设计洪水估算方法的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计洪水计算是工程水文学的核心内容和重要组成部分。国内外水文学者在设计洪水领域内做了大量的理论研究、方法探索和实际应用工作,取得了丰硕的研究成果,并积累了许多经验。论文结合水利部重大科研项目《水库设计运用专题研究》之一“国内外水库设计洪水理论和防洪调度方法评价”开展研究工作。论文的主要工作和结论包括:
     (1)在综述和总结国内外有关文献的基础上,分析探讨了洪水频率分析、无资料地区设计洪水和PMP/PMF估计等的研究进展和存在问题。
     (2)采用统计试验的方法对P-Ⅲ型分布的多种参数估计方法进行了比较研究。结果表明:就无偏性而言,对于连序系列,数值积分单、双权函数法较好,对于不连序系列,线性矩法较好;在稳健性方面,对于连序和不连序系列,线性矩法都是最好的。线性矩是样本次序统计量的某种线性组合,在估计中该方法不包含样本值的高次方运算,仅是一阶样本矩的计算,所以估计结果受样本中个别点据误差的影响小,估计的偏差小且更稳健。
     (3)区域频率分析能充分利用相似流域组的资料来扩充信息量,克服单站样本系列资料短缺的局限,解决无资料地区设计洪水的估算问题。无资料地区设计洪水的区域频率分析包括选择相似流域组、估计指标洪水以及推求区域综合增长曲线和设计流域的洪水频率曲线。以长江中游和汉江下游的部分流域为例,采用该方法推求了无资料地区的设计洪水,结果表明该方法是可行的,值得进一步研究和推广。
     (4)综述国内外可能最大暴雨洪水的研究进展,评价其估算方法的特点。通过分析比较国内外PMP/PMF的估算成果,指出了我国研究所存在的问题,并探讨了造成我国PMP/PMF估算成果偏大的原因,提出和建议今后的研究方向。
Design flood estimation is the key content and important part of engineering hydrology. A great many of theories and methods of design flood estimation have been studied and applied by hydrologists, and lots of achievements and experience were obtained. This paper was part of the key research projects sponsored by the Ministry of Water Resources, "The assessment of reservoir design flood theories and flood control methods at home and broad". The main works and conclusions were summarized as follows:
    (1) Based on the review and summary of the available literatures and guidelines of design flood all over the world, the research advancements and existent problems for flood frequency analysis, flood estimation in un-gauged area and PMP/PMF estimators were analyzed and discussed.
    (2) The statistical experiment was applied to compare different parameter estimation methods for P-Ⅲ distribution. The simulation results showed that: for the un-biasness property, numerical integral with single-weighted or double-weighted function performed well in the sequential series and L-moment(LM) was the best one in the series including historical flood respectively; LM was the best method in both series for the robustness property. LM could be expressed in terms of the linear combinations of order statistics and only made operation of one order sampling moments when it was applied to estimate parameters of some sort of distribution. Therefore, LM was little affected by the errors of several sample plots, and the results by the method of LM were more robust than the other ones.
    (3) Regional flood frequency analysis is a useful approach method that avoids the shortness of at-site sample series and estimates design flood for un-gauged area. Regional flood frequency analysis for un-gauged basins included selecting a pooling-group, estimating the index flood, deriving pooled growth curve and fitting flood frequency curve for tested basin. A case study on some sub-basins of Yangtze River and Han River indicated that this method was practicable and the further research and application was worthwhile.
    (4) The advancement of PMP/PMF estimation at home and abroad was introduced and analyzed. The results of PMP/PMF in several countries were compared. The reasons why the PMP/PMF estimators in China were larger than those of other countries were discussed. Some suggestions on the future research of PMP/PMF were also pointed out.
引文
[1] Benjamin F. Pose, Gary D. Tasker, and Jeanne C. Robbins. Estimating the magnitude and frequency of floods in rural basin of North Carolina-revised [R]. U.S. Geological Survey Water-Resources Investigations Report 01-4207, 2001, 44p.
    [2] Benson M.A. Evaluation of methods for evaluating the occurrence of floods [R]. Water Supply Paper 1550-A.U.S. Geological Survey, Reston, Va, 1962.
    [3] Biedermann R. et al. Safety of Swiss dams against floods: design criteria and design flood [A]. ICOLD, 16th Congress, Vol. Ⅳ, Q.63, R.22, San Francisco, 1988.
    [4] Boyd M.A., Pilgrim D.H., Cordery I. A Storage Routing Model Based on Catchment Geomorphology [J]. Journal of Hydrology, 1972, 17: 229-236.
    [5] Burn D.H. Evaluation of regional flood frequency analysis with a region of influence approach [J]. Water Resources Research, 1990, 26: 2257-2265.
    [6] Burn D.H. Catchment similarity for regional flood frequency analysis using seasonality measures [J]. Journal of Hydrology, 1997, 202: 221-220.
    [7] Burn D.H. and Goel N.K. The formation of groups for regional frequency analysis [J]. Hydrology Sci. J, 2000, 45(1): 97-112.
    [8] Bi-Huei Wang and Russell W. Revell, Conservatism of Probable Maximum Flood Estimates [J]. Journal of Hydraulic Engineering, 1983, 109 (3).
    [9] Bureau of Meteorology. The Estimation of Probable Maximum Precipitation in Australia: Generalised Short-Duration Method [R]. Australian Government Publishing Service, Canberra, 1994.
    [10] Castellarin A., Bum D.H. and Brath A. Assessing the effectiveness of hydrological similarity measures for flood frequency analysis [J]. Journal of Hydrology, 2001, 241: 270-285.
    [11] Chowdhury J.U., Stedinger J.R. Lu L.H. Goodness-of-fit test for regional generalized extreme value flood distributions [J]. Water Resource Research, 1991, 27:1765-1776.
    [12] Cohn T.A., DeLong L.L., Gilroy E. J., Hirsch R. M., Wells D. B. Estimating constituent loads [J]. Water Resource Research, 1989, 25 (5): 935-942.
    [13] Collier C.G., Hardaker P.J. Estimating probable maximum precipitation using a storm model approach [J]. Journal of hydrology, 1996, 183: 277-306.
    [14] Corrigan P., Fenn D., Kluck R. and Vogel J. L. Probable maximum precipitation for California calculation procedures [R]. Hydrometeorological Report, NO.58, 1998.
    [15] Corrigan P, Fenn D, Kluck R and Vogel J.L. Probable maximum precipitation for California [R]. Hydrometeorological Report, NO.59, 1999.
    [16] Cunanne C. A particular comparison of annual maximum and partial duration series met hods of flood frequency prediction [J]. Journal of Hydrology, 1973, 18: 257-271.
    [17] Cunnane C. Unbiased plotting positions-a review [J]. Journal of Hydrology, 1978, 37: 205-222.
    [18] Cunnane C. Statistical distributions for flood frequency analysis [M]. WMO Operational Hydrology Report, No.33, 1989.
    [19] Dan Rosbjerg. Partial Duration Series in Water Resources [M]. Institute of Hydrodynamics and Hydraulic Enguneering of Technical University of Denmark, 1993.
    [20] Dan Rosbjerg, Madsen H. Uncertainty measures of regional flood frequency estimators [J]. Journal of Hydrology, 1995, 167: 209-224.
    [21] Daniela Rezacova, Zbynek Sokol, Vit Kveton. Estimation of Probable Maximum Precipitation
    
    over the Catchments in the Czech Republic [J].
    [22] Draper N.R., Smith H. Applied Regression Analysis [M]. Wiley, New York, 1981.
    [23] Fill H.D., Stedinger J.R. Homogeneity tests based upon Gumbel distribution and a critical appraisal of Dalrymple's test [J]. Journal of Hydrology, 1995, 166: 81-105.
    [24] Francis P., John T., Riedel. Seasonal variation of 10-square-mile probable maximum precipitation estimates, United States east of the 105th meridian [R]. Hydrometeorological Report, NO.53, 1980.
    [25] Francia K., Schwartz, John F., Miller. Probable maximum precipitation and snowmelt criteria for Southeast Alaska [R]. Hydrometeorological Report, NO.54, 1983.
    [26] Gold E. Maximum day temperature and the tephigram. Met [R]. Office Professional Notes NO.63. Meteorological Office, Bracknell, UK, 1933.
    [27] Greenwood J.A. et al. Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form [J]. Water Resources Research, 1979, 15 (5): 1049-1054.
    [28] Guo Shenglian. Unbiased plotting position formulae for historical floods [J]. Journal of Hydrology, 1990, 121.
    [29] Guo Shenglian. A discussion on unbiased plotting positions for the general extreme value distribution [J]. Journal of Hydrology, 1990, 121.
    [30] Guo Shenglian. Nonparametric variable kernel estimation with historical floods and paleoflood information [J]. Water Resources Research, 1991, 27 (1).
    [31] Guo Shenglian. Discussion of new plotting position formula for Pearson type Ⅲ Distribution [J]. Journal of Hydraulic Engineering Division, ASCE, 1991, 117(4).
    [32] Guo Shenglian and Cunnane C. Evaluation of the value of pre-gauging data in flood quantile estimation [J]. Journal of Hydrology, 1991, 129.
    [33] Guo Shenglian. Parametric and nonparametric mixture density estimation with historical floods and paleoflood information [A]. IAHS Publication, 1993, 213.
    [34] Guo Shenglian. Nonparametic approach for design flood estimation with per-gauging data and information [A]. UNESCO, Water Science Series, Cambridge University Press, London, UK, 1995.
    [35] Guo Shenglian. New plotting position rule for flood records considering historical data and palaelogic information [A]. UNESCO, Water Science Series, Cambridge University Press, 1995.
    [36] Guo Shenglian, Kachroo R. K. Nonparametric estimation with low flood data [J]. Journal of Hydrology, 1996, 185 (1-4).
    [37] Haiden, T, Kahlig P, Kerschbaum M and Nobilis F.On the influence of mountains on large-scale precipitation: A deterministic approach toward orographic PMP [J]. Journal of Hydrology Science. 1990, 35(5): 501-510.
    [38] Hasen E.M., Schreiner L.C. and Millers F. Application of Probable Maximum Precipitation Estimates, U.S. east of 105th Meridian [R]. Hydrometeorological Report, NO.52, 1982.
    [39] Hasen E.M. Probable Maximum Precipitation for Design Floods in the United States [J]. Journal of Hydrology, 1987, 96 (4).
    [40] Hasen E.M., Fenn D.D., Schreiner L.C., Srodt R.W., Miller J. F. Probable maximum precipitation estimates-United States between the continental diveide and the 103rd meridian [R]. Hydrometeorological Report, NO.55, 1988.
    [41] Hansen E.M., Fenn D.D., Corrigan P., Vogel J.L., Schreiner L.C. and Srodt R.W. Probable maximum precipitation-Pacific northwest states Columbia river (including portions of Canada),
    
    Snake River and Pacific Coastal Drainages [R]. Hydrometeorological Report, NO.57, 1994.
    [42] Hosking J.R.M. L-moments: Analysis and estimation of distribution using linear combinations of order statistics [J]. Journal of Royal Statistical Soc, 1990, 52 (1): 105-124.
    [43] Hosking J.R.M. Wallis J.R. Some statistics useful in regional frequency analysis [J]. Water Resources Research, 1993, 29 (2): 271-281.
    [44] Hosking J.R.M., Wallis J.R. Regional frequency analysis: An approach based on L-moments [M]. Cambridge University Press, UK 1997.
    [45] Institute of Hydrology. Flood Estimation Handbook [M], Volume 1-5, Restatement and application of the Flood Studies Report rainfall-runoff method, UK, 1999.
    [46] Interagency Advisory Committee on Water Data, 1982, Guidelines for Determining Flood Flow Frequency, Bulletin 17B [M]. U.S. Department of the interior, U.S. Geological Survey, Office of Water Data Coordination, Reston, Va.
    [47] Koch R.W., Simille G.M. Bias in hydrologic prediction using log transformed regression models [J]. Water Resource Bulletin, 1986, 22 (5): 717-723.
    [48] Laurenson E.M., Mein R.G. RORB—Version 4, Runoff Routing Programme, User Manual, Department of Civil Engineering, Monash University, Clayton, Victoria, Australia, May, 1988.
    [49] Louin C., Schreiner, John T., Riedel. Probable Maximum Precipitation Estimates, United States East of the 105th Meridian [R]. Hydrometeorological Report, NO.51, 1980.
    [50] Lin Y., Ray P.S. and Johnson K.W. Initialisation of a modeled convective storm using Doppler radar-derived fields [J]. Mon. Weather Rev. 1993, 121: 2757-2775.
    [51] Linsley R.K., Kohler M.A. and Paulhus L.H. Hydrology for Engineers [M]. New York, 1982.
    [52] Lu L.H., Stedinger J.R. Sampling variance of normalized GEV/PWM quantile estimators and a regional homogeneity test [J]. Journal of Hydrology, 1992, 138: 223-245.
    [53] Marshall E., Hansen, Francis K., Schwarz, John R.T. Probable maximum precipitation estimates, Colorado River and Great Basin Drainage [R]. Hydrometeorological Report, NO.49, 1984.
    [54] McCuen R.H., Leahy R.B., Johnson P.A. Problems with logarithmic transformation in regression [J]. ASCE, Journal of Hydraulic Engineering. 1990, 116 (3): 414-428.
    [55] M.N. Desa M, A.B. Noriah, P.R. Rakhecha. Probable maximum precipitation for 24h duration over southeast Asian monsoon region—Selangor, Malaysia [J]. Atmospheric Research, 2001(58): 41-54.
    [56] Minty L.J., Meighen J., Kennedy M.R. Development of the Generalised Southeast Australia Method for Estimating Probable Maximum Precipitation [A]. Hydrology Unit, Melbourne, August, 1996.
    [57] Natural Environment Research Council. Flood Studies Report [M]. Vol. 1, Natural Environment Research Council. Department of the Environment, London, 1975.
    [58] Parent E. et al. Statistical and Bayesian Methods in hydrological sciences, IHP-V [A]. Technical Documents in Hydrology, No.20, UNESCO, Paris, 1998.
    [59] Pandey G.R., Nguyen V.T.V. A comparative study of regression based methods in regional flood frequency analysis [J]. Journal of Hydrology, 1999, 225: 92-101.
    [60] Patrick P. Rasmussen and Charles A. Perry. Estimating of peak streamflows for unregulated rural streams in Kansas [R]. U.S. Geological Survey Water-Resources Investigations Report 00-4079, 33p, 2000.
    [61] Pike W.S. Radar study of thunderstorms developing over central southern England and the south Midlands during the afternoon of September26, 1991 [J]. Weather, 1992, 47(10): 383-387.
    [62] Pilgrim D.H. Australia Rainfall and Runoff [A]. A Guide to Flood Estimation [M]. Institute of
    
    Engineering Australia, Canberra, Australia, 1987.
    [63] Rousseeuw P.J., Leroy A.M. Robust Regression and Outlier Detection [M]. Wiley, New York, 1987.
    [64] Spath H. Mathematic Algorithms for Linear Regression [A]. Academic Press, San Diego, 1992.
    [65] Stedinger J.R., Tasker G.D. Regional Hydrologic Regression, 1. Ordinary, Weighted and Generalized Least Squares Compared [J]. Water Resources Research, 1985, 21 (9): 1421-1432.
    [66] Stedinger J.R., Tasker G.D. Correction to 'Regional Hydrologic Regression, 1. Ordinary, Weighted and Generalized Least Squares Compared' [J]. Water Resources Research, 1986, 22(5): 844.
    [67] Stedinger J.R., Tasker G.D. Regional Hydrologic Analysis, 2. Model Error Estimates, Estimation of Sigma, and Log-Pearson Type 3 Distributions [J]. Water Resources Research, 1986, 22(10): 1487-1499.
    [68] Stedinger J.R., Vogel R.M. Frequency analysis of extreme events [A]. In: Maidment, D. (ed.), Handbook of Hydrology, 1993, 18.
    [69] Tabony R.C. Relations between minimum temperature and topography in Great Britain [J]. Journal of Climatology, 1985, 5: 503-520.
    [70] Tasker G.D, Stedinger J.R. Regional regression of flood characteristics employing historical information [J]. Journal of Hydrology. 1987, 96: 255-264.
    [71] Tasker G.D, Stedinger J.R. An operational GLS model for hydrologic regression [J]. Journal of Hydrology. 1989, 111: 361-375.
    [72] Tasker G.D. Comparing methods of hydrologic regionalization [A]. Water Resource Bulletin, 18(6): 965-970.
    [73] Thompson S.M. Estimation of probable maximum floods from the Southern Alps, New Zealand [A]. IASH Publication, 1993: 213.
    [74] Tomlinson A.I. and Thompson C.S. Probable maximum precipitation in New Zealand [J]. New Zealand Meteorology Service. Wellington, Rep., May, 213pp.
    [75] Wang Q.J. Direct sample estimators of L-moments [J]. Water Resources Research, 1996, 32: 3617-3619.
    [76] Wang Q.J. Using partial probability weighted moments to fit the extreme value distributions to censored samples [J]. Water Resources Research, 1996, 32: 1767-1771.
    [77] Wang B.H. Estimation of Probable Maximum Precipitation: case studies [J]. Journal of Hydrology Engineering, I984, 110: 1457-1471.
    [78] Water and Power Consultancy Services (INDIA) Limited. Dam safety assurance and rehabilitation project generalized PMP atlas-phase Ⅰ [R]. India, 2002
    [79] Wiesner, C.J. Hydrometeorology [M]. Chapman and Hall, London, 1970.
    [80] WMO. Manial For Estimation of Probable Maximum Precipitation [M]. 1986.
    [81] Xuereb K.C. Moore G.J. Taylor B.F. Development of the Method of Storm Transposition and Maximisation for the West Coast of Tasmania [R]. Hydrology Unit, Melbourne, January, 2001.
    [82] Zurndorfer E.A, Schwarz F.K, Hansen E.M, Fenn D.D, Miller J.F. Probable maximum and TVA precipitation estimates with areal distribution for Tennessee river drainage less than 3000Mi~2 in area [R]. Hydrometeorological Report, NO.56, 1986.
    [83] Zhang S.Y, Cordery I. and Sharma A. A volume law for specification of linear channel storage for estimation of large floods [J]. Water Resource Research, 2000, 36 (6): 1535-1543.
    [84] Zhang S.Y, Cordery I. and Sharma A. Application of an improved linear storage routing model for the estimation of large floods [J]. Journal of hydrology, 2002, 258: 58-68.
    
    
    [85] David R.Maidment主编,张建云,李纪生等译.水文学手册[M].北京:科学出版社,2002,10.
    [86] 丁晶,宋德敦,杨荣富.估计 P-Ⅲ型分布新方法—概率权重矩法[J].成都科技大学学报,1988(2).
    [87] 广东省编图办公室.用水汽风速联合放大法推求广东省24小时点可能最大暴雨[J].水利水电技术,1979(7).
    [88] 王善序.具有历史洪水不连续样本经验频率的确定[J].人民长江,1979(3).
    [89] 王善序.论确定洪水经验频率的双(多)样本模型[J].水文,1990(6).
    [90] 王善序.论适线法在洪水频率分析中的应用[J].水文,1992(6):3-10.
    [91] 王善序.洪水超定量系列频率分析[J].人民长江,1999(8):23-25.
    [92] 马秀峰.计算水文频率参数的权函数法[J].水文,1984(2).
    [93] 王锐琛等主编.中国水力发电工程—工程水文卷[M].北京:中国电力出版社,2000年.
    [94] 王国安.可能最大暴雨和洪水计算原理和方法[M].中国水利水电出版社,黄河水利出版社,1999.
    [95] 王国安.水文设计成果合理性评价[M].郑州:黄河水利出版社,2002年.
    [96] 王国安.国内外PMP/PMF的发展和实践[J].水文,2004(待刊).
    [97] 王国安.对我国水库设计洪水及标准问题研究的主要成果[J].人民黄河,1994(5).
    [98] 王国安.中国设计洪水及标准问题[J].水利学报,1991(4).
    [99] 王国安.水文设计成果合理性评价[J].郑州:黄河水利出版社,2002.
    [100] 王家祁.中国设计暴雨和暴雨特性的研究[J].水科学进展,1999,10(3).
    [101] 王作述.可能最大暴雨的一个数值试验研究[J].河海大学学报,1988(3).
    [102] 王维第.关于暴雨移置统计参数的应用和改进[J].水文计算技术,1979(6).
    [103] 王宝玉,刘占松,高治定.黄河小花间可能最大暴雨与洪水[J].2002(10).
    [104] 水利部长江水利委员会,水利部南京水文水资源研究所.水利水电工程设计洪水计算手册[M].北京:中国水利水电出版社,2001.
    [105] 水利电力部.水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)SDJ12—78(试行).水利出版社,1980.
    [106] 水利部,电力工业部.水利水电工程设计洪水计算规范SDJ22—79(试行).水利出版社,1980.
    [107] 水电部十三工程局设计院水文组.关于可能最大暴雨估算中水汽放大问题的几点意见[J].水利水电技术,1979(7).
    [108] 长江水利委员会.三峡工程水文研究[M].武汉:湖北科学技术出版社,1997.
    [109] 长办水文局(金蓉玲执笔).长江大型水利枢纽可能最大降水计算经验总结[J].水文计算(PMP专刊),1984(3).
    [110] 中国水力发电工程——工程水文卷[M].北京:中国电力出版社,2000年.
    [111] 云南省编制《全国可能最大暴雨等值线图》办公室.对美国赫许菲尔德统计估算法的批评和改造[J].水利水电技术,1979(7).
    [112] 叶守泽,詹道江主编.工程水文学[M].北京:中国水利电力出版社,2000年.
    [113] 叶永毅.编制黄河中游可能最大暴雨等值线图的若干技术问题[J].水文计算技术,1979(6).
    [114] 丛树铮,谭维炎.水文频率计算中参数估计方法的统计试验研究[J].水利学报,1980.
    [115] 丛树铮,吴正平.关于可能最大暴雨的统计估算法[J].水文计算技术,1979(6).
    
    
    [116] 刘光文.皮尔逊Ⅲ型分布参数估计[J].水文,1990(4-5).
    [117] 四川省可能最大暴雨等值线编图办公室.四川省暴雨历时~面积~雨深关系的分析[J].水利水电技术,1979(7).
    [118] 华士乾.在可能最大降水条件下的流域产汇流计算问题[J].水文,1984(1).
    [119] 朱勇华,邰淑彩等主编.应用数理统计[M].武汉:武汉水利电力大学出版社,2000年.
    [120] 汝乃华,牛运光编著.大坝事故与安全·土石坝[M].北京:中国水利水电出版社,2001年.
    [121] 陈守煜.系统模糊决策理论与应用[M].大连理工大学出版社,1994年.
    [122] 陈守煜.工程水文水资源系统模糊集分析理论与实践[M].大连理工大学出版社,1998年.
    [123] 邱林,陈守煜,潘东.P—Ⅲ型分布参数估计的模糊加权优化适线法[J].水利学报,1998(1).
    [124] 宋德敦等.概率权重矩法及其在P—Ⅲ型分布中的应用[J].水利学报,1988(3).
    [125] 杨荣富,丁晶,邓育仁.概率权重矩法估计P-Ⅲ型分布参数用表的近似表达式[J].水文,1994(3).
    [126] 陈元芳,侯玉.现行几种权函数法的比较[A].《规范》修订会议,南京,1984年.
    [127] 陈元芳,梁忠民.我国洪水频率分析40年的若干进展与展望[A],见:中国水文展望[C].南京:河海大学出版社,1991年.
    [128] 陈元芳.一种可考虑历史洪水的马氏权函数法研究[J].水科学进展,1994(3):174-178.
    [129] 陈元芳,顾圣华等.P—Ⅲ型分布混合权函数估计法的研究[J].水文,2003,23(1).
    [130] 陈元芳,沙志贵,陈剑池,陈民.具有历史洪水时P-Ⅲ分布线性矩法的研究[J].河海大学学报.2001(4).
    [131] 张有芷.用净水汽输送计算可能最大降水[J].水文,1982(3).
    [132] 张有芷.可能最大降水方法的进展[J].人民长江,1992(6).
    [133] 张有芷,王政祥.用时面深概化法估算清江中上游流域可能最大暴雨[J].水文,1998(4).
    [134] 张少婕,张有芷.清江渔峡口以上流域可能最大暴雨估算[J].人民长江,1999,30(3):20-22.
    [135] 张静怡,徐小明.极值分布和P-Ⅲ型分布线性矩法在区域洪水频率分析中的检验[J].水文,2002,26(6):36-38.
    [136] 杨远东.估算可能最大暴雨的水汽入流指标法[J].水文计算技术,1976(6).
    [137] 杨德蓉,张大振.用综合经验指标法推求可能最大暴雨[J].水文,1995(5):37-41.
    [138] 杨德蓉,王作益.用成因统计综合法计算四川省腹部地区的PMP[J].四川水力发电,1995(3).
    [139] 邹宁译.英国可能最大降水的最新研究成果[J].水利水电快报,2002(9).
    [140] 林炳章.分时段地形增强因子法在山区PMP估算中的应用[J].河海大学学报,1988(6).
    [141] 金光炎.水文频率分析述评[J].水科学进展,1999,10(3).
    [142] 金蓉玲,李心铭.三峡工程至上游水库区间可能最大洪水估算[J].水文,1989(6).
    [143] 陕西省暴雨编图组.用水文气象综合法估算可能最大点雨量[J].水利水电技术,1979(7).
    [144] 周芬,郭生练,肖义,徐长江.P—Ⅲ型分布参数估计方法的比较研究[J].水电能源科学,2003(3).
    [145] 周芬,郭生练,肖义,徐长江.考虑历史洪水系列的P—Ⅲ型频率曲线参数估计方法研究[A],见:全国首届水问题论坛会议文集[C].武汉:湖北科学出版社,2003.
    [146] 周芬,郭生练,肖义.无资料地区设计洪水的区域频率分析[J].人民长江,2004年(待刊).
    [147] 郭生练.P-Ⅲ型参数估计方法的研究[J].武汉水利电力学院学报,1987(3).
    [148] 郭生练.考虑历史洪水资料的频率计算方法[J].武汉水利电力学院学报,1988(1).
    [149] 郭生练.洪水频率区域综合分析[J].武汉水利电力学院学报,1990(6).
    
    
    [150] 郭生练.皮尔逊Ⅲ型机率格纸的研制和应用[J].水文科技情报,1991(2).
    [151] 郭生练,叶守泽.洪水频率的非参数估计[J].水电能源科学,1991(4).
    [152] 郭生练,叶守泽.论水文计算中的经验频率计算公式[J].武汉水利电力学院学报,1992(2).
    [153] 郭生练.气候变化对洪水频率和洪峰流量的影响[J].水科学进展,1995(3).
    [154] 贵州省可能最大暴雨编图办公室.暴雨组合法估算可能最大暴雨[J].水利水电技术,1979(7).
    [155] 徐长江.设计洪水研究进展与评价[D].武汉大学硕士论文,2003年.
    [156] 徐长江,郭生练,周芬,肖义.中英美三国设计洪水方法比较研究[A],见:全国首届水问题论坛会议文集[C].武汉:湖北科学出版社,2003.
    [157] 徐长江,郭生练,熊立华,周芬.英国设计洪水研究进展[J].水利水电科技进展,2004(待刊).
    [158] 高治定,符长锋.黄淮海经向型大暴雨特征及移置范围[J].人民黄河,2000,22(11).
    [159] 梁忠民,许大明.洪水频率分析稳健性方法研究[J].水科学进展,1997(6).
    [160] 湖北省水文总站.湖北省水资源(上册地表水资源)[M].1986.
    [161] 湖北省水文水资源局.湖北河流集[M].1998.
    [162] 湖北省可能最大暴雨等值线图小组.用统计估算法计算可能最大暴雨的几点体会[J].水文计算技术,1979(6).
    [163] 曹世惠,柏绍光.由实测暴雨推求设计洪水方法的探讨[J].水文,2002,22(1).
    [164] 詹道江.可能最大降水估算手册[M].长沙:湖南省水利水电勘测设计研究院出版社.
    [165] 詹道江,邹进上.可能最大暴雨与洪水[M].北京:水利电力出版社,1983.
    [166] 熊立华,郭生练等.国外区域洪水频率分析方法的研究进展[J].水科学进展,2004(2).
    [167] 熊立华,郭生练等.L-矩在区域洪水频率分析中的应用[J].水力发电,2003(3).
    [168] 熊学农,高治定.黄河三花区间可能最大暴雨估算[J].河海大学学报,1995,21(3).
    [169] 戴梁,王文均.洪水频率稳健估计研究现状[J].武汉水运工程学院学报,1989(3).
    [170] 魏生生,郭化文.国内外求算可能最大降雨量研究的综述[J].气象科技,1998(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700