设垫层的蜗壳结构动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着垫层蜗壳被越来越多应用于国内外各个大中型水电站中,设有垫层的蜗壳结构的动力特性越来越被人们所重视。在设垫层的蜗壳结构中,由于钢板与混凝土间有软垫层的存在,使混凝土对钢蜗壳的约束作用降低,可能会导致对机组运行稳定性的不利影响,这是选择垫层蜗壳的重大疑问之一,过去国内虽然对垫层蜗壳做过大量的研究,但缺少对其动力特性的分析。因此对设垫层的蜗壳结构的动力特性研究成为水电工程中迫切需要研究解决的关键课题。
     本文利用二维有限元计算分析了特定的蜗壳结构在外力激励下的动力响应问题,以及在没有外力激励下蜗壳结构本身固有的动力特性等问题。另外,在对设垫层的蜗壳结构自振特性分析的基础上,还对机组振源进行分析,并进行蜗壳结构的共振校核。
     以某工程为例改变垫层情况和蜗壳结构形式分别对设垫层的蜗壳结构的自振特性进行计算分析。选用不同垫层的材料的与采用不同垫层铺设的范围的计算结果表明,蜗壳结构的自振频率会随着垫层材料的弹性模量的增大而变大,但当垫层的材料的弹性模量大于3.5MPa时,垫层材料的改变对蜗壳结构的第2到6阶的自振频率影响不大。蜗壳结构在铺设相同垫层材料而用不同垫层铺设范围的情况下,蜗壳结构的自振频率会随着垫层的铺设范围的增大而减小;改变钢蜗壳外围混凝土的浇筑厚度与钢蜗壳直径的计算结果表明,加厚了钢蜗壳外围混凝土的厚度,增大了蜗壳结构的刚度,使得蜗壳结构自振频率的会随着钢蜗壳外围混凝土的浇筑厚度的加厚而变大,而当钢蜗壳外都采用同样的混凝土浇厚度时,蜗壳结构的自振频率会随着钢蜗壳直径的变小而增大。
Along with spiral case using cushion layer be more and more been applied in each domestic and international big and medium-sized hydroelectric station, motive characteristic of structure of spiral case using cushion layer drive more and more people regard, because of steel plate and concrete have a soft mat layer to save greatly in structure of spiral case using cushion layer ,which make function of restriction of the concrete steel shell a to lower, may cause the disadvantageous influence when unit is circulating. That is one of the important questions which choose a spiral case using cushion layer. In the past although the domestic once did a great deal of research about structure of spiral case using cushion layer, scarcity analysis of motive characteristic, therefore study about motive characteristic of structure of spiral case using cushion layer need to solve urgently in hydraulic engineering.
     Architectural motion differential equation the main body of a book is deduced out taking Hamilton (Hamilton) principle as the basis. Solved particular certain structure to encourage in the outside power ,the motive of the structure responds to a problem .And under not having the outside force excitation, the structure proper and dynamical characteristic problem, study the vibration source in hydropower plant, and resonance checking is given to the spiral case using cushion lay
     Besides, the main body of a book try to imitate by numerical value , take some's projects as the example secretly scheming against , change bed course condition and the snail shell structure form respectively , carry out analysis on the architectural snail shell self vibrate characteristic property setting up a bed course. The result when selecting and using the material being unlike a bed course's and adopt the range that the be unlike bed course lays, secretly scheming against is indicated , is enhance but is changed into the architectural snail shell self vibrate frequency meeting with putting in tier of the material elasticity moduli's big, under lay cospecific bed course material but lay range's with different bed course situation, architectural snail shell self vibrate frequency will be with the bed course laying range enhancing but diminishes; But in changing the snail shell structure form, the result respectively, changing the steel snail shell outer-ring concrete's when concrete thickness and the steel snail shell diameter, secretly scheming against indicates, concrete that snail shell structure will be from shaking frequency's with steel snail shell outer-ring concrete thickness's be thickened by but change big, architectural snail shell self vibrate frequency will be small with steel snail shell diameter unexpected turn of events but enhances when adopt the same concrete to irrigate thickness as if it be the steel snail shell outside.
引文
[1]秦继章,马善定,匡罕健.二滩水电站钢蜗壳与外围钢筋混凝土联合受力三维仿真材料模型实验研究[J].水利学报,1999,(6):11-15
    [2]舒扬启,王日宣。水电站厂房动力分析[M].北京:水利电力出版社,1987
    [3]李彦硕.水电站建筑物的振动[M].大连:大连理工大学出版社,1989
    [4]熊有志,李大成.大型水电站厂房水下结构的三维有限元整体动力分析[J].水力水电技术,1993.No.1:22-27
    [5]王文宁.岩滩水电站厂房结构振动计算分析[J].红水河,1999,18(1):67-69
    [6]马震岳等.三峡水电站厂房结构动力分析与优化[J].水电能源科学,2000,18(3)
    [7]郭永刚,张祁汉.三峡水电站厂房结构自振特性研究[J].水力发电,2002.No.1:26-28
    [8]陈尧隆,水利工程[M].水利水电出版社,1998.10
    [9]朱伯芳,有限单元法原理与应用[M],水利水电出版社,1998.10
    [10]R.W克拉夫、J.彭津,结构动力学[M],科学出版社,1981,11
    [11]陆鑫森,高等结构动力学[M],上海交通大学出版社,1992,12
    [12]Roy R.Craig.Jr著,常岭等译,结构动力学[M],人民交通出版社,1996.12
    [13]刘启钊,水电站[M],中国水利水电出版社
    [14]水力电力部办公厅图书编辑部.结构力学[M].北京:中国工业出版社,1962
    [15]龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,1996
    [16]张治滨.水电站建筑物设计参考资料[S].北京:中国水利水电出版社,1997
    [17]白金泽、孙秦、郭英男,应用ANSYS进行复杂结构应力分析[J],机械科学与技术,2003.5
    [18]叶先磊、史亚杰,ANSYS工程分析软件应实例[J],清华大学出叛社
    [19]伍鹤皋,马善定,白建明.三峡水电站充水保压蜗壳平面非线性分析[J].水利学报,2003,(5):57-61.
    [20]董毓新,李彦硕.水电站建筑物结构分析[M].大连:大连理工大学出版社,1995.
    [21]李胜军,李振富,王日宣.设有垫层的水电站蜗壳结构联合承载分析[J].水力发电学报,1998,(4):21-30.
    [22]付红霞,马震岳,董毓新.水电站蜗壳垫层结构研究[J].水利学报,2003,(6):85-88.
    [23]李丹,陈坪.三峡电站蜗壳敷设软垫层浇筑外围混凝土研究[J].人民长江,2004,35(4):1-3,48.
    [24]马震岳,董毓新.水电站机组及厂房振动的研究与治理[M].中国水利水电出版社,2004.
    [25]陈婧,马震岳,刘志明,等.三峡水电站主厂房振动分析[J].水力发电学报,2004,23(5):36-39.
    [26]欧阳金惠,陈厚群,李德裕.三峡水电站主厂房振动计算与现场试验[J].水利学报,2005,36(4):484-490.
    [27]陈婧,马震岳,刘志明,等.水轮机压力脉动诱发厂房振动分析[J].水力发 电,2004,36(5):24-27.
    [28]沈善良.三峡水电站采用的新型伸缩节[A].马善定,伍鹤皋,秦继章主编.水电站压力管道[C].湖北:湖北科学技术出版社,2002.129-134.
    [29]鲍乐.水电站大直径压力钢管波纹管补偿器应力计算的可靠性分析[A].马善定,伍鹤皋,秦继章主编.水电站压力管道[C].湖北:湖北科学技术出版社,2002.106-113
    [30]马善定,魏永晖.三峡水电站水轮机蜗壳结构形式选择[J].中国三峡建设,1998,(1):23-2
    [31]张杰,陈琴,何英杰,等.三峡右岸电站15#机组蜗壳直埋方案仿真模型试验研究报告[R].武汉:长江科学院,2006
    [32]]陈琴,林绍忠.MARC软件在钢筋混凝土结构开裂分析中的应用与二次开发[J].长江科学院院报,2003,20(5):28-30.
    [33]陈琴,苏海东.三峡右岸电站15#机组蜗壳直埋方案结构计算分析报告[R].武汉:长江科学院,2006
    [34]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [35]董哲仁.钢筋混凝土非线性有限元法原理与应用[M].北京:中国铁道出版社,1993.
    [36]董毓新,李彦硕.水电站建筑物结构分析[M].大连:大连理工大学出版社,1995.
    [37]董毓新,鲁一晖,马震岳.钢衬和钢筋混凝土联合承载蜗壳结构分析[J].大连理工大学学报,1995,35(3):389-394
    [38]阎力,李勇进.垫层材料[A],第二届全国水电站压力管道学术讨论会论文专辑[C].长沙:湖南省水力发电工程学会,1990.
    [39]李胜军,李振富,王日宣.设有垫层的水电站蜗壳结构联合承载分析[J].水力发电学报,1998,(4):21-30.4.
    [40]伍鹤皋,马善定,白建明.三峡水电站充水保压蜗壳平面非线性分析[J].水利学报,2003,(5):57-61.
    [41]秦继章,马善定,龚国芝,熊德炎.三峡水电站“充水保压”蜗壳三维仿真整体结构模型试验[J].水利学报,2002,(10):33-38.
    [42]秦继章,马善定,伍鹤皋.三峡水电站“充水保压”钢蜗壳外围混凝土结构三维有限元分析[J].水利学报,001,(6):28-32.
    [43]阎力.水电站钢蜗壳与钢筋混凝士联合承载结构试验研究[J].水利学报,1995,(1):57-62
    [44]ABAQUS Theory Manual[M].ABAQUS,Inc.,2003
    [45]David D,Scanlon A.Cracking of concrete members in direct tension[J].ACI Journal,1986,83(1):3-12
    [45]D.E.Adams,R.J.Allemang.A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback,Mechanical Systems and Signal Processing 2000,14(4),637-656
    [47]S.S.Law,H.T.Chan,Q.H.Zeng.Moving Fore Identification:a time domain method. Journal of Sound and Vibration,1997,201(1):1-22.
    [48]M.Skrinar.On elastic beams parameter identification using eigenfrequenoies changes and the method of added mass Journal of Sound and Vibration Computational Materrials Science,2002,(25):207-217
    [49]L.Yu,Tommy,H.T.Chan.Moving force identification based on the frequency-time domain method.Journal of Sound and Vibration,2003(261):329-349
    [50]GB 50010-2002,混凝土结构设计规范[S].
    [51]董哲仁.钢筋混凝土非线性有限元法原理与应用[M].北京:中国铁道出版社,1993.
    [52]SL/T191-96,水工混凝土结构设计规范[S].
    [53]张义林,周边设置弹性垫层的坝内压力钢管的实验[J],水力发电,1990年第8期
    [54]黄光明、王忠勇、李立年,漫湾水电站压力钢管弹性垫层的设计与实践[J],水力发电,1997年第1期
    [55]杨雄翔,二滩水电站金属蜗壳的水压实验[J],水力发电,1997年第8期
    [56]黄源芳,三峡工程水轮机几个重大技术问题的决策[J],水力发电,1998年第4期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700