水牛IFN-γ克隆表达及其单克隆抗体的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水牛(Bubalus bubalus, Bb),哺乳纲牛科(Bovidae)水牛属,适宜于水田耕作。水牛奶质十分优良,所含蛋白质、氨基酸、乳脂、维生素、微量元素等均高于黑白花牛奶,其营养价值相当于黑白花牛奶的两倍,作为一类高级营养食品,水牛奶制品日渐成人们消费的“新宠”,在商业上具有潜在的巨大的价值。水牛肉,特别是小水牛肉,味香、鲜嫩,且脂肪含量少。另外,水牛角可以入中药。中国是水牛资源十分丰富的国家,据联合国粮农组织(FAO)统计资料,截止2003年,我国水牛饲养量为2275.9万头,已上升为世界第三位。
     结核病(Tuberculosis)由结核分枝杆菌引起的人畜共患病。人接触患结核病的水牛或者食用未经消毒的患结核病水牛的奶,会引起人的结核病。水牛感染结核病,成为制约奶水牛发展的潜在威胁。到目前为止,我国水牛结核病检疫还没有一套完整可行的方法,一直是采用黄牛的检测标准进行检测,即结核菌素皮内试验(TST)。TST为法定的黄牛结核病检疫方法,应用该标准检测水牛结核病误差较大,不适合水牛的检测。因此,寻找一种新型的水牛结核病检测方法迫在眉睫。
     干扰素是一类具有抗病毒、抗肿瘤和免疫调节作用的多种功能的免疫活性蛋白。γ-干扰素(IFN-γ)是Ⅱ型干扰素,IFN-γ体外释放法是目前检测结核病最具有应用前景的检测方法之一,它是在特异性抗IFN-γ单克隆抗体的基础上建立的对于待检样品中IFN-γ定性定量分析的一种实验方法。国外学者已经将抗原特异性IFN-γ试验的应用于多种动物疫病的检测。相对而言,水牛抗原特异性IFN-γ试验研究报道较少。
     本研究克隆表达并纯化了水牛IFN-γ(BbIFN-γ),对其进行了抗病毒活性分析,制备了抗BbIFN-γ单克隆抗体与多克隆抗体,并在此基础上建立了检测BbIFN-γ的双抗体夹心ELISA方法。
     1.水牛IFN-y的克隆与原核/酵母表达
     通过Con A刺激,从水牛全血中提取BbIFN-γmRNA,根据GenBank上发布的广西沼泽型水牛的IFN-y mRNA序列设计引物,扩增出cDNA,克隆到原核表达载体pET-30a,转化BL21,经IPTG诱导,表达出大小为22kD左右的可溶性重组蛋白。
     根据测序结果,把密码子改为毕赤酵母偏爱密码子并全基因合成,亚克隆到酵母穿梭质粒pPICZaA,转化酵母感受态GS115,经甲醇诱导,表达出18kD左右的蛋白。
     2.水牛IFN-y抗VSV/IBRV病毒活性的鉴定
     为了鉴定原核和酵母表达的蛋白是否具有抗病毒活性,检测了IFN-y抑制水疱性口炎病毒(VSV)和牛传染性鼻气管炎病毒(IBRV)在牛肾细胞系(MDBK)的增殖能力。结果显示,原核表达与酵母表达的两种蛋白的抗VSV活性分别为2.05×105U/mL和7.44×105U/mL,抗IBRV活性分别为5.22×104U/mL和2.61×105U/mL。所表达的两种重组BbINF-γ蛋白均具有抗病毒活性,原核表达的蛋白抗IBRV活性比酵母表达的偏低。
     3.水牛IFN-γ单/多克隆抗体的制备与鉴定
     本研究利用两种表达蛋白混合免疫Balb/C小鼠,并用两种蛋白分别筛选杂交瘤细胞株,获得五株高效价的单克隆抗体,分别命名为1C3、2C3、3E7、4G6、4H4,腹水效价分别为2.56×104、5.12×104、1.28×104、2.56×104、5.12×104。Western blot分析显示五株单抗均能特异性结合BbIFN-γ,表明五株单抗均为BbIFN-γ的特异性单抗。间接ELISA表明,McAb不与其他抗原反应,进一步证实其特异性良好。
     利用两种表达蛋白混合免疫日本大耳白兔,获得兔高免血清,经纯化得到多克隆抗体,Western blot分析显示多抗能特异性结合BbIFN-γ
     4.双抗体夹心ELISA方法的建立
     用2C3株单抗、多抗及辣根过氧化物酶(HRP)标记的羊抗兔IgG,建立双抗体夹心ELISA方法,检测BbIFN-γ,结果其检测的灵敏度达到125pg/mL,灵敏度高。
     该方法的建立为定量检测BbIFN-γ试剂盒的研制奠定了基础。该研究建立了高效的检测BbIFN-γ的免疫学方法,为水牛结核病的检测和防治奠定了基础。
Buffalo(Bubalus bubalus, Bb), Mammalia Bovidae Buffalo species, is suitable for paddy cultivation. Buffalo milk contains higher protein, amino acids, butterfat, vitamins, trace elements than in Holstein milk with nutrition value of it is almost twice of Holstein milk. As a class of high nutritious drink, it is gradually becoming the "new favorite" of human consumption. It has potentially of great commercial value. Buffalo meat, especially young buffalo meat, is characterized by fresh, delicious and low fat content. In addition, Buffalo horn can be used to make traditional Chinese medicines. Buffalo resources are abundant in China, according to FAO statistics, by the end of 2003, the amount of buffalo is 22.759 millions in China, has risen to the third in the world.
     Tuberculosis is a zoonoses caused by Mycobacterium tuberculosis. Human may infect with TB from humans by contacting buffalo with TB, or drinking unpasteurized buffalo milk with TB. Buffalo TB has been the potential threat of the development of milking buffalo. So far, buffalo quarantine of TB by the use of tuberculin skin test(TST) which is widely used in dairy cattle is never calibrated. Therefore, development of a new method for the dection of buffalo tuberculosis is in urgent need.
     Interferon is a class of proteins which have anti-virus, anti-tumor properties and immune regulation effect. IFN-γis interferon typeⅡ, IFN-y release in vitro to detect of TB is one of the most promising detection methods. It is a method for IFN-γqualitative and quantitative analysis based on the specific anti-IFN-y monoclonal antibody. Foreign scholars have applied antigen-specific IFN-y test to the detection of a variety of animal diseases. Relatively speaking, studies t of antigen-specific IFN-γtest of specific diseases for buffalo are rare.
     In this study, we cloned, expressed, purified and analyzed IFN-γgene of buffalo(BbIFN-γ), prepared monoclonal antibody and polyclonal antibody of BbIFN-γ, established double-antibody sandwich ELISA method for BbIFN-γ.
     1. Cloning and expression of the BbIFN-γin Escherichia coli and Yeast
     Total RNA was isolated from buffalo peripheral blood lymphocytes, which were stimulated with Con A. Basing on sequence of Guangxi swamp type of bufflo IFN-y mRNA published in GenBank, a pair of primers were designed, cDNA was amplified and cloned into the prokaryotic expression pET-30a vector. Then after being transformed it into E. coli BL21 and induced by IPTG, soluble protein with the size of about 22kD was expressed.
     According to sequencing results, the codons were changed based on Pichia pastoris codon usage bias and synthesized by the company, subcloned it into yeast shuttle plasmid pPICZaA, transformed it into yeast competent cell GS115, induced by methanol to express protein with the size of about 18kD.
     2. Determination of anti-VSV and IBRV activity for BbIFN-γ
     In order to identify whether the expressed of prokaryotic and yeast BbIFN-γhas antiviral activity or not, the ability to inhibit the replication of VSV or IBRV in MDBK cells was detected. Prokaryotic and yeast expression of two proteins anti-VSV activity was proved to be 2.05×105U/mL and 7.44×105U/mL, anti-IBRV virus activity was proved to be 5.22×104U/mL and 2.61×105U/mL. Although the two recombinant BbIFN-γhave anti-viral activity, the BbIFN-y from yeast yielded higher anti-IBRV activity than the prokaryotic protein.
     3. Preparation and identification of BbIFN-γmonoclonal antibody
     In this study, we mixed the two proteins and immunized Balb/C mice. The proteins were independently used to screen hybridoma cells able to produce monoclonal antibody to BbIFN-γ. Finally five monoclonal antibodies with high titer, named 1C3,2C3,3E7, 4G6,4H4 were obtained. The titers of ascites were 2.56×104,5.12×104,1.28×104, 2.56×104,5.12×104 respectively. Western blot analysis showed that five monoclonal antibodies can bind BbIFN-γspecifically. Indirect ELISA showed that McAbs have no reaction with other antigens, which further confirmed the specificity is good.
     In addition, we mixed the two proteins and immunized rabbits, and rabbits hyperimmune sera were obtained. After purifying, polyclonal antibody IgG can be obtained. Western-blot analysis showed that polyclonal antibodies can bind BbIFN-γspecifically.
     4. Establishment of double-antibody sandwich ELISA
     By using McAb 2C3, PcAb and Goat anti Rabbit IgG-HRP, a double-antibody sandwich ELISA was established. The sensitivity of this method to detect BbIFN-γreached 125pg/mL, The establishment of this method laid the foundation of the development of the BbIFN-γdetection kit and diagnosis of buffalo TB or other diseases by using BbIFN-γdetection kit.
引文
1. 蔡宝祥.家畜传染病学(第4版).北京:中国农业出版社,2000:110-114.
    2.曹瑞兵,周斌,陈德胜,陈溥言.猪α-干扰素的基因克隆、改造、表达及其活性测定.南京农业大学学报,2003,26(2):71-75.
    3.常晓辉.临床5种检测结核分枝杆菌方法的比较研究.上海医学检验杂志,2002,17(4):226-229.
    4.陈怀涛,许乐仁主编.北京:中国农业大学出版社,2005:614-620.
    5. 陈利弘.人源化抗CTLA-4单链抗体及其免疫毒素融合蛋白的表达与纯化研究:原核大肠杆菌与真核毕赤酵母表达系统.[硕士学位论文].成都:四川大学图书馆,2006.
    6. 陈颖钰,邓铨涛,郭爱珍,晁彦杰,匡有吉,于清龙,陈焕春.基于结核菌素与CFP10/ESAT6的牛IFN-γ检测法在牛结核病诊断中的比较研究.中国奶牛,2008,6:11-14.
    7. 陈永雄.水牛结核病初报.中国兽医杂志,1983,9(6):10.
    8.杜平.医用实验病毒学.北京:人民军医出版社,1985,190-201.
    9. 高建忠,朱卫东,黄玉帮.干扰素的研究进展.动物医学进展,2004,21(1):58-59.
    10.何萍,李旭东.结核杆菌的检验方法进展.中国现代临床医药杂志,2004,5(4):79-80.
    11.李川,谭亚娣,陈颖钰, 胡巧云,马艳,张桂荣,钦博,晁彦杰,陈焕春,郭爱珍.牛IFN-γ原核表达、单克隆抗体制备及其ELISA检测方法的建立.生物工程学报,2007,23(1):40-45.
    12.李岩,邵念鹏,彭玉麟.干扰素-γ的研究与临床应用.河北省科学院学报,2001,18(3):174-178.
    13.梁明振,杨炳壮,苏安伟,陆月清,赵红梅,李忠权.水牛奶营养价值评价.广西畜牧兽医,2007,23(3):124-126.
    14.廖娟红.新型牛结核IFN-γ体外释放检测法的建立和应用.[硕士学位论文].武汉:华中农业大学图书馆,2010
    15.刘冬光,廖娟红,于清龙,陈颖钰,陈焕春,郭爱珍.融合蛋白Rv3872/CFP-10/ESAT-6的制备及在牛结核诊断中的初步应用.中国奶牛,2009(10):7-11.
    16.刘思国,王春来,宫强,王牟平,彭永刚,张秀华,郭洋,郭设平,邵美丽.牛分枝杆菌特异性PCR检测方法的建立及初步应用.中国预防兽医学报,2006, 28(1):80-83.
    17.刘秀梵.单克隆抗体的农业上的应用.合肥:徽科技出版社,1994
    18.陆承平.兽医微生物学(第3版).江苏南京:中国农业出版社,2001:331-336.
    19.秦立廷,王喜军,胡森,刘思当,步志高,李志中,陈伟业,葛金英.牛γ-干扰素在重组杆状病毒中的表达及其抗病毒活性的测定.微生物学报,2007,47(3):503-507.
    20.世界动物卫生组织,哺乳动物、禽、蜜蜂A类和B类疾病诊断试验和疫苗标准手册.农业部畜牧兽医局译.北京:中国农业科学技术出版社,2000:337-349.
    21.世界动物卫生组织.陆生动物诊断试验和疫苗手册(哺乳动物、禽鸟和蜜蜂).农业部畜牧兽医局/中国动物卫生与流行病学中心译.2007:399-404.
    22.谢志勤,谢芝勋,刘加波,庞耀珊,邓显文,谢丽基,温娟.奶水牛牛分枝杆菌的分离与鉴定.畜牧与兽医,2008,40(11):32-35.
    23.姚敏捷,黄汉朝,攸连秀.抗人层粘连蛋白单克隆抗体的制备及特性分析.细胞与分子免疫学杂志,2003,19(1):84-85
    24.余大海,韦一然,蔡宏,朱玉贤.牛结核病鉴别诊断的方法研究.中国人兽共患病学报,2006,22(10):932-935.
    25.曾寿瀛.现代乳与乳制品加工技术.中国农业出版社,2003.
    26.张桂荣.牛结核病特异抗体间接ELISA检测方法的建立及初步应用.[硕士学位论文].武汉:华中农业大学图书馆,2006
    27.张君,于三科..干扰素-γ介导的抗弓形虫作用及其机理.动物医学进展,2000,1(1):25-27.
    28.赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析.生物工程学报,2000,16(3):308-311.
    29.周鹏,郭安平,沈文涛,黎小瑛,梁国栋.毕赤氏酵母SMD1168/HuIFNα-2b分泌型表达的研究.药物生物技术,2003,10(5):287-291.
    30.朱冬冬.牛IFN-γ单克隆抗体的研制与抗体夹心ELISA检测牛结核方法的建立及初步应用.[硕士学位论文].扬州:扬州大学图书馆,2007
    31. Adah SA, Bayly SF, Cramer H, Silverman RH, Tonence PF. Chemistry and biochemistry of 2',5'-oligoadenylate-based antisense strategy. Curr Med Chem,2001, 8(10):1189-1212.
    32. Aderem A, Underhill D M. Annu Rev Immunol,1999,17:593-623.
    33. Amadori M, Tameni S, Scaccaglia P, et al. Antibody Tests for Identification of Mycobacterium Bovis-Infected Bovine Herds. J Clin Microbiol.1998,36(2): 566-568.
    34. Amieosante M, Houde M, Guaraldi G, Saltini C. Sensitivity and specificity of a multi-antigen ELISA test for the serological diagnosis of tuberculosis. IntJ Tuberc Lung Dis.1999,3(8):736-740.
    35. Andersen P, Munk ME, Polloek JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. Lancet,2000,335(9235):1099-1104.
    36. Basler CF, Garcia-Sastre A. Viruses and the type I interferon antiviral system: induction and Int Rev Immunol,2002,21(4-5):305-337.
    37. Becker DM, Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol,1991,194:182.
    38. Bengis RG, Kriek NP, Keet DF, Raath JP, de Vos V, Huchzermeyer HF. An outbreak of bovine tuberculosis in a free-living African buffalo(Syncerus caffer-sparrman) population in the Kruger National Park:a preliminary report. Onderstepoort J Vet Res.1996,63(1):15-18.
    39. Bonjardim CA. Interferons (IFIVs) are immune responses-and viruses cytokines in both innate and adaptive antiviral action. Microbes Infect,2005,7(3):569-578.
    40. Cerretti DP, Mckereghan K, Larsen A, Cosman D, Gillis S, Baker PE. Cloning, sequence and expression of bovine interferon-gamma. Immunol,1986,136(12): 4561-4564.
    41. Cho YS, Jung SC, Kim JM, Yoo HS. Enzyme-linked immunosorbent assay of bovine tuberculosis by crude mycobacterial protein 70. J Immunoassay Immunochem.2007, 28(4):409-418.
    42. Clarke CJ, Trapani JA, Johnstone RW. Mechanisms of interferon mediated anti-viral resistance. Curr Drug Targets Immune Endocr Metabol Disord,2001,1(2):117-130.
    43. Colarow L, Turini M, Teneberg S, Berger A. Characterization and Biological Activity of Gangliosides in buffalo Milk. Biochimica et Biophysica Acta,2003, 1631:94-106.
    44. Cregg JM, Tschopp JF, Stillman C, et al. Biotechnolog,2001,5(4):479-485.
    45. Dockrell HM, Weir RE. Whole blood cytokine assay s-a new generation of diagnostic tests for tuberculosis?. Int J Tuberc Lung Dis,1998,2(6):441-442.
    46. Dolin PJ, Raviglione MC, Kochi A. Global tuberculosis incidence and mortality during 1990-2000. Bull World Health Organ,1994,72(2):213-220.
    47. Dominguez CM. The interferon and the antiviral defense. An R Acad Nac Med (Madr),2006,123(2):321-339.
    48. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. Journal of American Medical Association,1999,282(7):677-686.
    49. Gao Q, Kripk K, Arinc Z, Voskuil M, Small P. Comparative expression studies of a complex phenotype:Cord formation in mycobacterium tubeculosis. Tuberculosis, 2004,84:188-196.
    50. Giuseppina A, Enrico T, Andrea M. Characterization of Buffalo Milk by Pnuclear Magnetic Resonance Spectroscopy. Journal of Food Composition and Analysis,2006, 19:843-849.
    51. Gormley E, Doyle MB, Fitzsimon T, McGill K, Collins JD. Diagnosis of Mycobacterium bovis infection in cattle by use of the gamma-interferon(Bovigam) assay. Vet Microbiol,2006,112(24):171-179.
    52. Gosling JP. Immunoassays A Practical Approach.America:Oxford University Press. 2000:41.
    53. Han BZ, Meng Y, Li M, Yang YX, Ren FZ, Zeng QK, Nout MJR A Survey on the Microbiological and Chemical Composition of Buffalo Milk in China. Food Control, 2007,18:742-746.
    54. Harrington NP, Surujballi OP, Prescott JF, Duncan JR, Waters WR, Lyashchenko K, Greenwald R. Antibody responses of cervids(Cervus elaphus) following experimental Mycobacterium bovis infection and the implications for immunodiagnosis. Clin Vaccine Immunol.2008,15(11):1650-1658.
    55. Haus O. The genes of interferons and interferon-related factors:localization and relationships with chromosome aberrations in cancer. Arch Immunol Ther Exp (Warsz),2000,48(2):95-100.
    56. Heim MH. Intracellular signalling and antiviral effects of interferons. Dig Liver Dis, 2000,32(3):257-263.
    57. Hein WR, Tomasovic AA. An abattoir survey of tuberculosis in feral buffalo. Australian Veterinary Journal,1981,57(12):543-547.
    58. Hurlock EC. Interferons:ntial roles in affect. Med Hypotheses,2001,56(5):558-566.
    59. Issacs A, Lindenmann J. Virus interference:I. The interferon. Proc R Soc Lond Ser, 1957,147(927):258-263.
    60. Jasmer RM, Nahid P, Hopewell PC. Clinical practice Latent tuberculosis infection. N Engl J Med,2002,347(23):1860-1866.
    61. Kanameda M, Ekgatat M. Isolation of mycobacterium bovis from the water buffalo(Bubalus bubalis). Tropical Animal Health and Production,1995,27(4): 227-228.
    62. Kashima T, Morichita A, Iwata H, Maeda K, Inoue T. Expression of bovine cytokines in Escherichia coli. VetMed Sci,1999,61(2):171-173.
    63. Khabar KS, Dhalla M, Siddiqui Y, Zhou A, AI-Ahdal MN, Der SD, Silverman RH, Williams BR. Effect of deficiency of the double-stranded RNA-dependent protein kinase, PKR, on antiviral resistance in the presence or absence of ribonuclease L: HSV-1 replication is particularly sensitive to deficiency of the major IFN-mediated enrymes. J Interferon Cytokine Res,2000,20(7):653-659.
    64. Koch R. Die aetiologie der tuberculose. Berl Klin Wschschr,1882,15:221-230.
    65. Krupnova OF, Sizova NI, Smolianitskii AG. Increase in the yield of recombinant proteins in Saccharomyces cerevisiae yeasts as a result of optimizing their culture conditions. Prikl Biokhim Mikrobiol,1995,31(3):311-315.
    66. Kunzi MS, Pitha PM. Interferon research:a brief history. Methods Mol Med,2005, 116:25-35.
    67. Levy DE, Garcia-Sastre A. The virus battles:IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev,2001,12(2-3):143-156.
    68. Liebana E, Aranaz A, Mateos A, Vilafranca M, Gomez-Mampaso E, Tercero JC, Alemany J, Suarez G, Domingo M, Dominguez L. Simple and rapid detection of Mycobacterium tuberculosis complex organisms in bovine tissue samples by PCR. J Clin Microbiol.1995,33(1):33-36.
    69. Lilenbaum W, Pessolani MC, Fonseca LS. The use of Ag85 complex as antigen in ELISA for the diagnosis of bovine tuberculosis in dairy cows in Brazil. J Vet Med B Infect Dis Vet Public Health.2001,48(3):161-166.
    70. Liu SG, Guo SP, Wang CL, Shao ML, Zhang XH, Guo Y, Gong Q. A novel fusion protein-based indirect enzyme-linked immunosorbent assay for the detection of bovine tuberculosis. Tuberculosis(Edinb).2007,87(3):212-217.
    71. Manabe YC, Dannenberg AM Jr, Tyagi SK, Hatem CL, Yoder M, Woolwine SC, Zook BC, Pitt ML, Bishai WR. Different strains of Mycobacterium tuberculosis cause various spectums of disease in the rabbit model of tuberculosis, infect immune, 2003,71:6004-6011.
    72. Murakami K, Uchiyama A, Kokuho T, Mori Y, Sentsui H, Yada T, Tanigawa M, Kuwano A, Nagaya H, Ishiyama S, Kaki H, Yokomizo Y, Inumaru S. Production of biologically active recombinant bovine interferon-gamma by two different baculovirus gene expression systems using insect cells and silkworm larvae. Cytokine,2001, 13(1):18-24.
    73. Norehoek GT, Van Embden JD, Kolk AH. Reliability of nucleic acid amplification for detection of Mycobacterium tubeculosis:an international collaborative quality control study among 30 laboratories. JClin Microbiol,1996,34(10):2522-2525.
    74. Pang KR, Wu JJ, Huang DB, Tyring SK, Baron S. Biological and clinical basis for molecular studies of interferons. Methods Mol Med,2005,116:1-23.
    75. Qin LT, Wang XJ, Hu S, Liu SD, Bu ZG. Expressions of bovine interferon gamma in recombinant baculovirus and determination of its antiviral activity. Acta Microbiol Sin,2007,47(3):503-507.
    76. Raggo C, Habermehl M, Babiuk LA, Griebel P. The invivo effects of recombinant bovine herpesvirus-1 expressing bovine interferon-gamma. Gen Virol,2000,81(11): 2665-2673.
    77. Rittich B, Spanova A. Electrotransformation of bacteria by plasmid DNAs:statistical evaluation of a model quantitatively describing the relationship between the number of electrotransformants and DNA concentration. Bioelectroch Bioener,1996,40:233.
    78. Romero RE, Garzon DL, Mejia GA, Monroy W, Patarroyo ME, Murillo LA. Identification of Mycobacterium bovis in bovine clinical samples by PCR species-specific primers. Can J Vet Res.1999,63(2):101-106.
    79. Rothel JS, Jones SL, Corner LA, Cox JC, Wood PR. The gamma-interferon assay for diagnosis of bovine tuberculosis in cattle:conditions affecting the production of gamma-interferon in whole blood culture. Aust Vet J.1992,69(1):1-4.
    80. Ryan TJ, Buddle BM, De Lisle GM. An evaluation of the gamma interferon test for detecting bovine tuberculosis in cattle 8 to 28 days after tuberculosis following skin testing. Res Vet Sci.2000,69(1):57-61.
    81. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev,2001,14(4): 778-809.
    82. Schiller I, Vordermeier HM, Waters WR, Whelan AO, Coad M, Gormley E, Buddle BM, Palmer M, Thacker T, McNair J, Welsh M, Hewinson RG, Oesch B. Bovine tuberculosis:effect of the tuberculin skin test on in vitro interferon gamma responses. Vet Immunol Immunopathol.2010, Feb 13.
    83. Schneider B, Hone A, Tolba RH, Fischer HP, Blumel J, Eis-Hubinger AM. Simultaneous persistence of multiple genome variauts of human parvovirus B19. J Gen Virol,2008,89(1):164-176.
    84. Sen GC. Novel functions of interferon-induced proteins. Semin Cancer Biol,2000, 10(2):93-101.
    85. Shi XJ, Zheng C, Han CL, Xia. Expressions of bovine interferon-y in Escherichia coli and Pichia pastoris and comparision of their antiviral activities. J Aaric Biotechnol,2005,13(4):461-467.
    86. Smith T. A comparative study of bovine tuberculosis bacilli and of human bacilli from sputum. Exp Med,1898,3:451-511.
    87. Tollefsen S, Vordermeier M, Olsen I, Storset AK, Reitan LJ, Clifford D, Lowrie DB, Wiker HG, Huygen K, Hewinson G, Mathiesen I, Tjelle TE. DNA injection in combination with electroporation:a novel method for vaccination of farmed ruminants. Scandinavian Journal of Immunology,2003,57(3):229-238.
    88. Tufariello JM, Chan J, Flynn JL. Latent tuberculosis:mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect Dis,2003,3(9):578-590.
    89. Wards BJ, Collins DM, de Lisle GW. Detection of Mycobacterium bovis in tissues by polymerase chain reaction. Vet Microbiol.1995,43(2-3):227-240.
    90. Waters WR, Sacco RE, Fach SJ, Palmer MV, Olsen SC, Kreeger TJ. Analysis of mitogen-stimulated lymphocyte subaset proliferation and nitric oxide production by periphral blood mononuclear cells of captive elk (Cervus elaphus). Journal of wildlife diseases,2002,38(2):344-351.
    91. Wedlock DN, Doolin EE, Parlane NA, Lacy-Hulbert SJ, Woolford MW, Buddie BM. Effects of yeast expressed recombinant interleukin-2 and interferon-gamma on physiological changes in bovine mammary glands and on bactericidal activity of neutrophils. Dairy Res,2000,67 (2):189-197.
    92. Wood PR, Comer LA, Plackett P. Development of a simple, rapid in vitro cellular assay for bovine tuberculosis based on the production of gamma interferon. Res Vet Sci.1990,49(1):46-49.
    93. Wood PR, Comer LA, Rothel JS, Field comparison of the interferon-gamma assay and the intradermal tuberculin test for the diagnosis of bovine tuberculosis. Agust Vet J.1991,68(9):286-290.
    94. Zanini MS, Moreira EC, Lopes MT, Mota P, Salas CE. Detection of Mycobacterium bovis in milk by polymerase chain reaction. Zentralbl Veterinarmed B.1998,45(8): 473-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700