琅琊山水电站地下厂房通风模型装置设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先通过检索、查阅大量相关科技文献和工程调研分析,摸清了国内外地下水电站通风空调技术应用的历史、现状、发展动向与存在问题。迄今为止,模型试验仍是水电站地下厂房气流组织研究的重要手段。即将开工兴建的琅琊山抽水蓄能电站机电设备布置尺寸较为紧凑,工艺布置形式也不同于以往的抽水蓄能电站。因此,此类水电站的气流组织研究自然有其特殊性,也具有颇大的应用价值。
    正确设计模型是琅琊山抽水蓄能电站气流组织模型试验研究的前提。根据相似理论建立试验模型。采用阿基米德数作为相似准则,按照1/18的几何比例尺以及其他制约条件确定各种相似比例尺。根据各种相似比例尺完成模型本体结构、模拟热源系统及模型送排风系统的设计和配置。同时还完成了试验检测系统的设计和模型试验装置的调试。
    根据试验要求和厂房结构形式,本论文的模型试验在发电机层采用拱顶送风系统,风口对称均匀布置,选取5种风口布置方案。取四个典型射流断面,分别对各方案下竖向断面空间以及工作区气流温度、速度进行测试,摸清了厂房空间的气流分布状况。各射流断面由于所在区域的发热量不同,温度、速度分布也各不相同,分别拟合出其无因次温差和无因次风速分布的线性关系式。虽然无因次温差、风速与无因次高度之间并非线性关系这么简单,但在我们所考察取值范围内,它们间的关系可以近似地视为一种线性关系。
    采用拱顶射流送风时,影响发电机层气流组织状态的因素主要为送风速度、风口直径、风口个数等。本模型试验的送风量固定不变,当风口直径和风口个数一定时,风口的送风速度也随之被确定。拱顶送风风速对工作区平均风速影响不大。风口个数大幅度的增减,会影响工作区平均风速的大小。定义气流发展受限系数R,将厂房几何参数、风口尺寸与个数的变化都综合为无因次参数R,探明了其对工作区气流分布(温度场、速度场)影响的一般规律。R值的增大,送风气流相互冲撞加剧,强化了动能的转移和分布的均匀化,提高了工作区风速的均匀程度。当R在(0.63~1.08)范围内变化时,工作区平均无因次温差、风速没有显著变化。
This paper make out the history, status, development trend and existent problem of ventilation and air condition technology application in underground water power at home and abroad by indexing and checking the related large quantity technology references and engineering analysis firstly. Up to the present, the model experiment is still important means of air distribution study in underground houses. The arrange size of machine electricity equipments of LangYa Shan water power station which will soon built is very compact, and the craft form is also different from the formerly pump water station. So, air distribution study of water station has its particularity and application value.
    Design the model rightly is a premise of air distribution model test in LangYa Shan water power station. Establish experiment model according to the similarity theories. Adopt Archimedes number Ar as similarity standard, and determine every kind of similarity scale according to geometry scale 1/18 and other limit condition. Complete organization of model essence, simulation heat source system, design and arrangement of air supply and exhaust system according to every kind of similarity scale. Also complete the design of experiment examination system and experiment the device's test with model at the same time.
    Adopt arch crest as air supply system, arrangement vents symmetry, and select 5 kinds of vents to arrange the project, according to the experiment request and factory premises construction form. Take four typical models as jet section, and measure the air temperature and air velocity of the given section and workaround respectively, and make out the current of air distribution in house space. Because of different heat in every jet section, the distribution of temperature and velocity is also different, and intend to match the linear formula of its dimensionless temperature difference and dimensionless velocity respectively. Although the relation of dimensionless temperature difference, dimensionless velocity and dimensionless high is not simple as linear type, within the scope of our investigation to take, their relation can look as a kind of line form.
    The factors affecting the generator layer's current air distribution are mainly air supply's velocity, vents' diameter, the number of vents, etc., during adoption arch crest to supply air. The air rate of this model experiment is constant, if vents diameter and
    
    vents number are certain, the velocity of vents also immediately is determined. The air velocity of arch crest has little influence on mean velocity of workaround. The number of vents is significant to increase or decrease, which will affect the average velocity of workaround. Define the limited coefficient R of airflow; take the geometry parameter of houses, the size and number of vents. Dimensionless parameter R, and make out the general regulation of affecting the air distribution (temperature and velocity field) of workaround. When R increases, pick up the collision of supplying air,enhance the transferring of kinetic energy and distribution evenly, increased the wind velocity's even degree of workaround. When the varieties of R range from 0.63 to 1.08, it doesn't affect remarkably on even dimensionless temperature difference and velocity in workaround.
引文
[1] 杨述仁等.地下水电站厂房设计.北京.水利电力出版社.1993
    [2] 付祥钊.二滩地下水电站主厂房拱顶送风模型试验.通风除尘.1991.№11
    [3] 付祥钊等.十三陵蓄能电站地下主厂房通风模型实验.
    [4] 谢龙祥.水电站地下厂房通风空调设计探讨.浙江水利科技.1999.№3
    [5] 范存养.国外大空间建筑的空调设计.暖通空调.1996.№4
    [6] 马仁民.国外气流组织研究现状.暖通空调.1989.№1
    [7] 龙天渝等.水电站地下主厂房通风气流组织的数值模拟.建筑热能通风空调.2000.№4
    [8] 龙天渝等.水电站地下主厂房通风气流的优化设计.重庆建筑大学学报.2000.№4
    [9] 周谟仁主编.流体力学 泵与风机.北京.中国建筑工业出版社.1994
    [10] 赵荣义等.空气调节.北京.中国建筑工业出版社.1994
    [11] 付祥钊.水电站地下主厂房顶送风研究.暖通空调.1996,№1
    [12] 田忠保等.地下高大厂房气流组织模化试验研究.通风除尘.1996.№1
    [13] 何天祺等.三峡电站主厂房气流组织模型实验及其初步研究.全国暖通空调制冷2000年学术年会论文集
    [14] 孙一坚主编.工业通风.北京.中国建筑工业出版社。1994
    [15] 陆耀庆.实用供热空调设计手册.北京.中国建筑工业出版社.1993
    [16] 付祥钊等.琅琊山抽水蓄能电站地下主厂房通风模型试验第一阶段报告.2003.6
    [17] 田胜元等.实验设计与数据处理.北京.中国建筑工业出版社.1988
    [18] 邹月琴等.分层空调气流组织方法的研究.暖通空调.1983.№2
    [19] 张维功等.矢流洁净室室内流场的模型试验.哈尔滨建筑工程学院学报.1993.№2
    [20] 王景刚等.室内送风气流相似准则及风口模型试验.河北煤炭建筑学院学报.1994.№4
    [21] 陈滨.日本大空间空调现状.暖通空调.1994.№3
    [22] 杨志刚.黄河李家峡水电站双排机厂房的采暖节能设计与研究.西北水电.1996.№3
    [23] 龚光彩等.高大空间纵向隔断气流的数值仿真,湖南大学学报.1999.№1
    [24] 何天祺等.三峡电厂发电机层夏季分层空调负荷特性与过程设计分析.重庆建筑大学学报.1999.№6
    [25] 何天祺等.三峡电厂发电机房夏季分层空调气流组织设计与分析.重庆建筑大学学报.2000.№1
    [26] 赵彬等.室内空气流动数值模拟的风口模型综述.暖通空调.2000.№5
    [27] 谭良才等.高大空间恒温空调气流组织设计方法研究.暖通空调.2002.№2
    [28] 杨合长.黄河小浪底电站地下厂房通风系统设计.暖通空调.2002.№1
    B.F.Dralle. Vertical zoned air conditioning for high ceiling industrial plants.HPAC.1970.
    
    [29] №12
    [30] R.A.Beier,R.L.Gorton. Thermal stratification in Factories-Cooling Loads And Temperature Profiles.ASHRAE Transaction.1978.Vol.84
    [31] H.D.Ball,T.F.Bailey. Analysis of a chilled jet in a thermally stratified environment.ASHRAE Transaction.1979
    [32] J.B.Olivieri,T.Singh. Effect of supply and return outlet location on stratification.ASHRAE Transaction.1979
    [33] M.I.Grimitlyn. Fundamentals of optimizing air distribution in ventilated spaces ASHRAE Transaction.1979
    [34] H.D.Ball,R.L.Jones. Analysis of a horizontally projected chilled ventilation jet subjected to vertical cross-flow.ASHRAE Transaction.1979
    [35] S.Togari.A Simplified Model for Predicting Vertical Temperature Distribution in a Large Space.ASHRAE Transaction.1993
    [36] M.E.Fountain,E.A.Arens. Air movement and thermal Comfort. ASHRAE Journal.1993
    [37] Chen Qingyan,Xu Weiran. A zero-equation turbulence model for air flow simulation.Energy and Buildings.1998
    [38] Nielsen P V. The selection of turbulence models for prediction of room airflow.ASHRAE Transaction.1998
    [39] Ghiaus C M,et al. Evaluation of the indoor temperature field using a given air velocity distribution. Building and Environment.1999
    [40] 宫川保之.冷暖房负荷计算法の考察.空气调和卫生工学.1977.№11
    [41] 小林满等.某工场室内气流の模型试验と实测. 空气调和卫生工学.1974.№3
    [42] 户河里敏等.大空间におる上下温度分布の预测モデル.日本建筑学会计画系论文报告集
    [43] 野村豪.大空间の空气调和-总论.空气调和卫生工学.1977.№11
    [44] 中原信生.大空间の空气调和计画. 空气调和卫生工学.1977.№11
    [45] 加藤淳之等.大空间空调制御のための人数计测システム.Savemation Review.1998
    [46] 水电站机电设计手册编写组.水电站机电设计手册(暖通空调).北京.水利电力出版社.1989
    [47] 章熙民等.传热学.北京.中国建筑工业出版社.1994
    [48] 孟广田等.置换通风的热舒适分析与评价.建筑热能通风空调.2000.№1
    [49] 黄晨等.大空间建筑室内垂直温度分布的研究.暖通空调.1999.№5
    [50] 杨露露等.三峡电站主厂房分层空调冬季工况模型试验.重庆大学学报.2002.№8
    [51] 赖学江等.空调房间气流组织的模拟研究.华中科技大学学报.2002.№2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700