水电站厂房上部结构型式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电站厂房是将水能转换为电能的最终场所,是水利枢纽中主要建筑物之一,随着我国水电事业的蓬勃发展,水电站厂房的规模越来越大,重要性越来越突出,这对水电站厂房的结构设计提出了更高的要求。
     水电站厂房上部空间较大,结构相对单薄,所以比较不同的厂房上部结构型式来确保厂房的安全运行是必要的。通过数值分析,对比各可行布置方案结构的静动力特性,特别是地震的作用。在满足机电设备布置的前提下,优选厂房上部结构型式、尺寸和结构措施,以满足厂房在控制地震工况下的结构强度和刚度要求。最后选定了厂房上部结构的最优结构型式。在选型过程中,主要进行以下工作:
     1.建立了复杂厂坝整体结构的三维真实数值模型:模拟对象包括坝体、网架结构、上下游墙、楼板、风罩、整个流道、尾水管以及主要孔洞等。模型中,厂房上部结构分别选取上下游实体墙、上游墙体下游柱体、上下游柱体三种型式。
     2.通过上述不同结构型式方案,分析在各方案下结构的自振特性:研究不同的厂房上部结构型式对结构自振频率及振型的影响,并综合几种计算结果对厂房结构进行了共振复核。
     3.基于动静力分析,对各方案进行位移计算,研究各荷载在结构受力中发挥的作用,并且对比了不同厂房型式在各工况下关键部位的变位,同时对各方案进行应力分析。
     4.在优化过程中,进行了6种优化措施的数值计算与对比分析,在大量的分析基础上,综合考虑其他方面的因素,找到了一种经济、有效、可行的方案。
     本论文结合龙开口水电站工程实例,用有限元法对龙开口水电站厂房进行了结构计算,通过对比厂房上部结构型式,得出了一些有价值的结论,供同类工程参考,并对结构选型计算提出了合理的计算方法和建议。
The powerhouse of hydropower station is the final place where hydro energy is changed into electric energy and it is one of the main buildings in hydro project. With the flourishing development of hydropower enterprise in China, the scale of powerhouse is larger and larger, and meanwhile its importance becomes more and more outstanding. Accordingly, the higher request has been put forward for structural design of powerhouse.
     The space of superstructure of powerhouse is large and the corresponding stiffness is low. So it's necessary to compare different styles of the superstructure to ensure the safety of powerhouse. Through numerical analysis, this paper compares the static and dynamic performance of each feasible structure style, especially in the presence of seismic action. Besides satisfying the requests of electromechanical equipment layout, this paper optimizes the style、dimension and measurement of the superstructure of hydropower house, in order to satisfy the requirements of the structure strength and stiffness of building under earthquake controlling condition. In the end of this paper, the optimization style of superstructure is suggested. The procedure of model selection is as follows:
     1、A more realistic three-dimension model of the complex powerhouse structure is made, which includes dam body, frame structure, upstream and downstream wall, floor slab, wind cover, integral flow passage, all galleries, key holes, etc. The superstructure of powerhouse is also considered in three styles: the solid wall in upstream and downstream, the solid wall in upstream and column in downstream, the column in upstream and downstream.
     2、The natural dynamic characteristic of powerhouse has been analyzed based on the schemes above, and the influence on the natural frequency and vibration model of structure caused by different superstructure style of powerhouse has been investigated, and meanwhile the resonance vibration of powerhouse structure between the different results has been rechecked.
     3、The action of loads to the structure has been analyzed based on the static and dynamic force after calculating the deformations, and the deflections of critical parts of the powerhouse under every working condition have also been compared. The stresses under every condition are analyzed.
     4、Six optimization measurements are numerical calculated and analyzed contrastively during the optimizing process. On the basis of a great deal of analysis, a feasible economic and available plan has been found.
     Combined with LongKaikou hydropower project, the structure is calculated with finite element method. Through comparing styles of superstructure of powerhouse, this paper proposes some conclusions to serve as a reference for similar projects, and a reasonable calculated method and suggestions are given.
引文
[1] 王树人,董毓新.水电站建筑物.北京:清华大学出版社,1992.
    [2] 马善定,王如泽.水电站建筑物.北京:中国水利水电出版社,1982.
    [3] 张光斗,王光纶.专门水工建筑物.上海:上海科学技术出版社,1999.
    [4] 陆宗磐.中国水电站厂房设计和展望.水利水电工程设计,2000,19(4):1-3.
    [5] 陆宗磐,李红军.国内外大型机组电站厂房结构型式分析.水利水电工程设计,1999,2:21-25.
    [6] 陈章洪.建筑结构选型手册.北京:中国建筑工业出版社,2000.
    [7] 朱伯芳.有限元法原理与应用(第二版).北京:中国水利水电出版社,1998.
    [8] 王勖成.有限单元法基本原理与数值方法.北京:清华大学出版社,1997.
    [9] 龙驭球,包世华.结构力学教程(下册).北京:高等教育出版社,1991.
    [10] R.W.克拉夫,J.彭津.结构动力学.北京:科学出版社,1981.110.
    [11] 徐建,裘民川等.单层工业厂房抗震设计.北京:地震出版社,2004。
    [12] 刘涛,杨风鹏.精通ARSYS.北京:清华大学出版社,2002.
    [13] J H wilkinsom.代数特征值问题[M].北京:科学出版社,2004.
    [14] 马震岳,董毓新等.三峡水电站厂房结构动力分析与优化.水电能源科学,2000,9(3):26-29.
    [15] 郑守仁.三峡工程设计及施工进展与展望.人民长江,2001,32(1):6-10.
    [16] 郭永刚,张祁汉.三峡水电站厂房结构自振特性研究.水力发电,2000,(1):13-15.
    [17] 谷光棋,张富德,彭守拙.长江三峡水电站厂房上部结构型式复核分析.水利水电技术,1998,(6):59-61.
    [18] 李必如.三峡水电站厂房结构形式研究及审查意见.中国三峡建设,1998,3:14-17.
    [19] 杜申伟,傅萌,郭伟.三峡左岸电站厂房结构整体分析与网架设计.人民长江,2000,11(11):13-15.
    [20] 董石麟,李元齐.三峡水电站左岸厂房上部网架结构整体分析.空间结构,2002,6(4):3-10.
    [21] 董继斌,刘善维.网壳结构的边界条件及支座设计.空间结构,1997,4(3):39-46.
    [22] 中华人民共和国建设部,中华人民共和国国家标准混凝土结构设计规范GB 50010-2002
    [23] 大连理工大学.三峡水电站主厂房振动分析研究报告[R].2003.6.
    [24] 大连理工大学.三峡工程水电站厂房结构动力分析及结构优化[R].1995.9.
    [25] 舒扬,王日宣.水电站厂房动力分析[M].北京:水利电力出版社,1987.
    [26] 徐建.建筑振动工程手册[M].北京:中国建筑工业出版社,2002.11月.
    [27] 中华人民共和国水利部.水工建筑物抗震设计规范[M].1997.
    [28] 水电站厂房设计规范(SL266-2001).北京:中国水利水电出版社,2001.
    [29] 王文宁.岩滩水电站厂房结构振动计算分析.红水河,1999,18(1):67-69.
    [30] 马震岳,路振刚,沈成能等.红石水电站厂房的机组诱发振动及抗振加固研究.水力发电学报,2002,76(1):28-36.
    [31] 沈可.水电站厂房结构振动研究:(博士学位论文).南宁:广西大学,2002.
    [32] 蔡德所.三峡工程厂房坝段三维抗震数值模拟[J].人民长江,1996:27(12):8-9.
    [33] 钱基宏,刘枫.建筑结构抗震分析反应谱理论的直接算法.建筑科学,2003:19(4):1-3.
    [34] 唐曹明,戴国莹.建筑结构抗震分析模型的一些比较.工程抗震,1996:9(3):5-9.
    [35] 何浩祥.李宏男.基于规范弹性反应谱建立需求谱的方法.世界地震工程,2002(3):57-63.
    [36] M., Fanelli, Some Present Trends in Hydraulic Machinery Research, Proc. 18th IAHR Symposium, Valencia, 1996, pp. 23.
    [37] Ohashi H. Hydraulic Machinery Book Series*Vibration and Oscillation of Hydraulic Machinery[M]. England: Avebury Technical. 1991.
    [38] Xu Shilang, Tieinhardt H W and Gappoev Murat(1996). Mode Ⅱ Fracture Testing Method for Highly Orthotropic Materials Tike Wood. Tnternational Journal of Fracture, Vol. 75, pp 185-214.
    [39] Prisco M di and Ferrara L(1998). On the evaluation of mode Ⅱ fracture enemy in high stength concrete. Computational Modelling of Concrete Structures, de Borst, Bicauic, Mangy&Meschke(eds). Balkema. Rotterdam.
    [40] Iosipescu N(1967). New Accurate Procedure for Single Shear Testing of Metals. Journal of Materials, Vol. 2, No. 3, pp537-566.
    [41] Swartz S E and Taha N M(1990). Mixed Mode Crack Propagation and Fracture in Concrete. Engineering fracture Mechanics, Vol. 35, No. 1/2/3, pp 137-144.
    [42] S. P. Mansoor, D. I. Jones. Reproducing oscillatory behaviour of a hydroelectric power station by computer simulation. Control Engineering Practice, 2000, 8: 1261-1272.
    [43] D. I. Jones, S. P. Mansoor. A standard method for specifying the response of hydroelectric plant in frequency-control mode. Electric Power Systems Research, 2004, 68: 19-32.
    [44] Anne Teughels, Guido De Roeck. Continuum Models for Beam-And Platelink Lattice Structures. Fourth International Colloquium on Computation of Shell & Spatial Structures. 2OOO, JuneS-7.
    [45] H., Brekke, et al., Francis Runner Design for Best Off Point Operation, Hydropower and Dams, Issue Three, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700