虫的呼吸指标作为监测多污染源混合废水水质的可行性。研究结果表明,Ⅲ类(东湖)、Ⅳ类(汤逊湖)、Ⅴ类(野芷湖)和劣Ⅴ类(南湖)四类水质与对照(CK)相比较,对雷氏黄萤幼虫昼夜的呼吸行为均有影响。雷氏黄萤幼虫刚接触Ⅲ类、Ⅳ类、Ⅴ类和劣Ⅴ类水质均有明显反应,以劣Ⅴ类水质影响最大,达到显著水平(P<0.05)。在劣Ⅴ类水质条件下,雷氏黄萤幼虫呼吸频率达14±4.2次/h,呼吸间隔时间达0.53±0.3 h,呼吸持续时间达6.88±1.6 h,其呼吸持续时间和呼吸频率(FR)均高于Ⅲ类、Ⅳ类、Ⅴ类水质,呼吸间隔时间(SI)均低于Ⅲ类、Ⅳ类、Ⅴ类水质。结果显示雷氏黄萤幼虫的昼夜呼吸行为、呼吸持续时间、呼吸频率(FR)、呼吸间隔时间(SI)可作为多污染源混合废水水质的敏感生物学监测指标。
Firefly(Coleoptera:Lampyridae),which had recorded 2,000 species,was distributing extensively in the world,but aquatic firefly was very rare,only had it named 7 species.A new aquatic species,Luciola leii(Coleoptera:Lampyridae),which is mainly living at the bottom in the natural water environment,belongs to one kind of benthic aquatic insects.However,Luciola substriata(Coleoptera:Lampyridae) mostly float on the surface in the natural water environment and move by back swimming,it belong to one kind of planktonic aquatic insects.The two aquatic fireflies were living in the lake, stream and paddyfield,which were characterized of clean,slow current and shallow.And these larvae,which eat of miniature aquatic snail,were the biologic nature enemy. Meanwhile,larvae need upper request for water quality,so the larvae may be deemed to one kind of water quality of monitoring insect.Due to the quicken process of urbanization, and destroy of human to nature environment.So the areas of habitat were gradually reduced.This dissertation was to study the dissimilarity of the respiratory system and respiratory behavior in Luciola leii and Luciola substriata.Study the optimal water environment parameter for larval breeding of Luciola leii,in order to provide scientific data for indoors large-scale rearing,and to study the larval feedback to different water quality,in order to provide scientific data for water quality of monitoring,according the characteristic of respiratory behavior.
     The structure of respiratory system during the 1~(st) - 2~(nd) instar and the 3~(rd) - 6~(th) instar of Luciola substriata larva was observed using micro-dissection,transmission electron microscope(TEM) and scanning electron microscope(SEM).The 1~(st) - 2~(nd) instar larva had trachea without air sacs,while the 3~(rd) - 6~(th) instar larva had trachea and air sacs in the respiratory system.The structure of the posterior spiracles of the 1~(st) - 2~(nd) instar larva was the same as that of the 3~(rd) - 6~(th) instar larva.Observations by TEM believed that the hairs on the culticle were tracheal gills.
     In this paper,we studied the structure of respiratory system and respiratory behaviors of Luciola leii larvae.The results showed that there had only tracheas without air sacs in the whole respiratory system of L.leii larvae.The spiracles were located on the prothorax, mesothorax and metathorax where had no tracheal gills distributed,the spiracles and tracheal gills were located on the 1~(st) - 8~(th) segments of abdomen,tracheal gills connected with the basement of the atrium which formed the shape of "√",and the tracheas in the tracheal gills connected with the spiracular trachea.
     The aim of exposed spiracles to air of L.leii and L.substriata are relative to respire through laboratory experiments and observations.L.leii larvae had three kinds of respiratory behaviors:using thoracic spiracles,abdominal spiracles and tracheal gills to breathe respectively.However,the abdominal spiracles were primarily used among them, which are mainly divided five ways in which the longest respiratory time is 8 h - 12 h.In the process of back swim of L.substriata,some abdominal segments with spiracles could expose to the air by swimming inertia,namely swim behavior and respiratory behavior occurred simultaneously.1~(st) - 2~(nd) instar larvae had tracheal gills,which primary respiratory organ.At the same time,they exposed their eighth abdominal segment to air when at rest,which usually occurred when 1~(st) - 2~(nd) instar larvae staying under the aquatic plant leaves(e.g.,Lemna minor(Arecidae:Lemnaceae)).In general,larvae did not crawl to the top of leaves and exposed its whole body to air.3~(rd) - 6~(th) instar larvae had only abdominal spiracles that had no hydrofuge hairs and without tracheal gills.During back swim of 3~(rd) - 6~(th) instar larvae,larval abdominal segments were periodically exposed to the air by inertia of seven swim steps.Besides,3~(rd) - 6~(th) instar larvae could crawl to the top of leaves to expose their whole body to air.
     We reported the influences of water temperature,depth and rearing density on respiratory behavior of 1~(st) - 6~(th) stages of L.leii larva.The results showed that respiratory duration was 8.83±1.34 h,the highest respiratory frequency(FR) was 2.3 times / h,the shortest subsurface interval(SI) duration was 0.53±0.27 h,and the optimal water temperature was approximately 23℃.Water depths of 5 cm - 70 cm didn't lead to the death and didn't influence respiratory behavior of 1~(st) - 6~(th) stages of L.leii larva.Different rearing density had more influences on L.leii larva,and the optimal rearing density was 1 - 3 individuality/64.8 cm~3.
     The effects of four different kinds of water quality in urban waters of Wuhan on the larval respiratory behavior of L.leii(Coleoptera:Lampyridae) were evaluated by laboratory experiments.The feasibility was discussed to monitor multi - polluted and mixed wastewater by indexes of respiratory behavior.The results showed that the larval respiratory behavior of L.leii in lighted and dark conditions(simulation daylight and night - time) was influenced by typeⅢ(Donghu Lake),typeⅣ(Tangxun Lake),typeⅤ(Yezhi Lake) and type inferiorⅤ(Nanhu Lake) water qualities,compared with tap water(CK).These larvae had distinctly different responses when they were put into typeⅢ,typeⅣ,typeⅤand type inferiorⅤwater qualities.Type inferiorⅤhas the most significant influence on larval respiratory behavior among them(P<0.05).Under experimental conditions,the respiratory frequency(FR) in type inferiorⅤwater quality was 14±4.2 times / h,subsurface interval duration(SI) was 0.53±0.3,and the time of respiration was 6.88±1.6 h.The time of respiration and respiratory frequency(FR) were higher under typeⅢ,typeⅣand typeⅤwater qualities,subsurface interval durations (SI) were shorter with typeⅢ,typeⅣand typeⅤwater qualities.This results showed that the respiratory behavior of L.leii.In day and night,specifically the time of respiration,FR and SI could be used as a method of monitoring water quality for multipolluted and mixed wastewater.
引文
1.柴敏娟,黄玉霖,蒋忻坡.次致死浓度Cu对罗非鱼呼吸生理的影响.水产学报,1990,14(1):50-54
    2.柴敏娟,黄玉霖.Hg~(2+)抑制石斑鱼呼吸运动的研究.福建水产,1996,4:20-24
    3.常学秀,张汉波,袁嘉丽.环境污染微生物学.北京:高等教育出版社,2006,179-186
    4.陈民山,范贵旗.胜利原油对海洋鱼类胚胎及仔鱼的毒性效应.海洋环境科学,1991,10(2):1-5
    5.付新华,Ohba N,雷朝亮.条背萤的形态和生物学研究.昆虫学报,2004,47(3):372-378
    6.付新华,OhbaN,王余勇,雷朝亮.条背萤的闪光求偶行为.昆虫学报,2005 a,48(2):227-231
    7.付新华,王俊刚,Ohba N,雷朝亮.萤火虫(鞘翅目:萤科)两性交流中的闪光信号.生态学报,2005 b,25(6):1439-1444
    8.付新华,王余勇,雷朝亮.条背萤幼虫水生适应性形态与游泳行为研究.昆虫知识,2005 c,42(4):419-423
    9.付新华.中国大陆两种水栖萤火虫生物学及行为学研究.[博士学位论文].武汉:华中农业大学图书馆,2005d
    10.国家环保局水生生物监测手册编委会.水生生物监测手册.南京:东南大学出版社,1993
    11.何斌,何利君,杜军,龙治海,陈先均.4种重金属离子对淡水石斑胚胎及仔鱼急性毒性的研究.水利渔业,2006,26(4):94-95
    12.何健镕,朱建升,朱建昌.一种幼虫水生萤类的新发现——条背萤.自然保育季刊,1998.22:7-51
    13.和文祥,洪坚平.环境微生物学.北京:中国农业大学出版社,2007,254-262
    14.胡本进.阊江河一至六级支流底栖动物群落结构和功能及其BI指数水质评价.[硕士学位论文].南京:南京农业大学图书馆,2003,27-69
    15.胡国宏,孙广华,朱世成,熊占山,顾权.低溶氧量对怀头鲇呼吸代谢耗氧率的影响.动物学杂志,2002,37(2):46-48
    16.黄复生.昆虫种类数量的变化.昆虫知识,1991,28(6):374
    17.黄先玉,刘沛然.水体污染生物监测的研究进展.环境科学进展,1999,7(4):14-18
    18.黄小清,蔡笃程.水生昆虫在水质生物监测与评价中的应用.华南热带农业大学学报,2006,12(2):72-75.
    19.黄玉霖,吴鼎勋,柴敏娟.Cu~(2+)、Zn~(2+)对罗非鱼鳃盖运动的影响.台湾海峡,1994,13(1):21-25
    20.贾秀英.四种重金属对泥鳅幼鱼呼吸强度的影响.浙江大学学报(农业与生命科学版),2001,27(5):556-558
    21.蒋文华,于道平.半自然水域中母仔长江江豚呼吸行为的初步观察.动物学杂志2006,41(4):97-99
    22.柯欣,杨莲芳,孙长海,田立新.安徽丰溪河水生昆虫多样性及其水质生物评价.南京农业大学学报,1996,19(3):37-43
    23.雷朝亮,荣秀兰.普通昆虫学.北京:中国农业出版社,2003,217-425
    24.黎松强,曾育才.生态环境保护导论.武汉:武汉理工大学出版社.2002.88-91
    25.刘发义,孙凤.石油污染对梭鱼肝脏混合功能氧化酶的影响——Ⅱ.不同浓度原油对AHH活性的诱导.海洋环境科学,1991,10(3):49-51
    26.刘红,马徐发,熊邦喜.武汉南湖的浮游甲壳动物.淡水渔业,2005,35(5):22-24
    27.刘洁生,肖丹,叶丛容,等.敌百虫对鲤鱼组织乙酰胆碱酯酶和腺三磷酶活力的影响.环境科学研究,1997,10(3):21-25
    28.李中宇,胡显安,王岚.从底栖动物群落看江水污染情况.黑龙江环境通报,2001.25(2):67-68
    29.汝少国,李永祺,袁俊峰,敬永畅.有机磷农药对扁藻的联合毒性研究.青岛海洋大学学报,1996,6(2):197-202
    30.沈洪艳,宋存义,甄芳芳,任洪强,徐九华.对氯硝基苯和2,4-二硝基氯苯对锦鲤鱼急性毒性作用.环境与健康,2007,24(5):294-296
    31.沈旭明,赵清良.温度、溶解氧对暗纹东方鲀幼鱼呼吸频率的影响.生态学杂志.2001,20(4):13-15
    32.汪松.中国濒危动物红皮书兽类.北京:科学出版社,1998,199-201
    33.王备新,杨莲芳.大型底栖无脊椎动物水质快速生物评价的研究进展.南京农业大学学报,2001,24(4):107-111
    34.王波,李继强,曹志海,孙庆霞,左言明,朱明远,毛兴华.犬齿牙鲆幼鱼呼吸耗氧率的研究.海洋科学进展,2003,21(3):325-330
    35.王德庆,刘国顺,王秋雨,王静,孙云.多污染源混合废水对鱼类呼吸的影响.水产学报,1993,17(2):172-174
    36.王德庆,刘国顺,王秋雨,袭龚.锌对离体鲤鱼头呼吸的抑制作用.动物学报,1994,40(1):39-44
    37.王建国,黄恢柏,杨明旭,唐振华,陈新军,赵凤霞,毛良乾,李峰,徐胜,谢功让.利用水生昆虫评价庐山自然保护区主要水体水质状况.江西农业大学学报,1999,21(3):363-366
    38.王郡明,梁醒财,罗佑珍.萤火虫生物学特性及其应用研究.云南农业大学学报,2006,21(5):576-580
    39.王克雄,长江江豚行为和声学观察研究.[博士学位论文].武汉:中国科学院研究生院,2005,33-35
    40.王瑞龙,陈玉明,徐军,方展强,马广智.氯氰菊酯对唐鱼肝和鳃组织超氧化物歧化酶(SOD)活性的影响.生态环境,2007,16(3):790-793
    41.王银东,熊邦喜,杨学芬,马徐发,陈才保,胡宏胜.武汉市南湖的环境现状及生态恢复建议.水利渔业,2005,25(4):65-66
    42.王银东,熊邦喜,杨学芬.用大型底栖动物对武汉南湖水质的生物学评价.环境污染与防治,2006,28(4):312-314
    43.韦绥概,陆温,覃爱枝,梁子宁,蒙永军.三点列黄边龙虱幼虫的呼吸系统与生物学特性.昆虫知识,2003,40(1):68-70
    44.肖建强,王丁.人工饲养环境下长江江豚的行为谱的构建.水生生物学报,2005,29(3):253-258
    45.肖建强,王丁.人工饲养环境下长江江豚的行为谱的构建.水生生物学报,2005,29(3):253-258
    46.辛宝平.Cr对水栖寡毛类赫德莱顠体虫的毒性实验.环境科学学报,1996,16(2):184-1890
    47.徐镜波,景体淞.M-DNB和P-DNB对鲤鱼肝脏过氧化氢酶的影响.中国环境科学,1998,18(1):58-60
    48.徐希莲.水生昆虫与水质的生物监测.莱阳农学院学报,2001,18(1):66-70
    49.颜忠诚,Harry Zhong.水生昆虫.生物学通报,2004,39(1):15-18
    50.杨莲芳,李佑文,戚道光,孙长海,田立新.九华河水生昆虫群落结构和水质生物评价.生态学报,1991,12(1):8-15
    51.尤平,任辉.底栖动物及其在水质评价和监测上的应用.淮北煤师院学报(自然科学版),2001,22(4):44-48
    52.于道平,蒋文华,黄立新.半自然水域中长江江豚活动区域及其季节性变化.水生生物学报,2003,27(6):657-6591
    53.袁洪海,付新华,张应,郑霞林,雷朝亮.条背萤成虫与幼虫发光器的超微结构观察.昆虫知识,2007,44(3):409-414
    54.翟飞飞.厦门中华白海豚社会组织结构、行为和栖息地选择的初步研究.[硕士学位论文].南京:南京师范大学图书馆,2006,8-11
    55.张彤,金洪钧.用八种淡水鱼类监测四种污染物的急性毒性.中国环境监测,1997,13(1):31-34
    56.郑霞林,张应,付新华,雷朝亮.条背萤幼虫不同发育阶段呼吸系统构造的观察 和比较.昆虫学报,2007,50(6):644-648
    57.郑霞林,袁洪海,王余勇,付新华,雷朝亮.雷氏黄萤幼虫的呼吸系统和呼吸行为.昆虫知识,2008,45(3):
    58.周莹.辽北地区水生昆虫与水质监测试验.辽宁城乡环境科技,2002,22(2):24-26
    59.朱江.北京地区蜉蝣目稚虫的分布及与水质关系的研究.环境科学学报,1994,14(3):308-31560.朱龙.人工饲养条件下大西洋蠵龟的行为生物学研究.海洋科学,2002,26(9):24-26
    61.Adis J,Messner B.Adaptations to life underwater tiger beetles and millipedes.Ecological Studies,1997,126:319-330
    62.Amin-Naves J,Giusti H,Glass M L.Effects of acute temperature changes on aerial and aquatic gas exchange,pulmonary ventilation and blood gas status in the South American lungfish,Lepidosiren paradoxa.Comparative Biochemistry and Physiology,2004,138:133-139
    63.Anke W and Arie V N.Swimming behaviour of Daphnia clones:differentiation through predator infochemicals.Journal of Plankton Research,2002,24(12):1335-1348
    64.Balfour-Broune J and F.An outline of the habits of the water beetle Noterus Capricornis.Proc.R.Ent.Soc.Lond,1940,(A),15:105-112
    65.Bare C O.Haemoglobin cells and other studies of the genus Buenoa(Hemiptera:Notonectidae).Univ.Kansas Sci.Bull.1929,18:265-349
    66.Blair K G.Luminous insects.Nature,1915,96:411-415
    67.B(o|¨)ving A G,Craighead F C.An illustrated synopsis of the principal larval forms of the Coleoptera.Brooklyn Ent.Soc.,New York.1931,88-105
    68.B(o|¨)ving A G.The natural history of the larvae of the Donaciinae.Int.Rev.Hydrobiol.1910,7:1-108
    69.Branham M A,Greenfield M D.Flashing males win mate success.Nature,1996,381:745-746
    70.Brocher F.Recherches sur la respiration des insectes aquatiques adultes.La notonecte.Ann.Biol.Lac.1909,4:89-138
    71.Brocher F.Recherches sur la respiration des insectes aquatiques adultes.La notonecte.Zool.Jahrb.Physiol.1913,33:225-234
    72.Brocher F.Recherches sur la respiration des insectes aquatiques adultes.La notonecte.Ann.Biol.Lac.1912,5:136-179
    73.Buckler W.On the larva and habits of paraponyx stratiocalis.Ent.Month.Mag.1875,12:160-163
    74.Buschman L L.Biology of the firefly Pyractomena lucifera(Coleoptera:Lampyridae).Florida Entomologist,1984,67:529-542
    75.Chapman R F.The Insect,Structure and Function.American Elsevier,New York,1969,58-63
    76.Chen S Q and Chen R Z.The rearing of aquatic firefly Luciolafieta.The Magazine of Yilan Science University,1997,14:25-32
    77.Crisp D J,Thorpe W H.The water-protecting properties of insect hairs.Discussions of the Faraday Society.1948,3:210-220
    78.Crowson R A.The biology of the Coleoptera.Acdaemic Press,New York and London,1981,429-456
    79.Damant G C.The adjustment of the buoyancy of the larva of Corethra plumicornis.J.Physiol.,1924,59:345-356
    80.David J M,Renzo P,Holleyb J F.Respiratory responses of the mysid Gastrosaccus brevifissura(Peracarida:Mysidacea),in relation to body size,temperature and salinity.Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,134(2),2003,257-266
    81.Edward F W.The larva and pupa of Taeniorhynchus richiardii Fic.(Diptera:Culicidae).Ent.Mon.Mag.1919,3(5):83-88
    82.Ege R.On the respiratory conditions of the larvae and pupae of Donacine.Vid.Medd.Dansk.Naturh.1915,66:183-196
    83.Fox H M.Methods of studying the respiratory exchange in small aquatic organisms,with particular reference to the use of flagellates as an indicator for oxygen consumption.J.Gen.Physiol.1920,3:565-573
    84.Fox H M.The oxygen affinities of certain invertebrate haemoglobins.J.Exp.Biol.1945,21:161-165
    85.Fu X H,Ohba N,Vencl F V,Lei C L.Structure,behavior,and the life cycle of an aquatic firefly,Luciola substriata,in China.Can.Entomol.,2005,137(1):83-90
    86.Fu X H,Lesley B.Luciola leii sp.nov.,a new species of aquatic firefly(Coleoptera:Lampyridae:Luciolinae) from mainland China.Can.Entomol.,2006 a,138:339-347
    87.Fu X H,Ohba N,Zhang Y,Lei C L.A rearing apparatus and diet for the aquatic firefly Luciola leii(Coleoptera:Lampyridae).Can.Entomol.,2006 b,138(3):399-406
    88.Gartner L P and James L H.Color Textbook of Histology,2nd ed.ISBN 0-7216-8806-3.2001
    89. Harnisch O. Agrion. Biol. Zbl.1958, 77: 300-310
    
    90. Harvey E N. Bioluminescence. New York: Academic, 1952. 1 - 649
    
    91. Hinton H E. Insect egg shells. Sci, Amer. 1970, 223: 84 - 91
    
    92. Hinton H E. On the spiracles of the larvae of the suborder Myxophaga (Coleoptera). Aust. J. Zool. 1967a, 15: 955 - 959
    
    93. Hinton H E. Plastron respiration in the mite, Platyseius italicus. Journal of insect physiology, 1971, 17: 1185 -1199
    
    94. Hinton H E. Respiratory adaptations of the pupae of beetles of the family Psephenidae. Phil, trans. Roy. Soc. (B), 1966b, 251: 211 - 245
    
    95. Hinton H E. Spiracular gills in the marine fly Aphrosylus and their relation to the respiratory horns of other Dolichopodidae. J. Mar. Biol. Assoc. U. K. 1967b, 47: 485 - 497
    
    96. Hinton H E. Spiracular gills. Adv. Insect Physiol. 1968, 5: 65 - 162
    
    97. Hoback W W, Podrabsky J E, Higley L G, Stanley D W, Hand S C. Anoxia tolerance of con-famial tiger beetle larvae is associated with differences in energy flow and anaerobiosis. Journal of comparative physiology, 2000, 170: 307 - 314
    
    98. Houlihan D F. Respiration in low oxygen partial pressures: the adults of Donacia simplex that respire from the roots of aquatic plants. J. Insect Physiol. 1970, 16: 1607 -1622
    
    99. Houlihan D F. Respiratory physiology of the larvae of Donacia simplex, a root piercing beetle. J. Insect Physiol. 1969,15: 1517 - 1536
    
    100.Hughes G M. Respiratory responses to hypoxia in fish. Am. Zool, 1973, 13: 475 - 489
    101.Hungerford H B. Oxyhaemoglobin present in backswimmer Bumoa, murgan' tacea. Canad. Ent. 1922, 54: 262 - 263
    
    102. Jesus C V, Benjamin G G. Suitable dissolved oxygen levels for common octopus (Octopus vulgaris cuvier, 1797) at different weights and temperatures: analysis of respiratory behaviour. Aquaculture, 2005, 244: 303 - 314
    
    103. John B. Locomotory modes in the larva and pupa of Chironomus plumosus (Diptera: Chironomidae). J. Insect Physiol, 2000, 46 (12): 1517 - 1527
    
    104.Kanda H. Firefly. The Bulletin of the Luminous Organisms, Tokyo, 1935
    
    105.Keilin D, Tate P, "Vincent M. The perispiracular gland of mosquito larvae. Parasitology. 1935, 27: 257 - 262
    106.Keilin D. Respiratory systems and respiratory adaptations in larvae and pupae of Diptera. Parasitology. 1944, 36: 1 - 66
    107.Keilin D. Respiratory systems and respiratory adaptations in larvae and pupae of Diptera. Parasitology. 1944, 36: 1 - 6
    108. Ken L, Kara M, Mike O, Kashif P, David R, Susan S. Modulation of aerial respiratory behavior in a pond snail. Respiratory Physiology & Neurobiology, 2006, 154:61 -72
    109.Kerkut G A, Gilbert L I. In: Peter J. M. Structure and Physiology of the Respiratory System. Pergamon Press, New York. 1985, 518 - 587
    110.Kerkut G A, Gilbert L I. In: Werner Nachtigall. Swimming in Aquatic Insects. Pergamon Press, New York. 1985, 467 - 489
    111.Koch H J. Aandeel van bepaalde organen aan de zeuerstofopnamo door het gesloten trachaeinsystem, bij de larven dur Odonata Zygoptera. Natuurvel. Tijdsch. 1934, 16: 75-80
    112.Lehner P N. Handbook of Ethological Methods (2nd edition). Cambridge: Cambridge University Press, 1996
    113.Lisa A C, William H C. Effect of acidic pH on benthic macro invertebrate communities in stream microcosms. Hydrobiologia, 1998, 379: 135 - 145
    114. Lucia H A, Ana L K, Rantin F T. The effects of temperature on the cardio - respiratory function of the neotropical fish Piaractus mesopotamicus. Journal of Thermal Biology, 2002, 27: 299 - 308
    115.MacNeill N. A study of the caudal gills of dragonfly larvae of the suborder Zygoptera. Proc. Roy. Irish Acad. B. 1960, 61: 115 - 140
    116. Martin P M, Bateson P. Measuring Behavior, an Introductory Guide (2nd edition). London: Cambridge University Press, 1993
    117.Mcdermott F A. Lampyridae. In: Steel W O ed. Coleopterorum Catologus Supplementa (9). 2nd ed. W. Junk's - Gravenhage, Netherland. 1966, 149
    118.McDermott F A. The ecologic relations of the photogenic function among insects. Z. Wiss. Insect, 1914, 10: 303 - 307
    119.Merritt R W, Cummins K W (eds.). An introduction to the aquatic insects of north America, 2~(nd) ed. Kendall / Hunt Publishing Company, Dubuque, Jowa. 1984, 27-37
    120.Messner B, Adis J, Ribeiro E F. A comparative study on plastron structures in mites. Deutsche Entomologische Zeitschrift, 1992, 39: 159 - 176
    121.Messner B, Adis J. There is only facultative plastron respiration in diving web spiders (Araneae). Deutsche Entomologische Zeitschrift, 1995, 42 (2): 453 - 459
    122.Miall L C. The Natural History of Aquatic Insects. Macmillan, London, 1895
    123. Miller P J. Some features of the respiratory system of Hydrocyrius columbiae Spin. (Belostomatidae:Hemiptera).J.Insect.Physiol.1961,6:243-271
    124.Miller P L.Respiration-aerial gas transport.In The physiology of insect.Edited by M.Rockstein.2~(nd) edition.Academic Press,New York.1974,Vol.6,345-402
    125.Miller P L.Responses of rectal pumping to oxygen lack by larval Calopteryx splendens(Zygoptera:Odonata).Physiological Entomology,1993,18:379-388
    126.Miller P L.The Function of Haemoglobin in Relation to the Maintenance of Neutral Buoyancy in Anisops Pellucens(Notonectidae,Hemiptera).J.Exp.Biol.1966a,44:529-543
    127.Miller P L.The regulation of breathing in insect.Adv.Insect Physiol.,1966b,3:279-354
    128.Morgan A H,Grierson M C.The functions of the gills in burrowing mayflies (Hexagenia recurvata).Physiol.Zool.1932,5:230-245
    129.Morgan A,O'Neil H D.The function of the tracheal gills in larvae of the caddisfly Macronema zebratum Hagen.Physiol.zool.1931,4:361-379
    130.Morse J C,Yang L F,Tian L X.Aquatic insects of China useful for monitoring water quality.Hohai University Press.Nanjing.1984,330-399
    131.Nakane T,and Ohba N.The observation and breeding of fireflies.New Science Press,Tokyo.1981
    132.Nikam T B and Khole V V.Insect spiracular systems.Ellis Horwood Series in Entomology and Acarology.1989,75-86
    133.Ohba N.Breeding and observation of the fireflies.Hartshuppan Press,Tokyo,1997
    134.Ohba N.Flash communication system of Japanese fireflies.Integr.Com.Biol.,2004,44:225-233
    135.Ohba N.Rearing aquatic glowworms in a water tanks as an eco-system,Insectarium,1991,28(6):12-15
    136.Ohba N.Studies on the communication system of Japanese fireflies.Sci.Rept.Yokosuka City Mus.,1983,3:1-62
    137.Ohmiya Y,Sumiyam,Viviani V R.Comparative aspects of a luciferase molecule from the Japanese luminous beetle.Rhagophthalums ohbai.Sci.Repto Yokolsuka City Mus,2000,47:31-38
    138.Okada,Y K.Two Japanese aquatic glowworms.Transactions of the Entomological Society of London.1928,76:101-109
    139.Poisson R L.Anisops producta Fieb.(Hemiptere:Notonectidae):observations sur son anatomie et sa biologie.Arch.Zool.Exp.Gen.1926,65:181-208
    140.Raj J S.An aquatic glow-worm from Alleppey.Curr.Sci.,1952,21:222
    141. Richard D R, Kyler J A, Greg J M, James R S. Respiratory frequency, dive behaviour and social interactions of leatherback turtles, Dermochelys coriacea during the inter-nesting interval. Journal of Experimental Marine Biology and Ecology, 2005, 316: 1 -16
    
    142. Robert A L. Bioluminescence Methods and Protocols, Totowa, New Jersey: Humana Press, 1998: 1-25
    
    143.Snodgrass R E. Principles of insect morphology. McGran - Hill, book company, New York and London, 1935, 423 - 463
    
    144. Snyder G K, Ungerman G, Breed M. Effects of hypoxia, hypercapnia, and pH on ventilation rate in Nauphoeta cinerea. J. Insect Physiol, 1980, 26: 699 - 702
    
    145. Stanley I D and Charles R. Size-specific swimming behavior of Daphnia pulex. Journal of Plankton Research, 1991, 13 (6): 1367 - 1379
    
    146. Stanley I D, Shanna R, Ralph T and Winfried L. Daphnia swimming behavior during vertical migration. Journal of Plankton Research, 1997, 19 (8): 969 - 978
    
    147. Stanley I D, Shanna R, Ralph T and Winfried L. Individual swimming behavior of Daphnia: effects of food, light and container size in four clones. Journal of Plankton Research, 1997, 19 (10): 1537 - 1552
    
    148.Stocher J G. Ecological energetics and natural history of Hedriodiscus truquii (Diptera) in two thermal spring communities. J. Fish. Res. Bd. Canada.1971, 28: 73 - 94
    149. Thomas C O, Matthew C B and Stanley I D. Swimming behavior of Daphnia: its role in determining predation risk. Journal of Plankton Research, 1998, 20 (5): 973 - 984
    150. Thorpe W H. Plastron respiration in aquatic insects. Biol. Rev. 1950, 25: 344 - 390
    151.Tochimoto H, Maki T, Afzal M, Tanabe S. Accumulation of trace metals in aquatic insect Stenopsyche marmorata Navas transferred in streams. Ecotoxicology and Environmental Safety, 2003, 56 (2): 256 - 264
    152. Varley G C. Aquatic insect larvae, which obtain oxygen from the roots of plants. Proc. R. Era. Soc. Lond. A. 1937, 12: 55 - 60
    153.Walshe B M. The function of haemoglobin in Chironomus plumosus under natural conditions. J. Exp. Biol. 1950, 27: 73 - 95
    
    154. Ward J V. Aquatic Insects Ecology. Chichester. John Wile & Sons, 1992, 1 - 40
    
    155. Welch P S. Contributions to the biology of certain aquatic Lepidoptera. Ann. Ent. Soc. Amer. 1916,9: 159- 190
    
    156. Welch P S. The respiratory mechanism in certain aquatic Lepidoptera. Trans. Amer. Micr.Soc, 1922,41:29-50
    157. Wendy E H, Paul C J, Kim A A. Selenium accumulation patterns in lotic and lentic aquatic systems. Science of the Total Environment, 2006, 366 (1): 367 - 379
    
    158.Werner N. Swimming in aquatic insects. In: Comprehensive Insect Physiology Biochemistry and Pharmacology. Kerkut G A and Gilbert L I editor. Volume 5, Nervous System: sttucture and motor function. Pergamon Press, New York, 1985, 476 -483
    
    159.Wichard W, Komnick H. Structure and function of the respiratory epithelium in the tracheal gills of stonefly larvae. J. Insect Physiol. 1974, 20: 2397 - 2406
    
    160.Wigglesworth, V B. The principles of insect physiology, 5th ed. Chapman & Hall, London. 1953
    
    161. Wilson T, Woodland J H. Bioluminescence. Annu. Rev. Cell Dev. BL, 1998, 197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700