喷锚支护节理岩体的复合单元法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在岩土工程中,大量的锚杆和喷射混凝上被用于加固节理岩体,因此,展开对喷锚支护节理岩体的研究有着重要的实际意义。一般来说,研究喷锚支护节理岩体有两种模型:离散模型和等效模型。二者各有优缺点,离散模型能够较为详尽的来描述喷锚支护节理岩体中各个部件的力学行为,但是其前处理工作比较复杂,需要花费大量的时间在模型的离散上面;而等效模型的前处理工作相对而言比较简单,但其缺点是不能得到喷锚支护节理岩体中每个组成部分的详细力学行为。研究人员一般是有选择地使用这两种模型,对于大量的微裂隙、节理、喷层和系统锚杆,采用等效模型,而对于较大断层和重点关注部位的喷层和锚杆则采用离散模型。但是,随着岩土工程规模的逐步扩大,工程人员会遇到越来越复杂的结构,大量的断层和喷层、锚杆纵横交错,使使用详细划分网格的方法来进行离散模拟几乎成了不可能完成的任务。同时,工程方案的频繁改动也会引起网格的频繁变动,这样既费时又费力的工作也是工程研究人员所不愿意面对的。复合单元法便结合了离散模型和等效模型的优点,它的本质是用复杂的计算来代替复杂的前处理工作,从而来降低前处理工作的难度,进而提高工作效率,同时,其又能够细致地模拟结构的内部构造,因此很适用于对复杂结构的研究。
     本文就是基于复合单元法开展对喷锚支护节理岩体的研究。
     第一,本文总结了岩土锚固和喷锚支护的发展历程并介绍了喷锚支护的工作特性及作用原理。其主要工作特性有及时性、粘结性、深入性、柔性、易应变性和密封性。这些特性构成最大限度利用围岩强度和自承能力的基本要素。在锚固技术的长期应用中,人们先后提出了几种已普遍接受的理论:悬吊理论、组合梁理论、压缩拱理论。在前人研究的基础上,目前又提出了几种新的理论,如:最大水平应力理论、围岩强度强化理论、围岩松动圈理论、全长锚固中性点理论等。
     第二,本文总结了目前节理岩体与锚固的研究方法和现状。目前研究岩土工程节理岩体锚固的方法主要有:物理试验法、工程类比法和数值分析法。锚固理论按照体系可分为两大类:不连续介质力学离散方法和连续介质力学等效方法。前者包括极限平衡理论(LET)、关键块理论(BT)、离散单元法(DEM)、不连续变形分析法(DDA)、块体单元法、界面元法等,后者包括有限单元法(FEM)、边界单元法(BEM)、快速拉格朗日分析法(FLAC)等。近年来还出现了具有综合这两类方法的特性的数值流形方法(NMM),无网格方法(MFM)和复合单元法(CEM)等。本文分别介绍了以上几种数值方法在锚固理论中的应用情况并重点介绍了复合单元法,总结了其的发展历程,介绍了复合单元法的基本原理。
     第三,基于复合单元法的基本原理,本文建立了喷锚支护节理岩体的弹性复合单元模型。在喷锚支护节理岩体的弹性复合单元模型中,先划分均质网格,将含有喷层、砂浆、锚杆和节理的岩体单元定义为复合单元,引入8个子单元分别用于描述岩体、砂浆、锚杆、喷层和各种接触面,定义多套位移自由度分别插值岩体、砂浆、锚杆和喷层子单元内的位移,而接触面子单元没有单独自由度,它们的位移是由相邻两种介质子单元的结点位移差插值而得的。对各个结构采用弹性本构关系模型,并根据虚功原理得到控制方程,从而求解。本模型能和常规有限单元法无缝结合,联合计算,常规有限单元可以认为是复合单元的一种退化。算例研究中,对一由砂浆锚杆和喷层加固的节理岩体进行试验,分别采用复合单元法和离散模型有限单元法进行弹性计算。计算结果的比较证明了喷锚支护节理岩体弹性复合单元模型的可靠性,同时也说明了复合单元法在喷锚支护节理岩体研究中的前处理简单的优势。
     第四,在喷锚支护节理岩体的弹性复合单元模型的基础上,基于弹粘塑性势理论,建立喷锚支护节理岩体的弹粘塑性复合单元模型,对各个构件采用弹粘塑性本构关系,用来模拟其应力应变随时问变化的过程,能较好地解决实际工程中岩体的应力应变是随时间变化的,简单的弹性模型并不能反映时间对应力应变的影响,也就无法模拟喷锚节理岩体真实的应力应变过程的难题。算例研究中,对与弹性计算相同的模型,分别采川复合单元法和离散模型有限单元法进行弹粘塑性计算。计算结果的比较证明了喷锚支护节理岩体弹粘塑性复合单元模型的可靠性。
     第五,本文开展了喷锚支护节理岩体的P型自适应复合单元法研究。复合单元法简化了前处理,在研究复杂结构时拥有强大的优势,但是,常规复合单元法采用的是和常规有限单元法一样的线性形函数,在网格密度较小的情况下难以描述复杂结构的非线性性质,可以通过加密网格解决这一问题,但是有难度,而且也与复合单元法的简化前处理的思想不符。喷锚支护节理岩体结构复杂,在粗糙网格下,其内部构件的非线性性质是常规的线性形函数无法精确模拟的。于是引入P型自适应的思想,定义喷锚节理岩体的P型复合单元,通过不断升阶的阶谱基函数,从物理意义上拟合喷锚支护节理岩体内各个构件的复杂位移模式,从而达到模拟非线性力学行为的目的。通过公式的推导和计算程序的编制,这一研究得以实现。算例研究中,稀疏网格的P型复合单元法计算结果,随着升阶不断趋向一致,通过与常规有限单元法和常规复合单元法计算结果比较,证实该研究的成效。
     最后,本文将研究成果应用于瀑布沟水电站地下厂房工程的研究。分别建立了三维复合单元法计算网格和三维有限单元法计算网格,进行比较计算,其中复合单元法计算网格包括12311个单元和12429个结点,为均质网格;而有限单元法计算网格包含70128单元和93516个结点,采用了离散模型。在研究中,模拟了地下洞室的开挖加固到运行的全过程,开挖分为9步进行,喷锚支护伴滞后开挖一步进行。通过丰富的计算结果的比较,进一步证实了复合单元法在喷锚支护节理岩体研究的成效,表现出强大的前处理的优势和离散模拟的准确。
     复合单元法在岩土工程有着广阔的应用前景,目前在喷锚支护节理岩体的应力-应变分析中已经取得了一定成果,但是,复合单元法的在这一方面研究仍有待深入,同时,其多元化的应用研究还有待继续开展,可以在开裂问题、局部化问题、热传导问题、耦合问题等方面继续展开研究。
A lot of bolts and shotcrete lining are applied to reinforce jointed rock masses in geotechnical engineering. The analysis of jointed rock masses reinforced by bolts and shotcrete lining is very important to the engineering. Generally speaking, the equivalent model and the explicit model have been proposed to study jointed rock masses reinforced by bolts and shotcrete lining. They have their own merit and shortcoming:using the former, the behaviors of all of the components can be well simulated, however, much preprocess work is needed; the latter has the little limit in preprocess, but it cannot have very detailed simulation of the components. So, equivalent model are applied to simulate great quantities of joints or fissures, shotcrete lining and system bolts. As to the larger faults and important shotcrete lining and bolts, explicit simulation is usually proposed. As the scale of geotechnical engineering is greater and greater, more and more complicated geology condition including many faults, shotcrete lining and bolts is to be treated. It is very difficult to simulate all important faults, bolts, and shotcrete lining explicitly. Even worse, when the configuration of a structure is modified, it will cost much time and manpower to remesh. Combining the merits of the two models, the composite element method (CEM) is proposed to explicitly simulate jointed rock masses reinforced by bolts and shotcrete lining, which transfers the difficulties in preprocess into computation and heightens the efficiency.
     Comprehensive researches of jointed rock masses reinforced by bolts and shotcrete lining are conducted in this dissertation on the basis of CEM.
     Firstly, a review of ground anchorage and bolts and shotcrete lining support is made, and the working characteristic and action principle of bolts and shotcrete lining support is present in this dissertation. For bolts and shotcrete lining support, it has the characteristic of betimes, cohesiveness, deeply, flexible, adaptability to change and sealing which composite the basic elements of using the strength and self-support of surrounding rocks completely. During the long-term application of anchorage technology, several theories such as suspension theory, combined beam theory and combined arch theory have been proposed and generally accepted. Based on them, new theories including maximum horizontal stress, surrounding rock strength intensify theory, surrounding rock loosening circle and the full-length anchoring neutral point theory etc. have been present recently.
     Secondly, method and status of recent research about jointed rock masses and anchorage has been summarized. Physics experiment method, engineering analogy and numerical analysis are the mainly used methods on jointed rock masses anchorage. The theory system about anchorage is divided into discontinuous medium mechanics discrete method and continuous medium mechanics equivalent method. The former includes limited equilibrium theory (LET), key block theory(BT), discrete element method (DEM), discontinuous deformation analysis(DDA), block element method and interface element method. Finite element method (FEM), boundary element method and fast Lagrange analysis of code (FLAC) are attributed to the latter. Recently, methods combined of their characteristics are proposed taking the numerical manifold method (NMM), mesh free method (MFM) and composite element method (CEM) for example. All of their applications in anchorage theory are presented in the dissertation while emphasis on the CEM where its development course and basic theory are introduced.
     Thirdly, on the basis of CEM, the elastic composite element model for jointed rock masses supported by bolt and shotcrete lining is present in the dissertation. In this model, mesh can be generated without considering joint, grout, bolt and shotcrete lining firstly, and the elements containing them are defined as composite elements.8sub-elements are established to cover rock, grout, bolt, shotcrete lining and all interfaces. The displacements of the rock, grout, bolt and shotcrete lining can separately be interpolated from the sub-elements'nodal displacements. The interfaces have no independent nodes, and their displacements can be interpolated from the difference between the nodal displacements of rock, grout, bolt and shotcrete lining. According to the elastic constitutive relation and the virtual work principle, the equilibrium equation can be established. With the solved nodal displacements, the detailed behaviors of sub-elements can be described. This model can be incorporated into the conventional finite element analysis without any difficult. The conventional finite element can be treated as a degradation of the composite element. In the numerical example, elastic calculation for a jointed rock mass supported by grout-bolt and shotcrete lining is carried out by CEM and distinct element FEM. The comparison of the calculation results shows the validity of this model and the advantage of CEM in the pre-process of jointed rock mass supported by bolt and shotcrete.
     Fourthly, on the basis of elastic composite element model for jointed rock masses supported by bolt and shotcrete lining, an elastic-viscoplastic composite element is established. For every component, we use the elastic-viscoplastic constitutive relation to simulate the course of stress and strain changing with the time. In practical engineering, for the simple elastic model, it cannot show that the stress and strain of rock is changing with the time, so it cannot simulate the actual process of stress-strain of jointed rock mass. The elastic-viscoplastic model can solve the problem. In the numerical example, with the same model as elastic calculation, elastic-viscoplastic calculation is carried out by CEM and distinct element FEM. The comparison of the calculation results shows the validity of this elastic-viscoplastic model.
     Fifthly, the P-version adaptive CEM for jointed rock masses supported by bolt and shotcrete lining is proposed in this dissertation. With the simple preprocess, CEM has many advantages to simulate the complex structures. Using linear shape function as conventional FEM, CEM will have some difficulties in describing detailed nonlinear mechanical characteristics of complex structures under a low density of mesh. Generally speaking, increasing the density of the mesh is usually proposed to solve the problem. But it will increase the difficulties of preprocess. Furthermore, this approach disobeys to the CEM principle of simple preprocesses. To more complex mechanical characteristics of jointed rock masses supported by bolt and shotcrete lining, the linear shape function of conventional CEM has more difficulties to make a detailed simulation under a coarse mesh. Thereupon, P-version composite elements are defined to describe the jointed rock masses supported by bolt and shotcrete lining in this study. With the hierarchical basic function upgrading, the displacement mode of jointed rock masses supported by bolt and shotcrete lining and mechanical characteristics of all of the sub-structures can be well simulated by P-version CEM in physical hypostasis. Equation formulated, the method proposed can be realized in the program. The actual effect is shown through a comparison of calculation results among P-version CEM, conventional CEM and conventional FEM for an example.
     Finally, the study present above is applied onto the underground engineering of Pubugou powerstation. With the3dimensions calculation meshes of CEM and FEM, the engineering is analyzed separately by CEM and FEM. The mesh of CEM which contains12311elements and12429nodes is generated without considering the grouts, bolts, shotcrete lining, joints etc. With a mesh containing73788elements and98188nodes, the distinct model is applied into FEM calculation. In the study, excavation is divided into9steps and reinforcement is applied after every excavation step. The comparison of the calculation results shows the advantage of CEM in preprocess and the preciseness of CEM in distinct simulation.
     With a good foreground in the engineering, the study of CEM for jointed rock masses supported by bolts and shotcrete lining has been achieved, but many problems need to be solved to improve them, yet. Crack analysis, dynamic analysis, thermal analysis, localization analysis, coupling analysis, etc, are all the fields where CEM can show its advantages.
引文
1. A Kilic, E Yasar, A G Celik. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt [J]. Int. J. Tunnelling and Underground Space Technology,2002,17: 355-362.
    2. Aydan O, Kawamoto T. A comparative numerical study on the reinforcement effects of rockbolts and shotcrete support systems [A]. In:Beer, Booker, Garter ed. Computer Methods and Advanced in Geomechanics [M], Balkema, Rotterdam,1991:1443-1448.
    3. Aydan O, Kyoya T, Lchikawa Y, et al. Anchorage performance and reinforcement effects of fully grouted rockbolts on rock excavations [A]. In:Proc.6th. Int. Cong. ISRM [C], Montreal, 1987:757-760.
    4. Aydan O. The Stability of rock engineering structures by rock bolts [D]. Japan:Nagoya University,1989.
    5. B A Gavill. Very high capacity ground anchors used in strengthening concrete Gravity dams [C]. Proc. Int. Confr on Groud anchors and anchored structures, London,1997:262-271.
    6. Babuska I., B A Szabo and I N Katzs. The p-version of the finite element method [J]. SIAM J. Numer. Anal,1981,18(3):515-545.
    7. Bardell N S. The application of symbolic computing to the hierarchical finite element method [J]. Int. J. Numer. Meth. Eng,1989,28(5):1181-1204.
    8. Bawden W F, et al. An experimental procedure for the in situ testing of cable bolts [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,1992,29(5):525-533.
    9. Belytschko T, Kronganz Y, Organ Petal. Meshless methods:An overview and recent developments [J]. Comput. Methods Appl. Mech. Eng,1996,139:3-47.
    10. Bewden W F, Reichert R D, Hyett A J. A numerical study of a continuum finite difference model for cable bolt support design [C]. Prod.92th Annual General Meeting of Canadian Institute of Mining and Metallurgy (CIM), Montreal,1990.
    11. Bewden W F, Reichert R D, Hyett A J. Evaluation of design bond strength for fully grouted cables [C]. Canadian Institute of Mining and Metallurgy (CIM), Bulletin,1992,85(5): 525-533.
    12. British Standard BS 8081:Ground Anchorages[S].
    13. C Li, B Stillborg. Analytical models for rock bolt [J]. Int. J. Rock Mech. Min. Sci,1999,36: 1013-1029.
    14. Cai M, Horri H. A constitutive model and FEM analysis of jointed rock masses [J]. Int. J. Rock Mech. Min. Sci & Geomech. Abstr,1993,30(4):351-359.
    15. Carnevall P, R B Morris, Y Tsuji and G Taylor. New basis functions and computational procedures for p-version finite element analysis [J]. Int. J. Numer. Meth. Eng,1993,36(22): 3759-3779.
    16. Chen S H, Egger P, Migliazza R, Giani G P. Three dimensional composite element modeling of hollow bolt in rock masses [A]. In:Proceedings of ISRM Int. Symp. On Rock Eng. For Mountainous Regions-Eurock'2002[C], Madeira, Portugal,2002.
    17. Chen S H, Egger P. Elasto-viscoplastic distinct modeling of bolt in jointed rock masses [A]. In: Proc. Comp. Mech. and Adv. in Geomech. Yuan J X(C), Wuhan, China,1997:1985-1989.
    18. Chen S H, Egger P. Three dimensional elasto-viscoplastic finite element analysis of reinforced rock masses and its application [J]. Int. J. Numer. Analyt. Mech. Geomech,1999,23(1):61-78.
    19. Chen S H, He Z G, Egger P. Study of hollow friction bolts in rock by a three dimensional composite element method [A]. Proc.10th ISRM Cong.-ISRM 2003[C], South Africa: 203-206.
    20. Chen S H, Pande G N. Rheological model and finite element analysis of jointed rock masses reinforced by passive, fully-grouted bolts [J]. Int. J. Rock Mech. Min. Sci & Geomech. Abstr, 1994,31(3):273-277.
    21. Chen S H, Qiang S, Chen S F, Egger P. Composite element analysis and justification for the rock masses reinforced by fully grouted bolt [J]. Rock Mech.& Rock Eng,2004,37(3): 193-212.
    22. Chen S H, Qiang S. Composite element model for discontinuous rock masses [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,2004,41(5):865-870.
    23. Chen S H, Shen B K, Huang M H. Stochastic elastic-viscoplastic analysis for discontinuous rock masses [J]. Int. J. Num. Meth. Eng,1994,37(14):2429-2444.
    24. Chen S H, Xu Q, Hu J. Composite element method for seepage analysis of geotechnical structure with drainage holly array [J]. Chinese Journal of Hydrodynamics (Ser. B),2004, 16(3):260-266.
    25. Cheung Y K. Finite strip method in structural analysis [M]. Pergamon Press,1976.
    26. Chung K Y, Kikuchi N. Adaptive Methods to Solve Free Boundary Problems of Flow through Porous Media [J]. Int. J. Num. Anal. Meth. Geomech,1987,11:17-31.
    27. Cundall P A. A computer model for simulating progressive, large-scale movement in blocky rock system [A]. In:Rock fracture, Proc. Symp. Int. Soc. Rock Mech [C], Nancy,1971: 129-136.
    28. Cundall P A. The measurement and analysis of acceleration in rock slope [D]. London: University of London,1971.
    29. Egger P, Pellet F. Strength and deformation properties of reinforced jointed media under true triaxial conditions [A]. In:Proc.7th ISRM Cong[C], Aachen, Germany,1991:215-220.
    30. Egger P, Zabuski L. Behavior of rough bolted joints in direct shear tests [A]. In:Proc.7th ISRM Cong[C], Aachen, Germany,1991:1285-1288.
    31. F Agliardi, G B Crosta. High resolution three-dimensional numerical modeling of rockfalls [J]. Int. J. Rock Mech. Min. Sci,2003,40:455-471.
    32. Farmer I W. Stress distribution along a resin grouted rock anchor [J]. Int. J. Rock Mech. Min. Sci. And Geomech. Abstr,1975,12:347-51.
    33. Ferrero A M. The shear strength of reinforced rock joints [J]. Int. J. Rock Mech. Min Sci & Geomech. Abstr,1995,32(6):595-605.
    34. Fine J有限元法在岩石力学中的应用[M].辛洪波译.北京:冶金工业出版社,1979.
    35. Fish J, Guttal R. Adaptive solver for the p-version of finite element method [J]. Int. J. Numer. Meth. Eng,1997,40(10):1767-1784.
    36. Fuller P G, Cox R H T. Rock reinforcement design based on control of joint displacement:A new concept[C]. Proc.3rd. Australia Tunneling Conferenc, Sydney,1978:28-35.
    37. Gisle Stjern, Arne Myrvang. The influence of blasting on grouted rockbolts [J]. Int. J. Tunnelling and Underground Space Technology,1998,13(1):66-70.
    38. Goodman R E, Shi G H. Block theory and its application in rock engineering [M]. Englewood Cliffs:Prentice Hall,1985.
    39. Goodman R E. Methods of geological engineering in discontinuous rocks. St, Paul:West Publishing Co,1976.
    40. Goodman R E. Methods of geological engineering in discontinuous rocks [M]. New York: West Publishing Company,1976.
    41. Goros J M, Conway J P. Grouted flexible tendons and scaling investigation[C]. Proc.13th. World Mining Congress, Stockholm,1987:783-792.
    42. Grasselli G.3D Behavior of bolted rock joints:Experimental and numerical study [J]. Int. J. Rock Mech. Min Sci,2005,42(1):13-24.
    43. H Habenicht, N Nikolaeff. Operational and technical performance of the Tube-Anchor in the starting chamber of the long wall in the Bulgarian coal mine [C], Proc. Int. Confr on Anchors in the theory and practice, Salzburg,1995:315-323.
    44. HAHA T. Adhesion of shotcrete to various types of rock surfaces [C]. Proc 4th Confr Int society for Rock Mechanics, Vol (1).
    45. He Z G, Qiang S, Chen SH, Egger P. Composite element method for the jointed rock masses reinforced by hollow friction bolt [A]. In:SINOROCK-2004[C], YiChang (China),2004:464.
    46. Hobst L, Zajic J. Anchoring in rock and soil [M]. Newyork:Elsevier Scientific Publishing Company,1983.
    47. Horri H, Nemat-Nasser S. Over all moduli of solid with micro crack [J]. Journal of the Mechanics and Physics of Solid,1983,31(2):155-171.
    48. Hudson, J A, Jial Y. Analysis of Rock Engineering Projects [M]. Imperial College Press, London, 1998.
    49. Hyett A J, Bewden W F, Reichert R D. The effect of rock mass confinement on the bond strength of fully grouted cable bolts [J]. Int. J. Rock Mech. Min Sci & Geomech. Abstr,1992, 29(5):503-524.
    50. J A Hudson. Rock Engineering Systems:Theory and Practice [M]. Horwood, Chicester,1992.
    51. J C Stormont. Study of Rock Fracture by Permeability Method [J]. Journal of Geotechnical and Geoenviromential Engineering,1999.
    52. K G Sharma, G N Pande. Stability of rock masses reinforced by passive, fully-grouted rock bolts [J]. Int. J. Rock Mech.& Min. Sci,1988,25(5):273-284.
    53. K Spang, P Egger. Action of fully-grouted bolts in jointed rock and factors of influence [J]. Int. J. Rock Mech.& Rock Eng,1990(23):201-229.
    54. Kaiser P K, Yaxici S, Nose J. Effect of stress change on the band strength of fully grouted cables [J]. Int. J. Rock Mech. Min Sci & Geomech. Abstr,1992,29(3):293-306.
    55. Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory [J]. Int. J. Numer Analy Meth Geomech,1988,12(1): 1-30.
    56. Keiichi Fujita. An overview of the application of ground anchorage in Japan[C]. Proc. Int Symp on Rock-soil Anchoring, Liuzhou,1997:9-14.
    57. Kemeny I, Cook N G W. Effective moduli, non-linear deformation and strength of a cracked elastic solid [J]. Int. J. Rock Mech. Min Sci & Geomech. Abstr,1986,23(2):107-118.
    58. Kilic A, Yasar E, Celik A G. Effect of grouted properties on the pullout load capacity of fully grouted rock bolt [J]. Tunneling and Underground Space Technology,2002,42(1):355-362.
    59. Kim YongIl, Amadei B, Pan E. Modeling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis [J]. Int. J. Rock Mech.& Min. Sci, 1999,36(7):949-970.
    60. Kyoya T, Ichikawa Y, Kawamoto T. A damage mechanics theory for discontinuous rock mass[C]. Proc.5th. Int. Confr. Numer Geomech, Nagoya,1985:469-480.
    61. L Hobst, J Zajic. Anchoring in Rock and Soil [M]. Elsevier scientific publishing company, New York,1983.
    62. Larsson H, Olofsson T, Stephansson O. Reinforcement of jointed rock mass-a non linear continuum approach[A]. In:Proc. Int. Symp. On Fundamentals of Rock Joints[C], Bjorkliden, Sweden,1985:567-577.
    63. Larsson H, Olofsson T. Bolt action in jointed rock [A]. In:Proc. Int. Symp. On Rock Bolting[C], Abisko, Sweden,1983:33-46.
    64. Lis, Lin W K. Meshfree and particle methods and their applications [J]. Appl. Mech. Rev,2002, 55(1):1-34.
    65. Mahar, J W Parker, H W Wneellner, W W. Shotcrete practice in under-ground construction, 1975.
    66. Marence M, Swoboda G. Numerical Model for Rock Bolts with Consideration of Rock Joint Movements [J]. Rock Mech.& Rock Eng,1995,28 (3):145-165.
    67. Michael J, Turner. Some aspects of current ground anchor design and construction in the United Kingdom [C]. Proc. Int. Confr on Anchors in theory and practice, Salzburg,1995: 247-256.
    68. Nakayama M, Beaudoin B B. A novel technique for determining bond strength development between cement paste and steel [J]. Cement and Concrete Research,1987,17(3):478-488.
    69. Osterayer H. Construction, carrying behavior and creep characteristics of ground anchors. Thelma J Dawent. Diaphragm walls anchorages[C]. Proc. Confr the Institution of Civil Engineers, London,1974:141-151.
    70. Owen D R J, Hinton E. Finite Elements in Plasticity:Theory and Practice [M]. Swansea (U.K.): Pineridge Press Ltd,1980.
    71. Pande G N, Gerrard C.M. The behavior of reinforced jointed rock masses under various simple loading states [A]. In:Proc.5th ISRM Cong[C], Melbourne, Australia,1983:F217-F223.
    72. Panet M. Reinforcement of rock foundation and slopes by active or passive anchors[C]. Proc. 6th Cong ISRM, Montreal,1987:1411-1420.
    73. Philips, S H, E. Factors Affecting the Design of Anchorages in Rock. Research Report R48170. Cementation Research Ltd, London,1970.
    74. R B Weerasinghe, D Adams. A technical review of the Rock anchorage practice 1976-1996[C]. Proc. Int. Confr on Groud anchors and anchored structures, London,1997:481-491.
    75. Roman Starikova, Joakim Schon. Local fatigue behavior of CFRP bolted joints [J]. Int. J. Composite Science and Technology,2002,62:243-253.
    76. Roman Starikova, Joakim Schon. Quasi-static behavior of composite joints with protruding-head bolts [J]. Int. J. Composite Structure,2001,51:411-425.
    77. S M Miller, D C Ward. Evaluation of pullout resistance and direct-shear strength grouted fiberglass cable bolts [J]. Int. J. Rock Mech. Min. Sci,1998,35(4):400.
    78. S Sakurai锚杆加固节理岩体机理与分析方法[A].张新乐译.见:曾宪明,工振宇,徐孝华,杨章甫等编译,国际岩土工程新技术新材料新方法[M].北京:中国建筑工业出版社,2003.
    79. Salamon M D G. Elastic moduli of stratified rock mass [J]. Int. J. Rock Mech. Min Sci & Geomech. Abstr,1968,5(6):519-527.
    80. Sami W Tabsh, Shehab Mourad. Resistance factors for blind bolts in directtesion [J]. Int. J. Engineering Structure,1997,19(12):995-1000.
    81. Sharma K G, Pande G N. Stability of rock masses reinforced by passive, fully-grouted bolts [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,1998,25(5):273-285.
    82. Shi G H. Discontinuous deformation analysis:a new numerical model for the statics and dynamics of deformable block structures [J]. Engineering Computations,1992,9(2):157-168.
    83. Shi G H. Manifold method [A]. In:Proc. of the first Int. Forum on DDA and Simulation of Discontinuous Media[C], Berkeley, California, USA,1996:52-204.
    84. Spang K, Egger P. Action of fully-grouted bolts in jointed rock and factors of influence [J]. Rock Mech.& Rock Eng,1990,23:201-229.
    85. Swiss code SLA 191:Ground Anchorages 1977[S]. Swiss society of Architects and Engineering, London, England,1986.
    86. Swoboda G, Marance M. FEM Model of rock bolts[C]. Proc. Computer Methods and Advances in Geomechanics. Rotterdan:A.A. Balkema,1991.
    87. Swoboda G, Marence M, Numerical modeling of rock bolts in intersection with fault system [A]. In:Proc. Numerical Models in Geomechanics[C], NUMOG 5, Swansea, U.K,1992: 729-738.
    88. Swoboda G, Marence M. FEM modeling of rock bolts [A]. In:Proc. Comp. Meth.& Adv. in Geomech[C], Cairns, Australia,1991:1515-1520.
    89. Swoboda G, Yang Q. Damage propagation model and its application to rock engineering problems[C]. Proc. Int. Confr on Mechanics, Tokyo,1995:159-163.
    90.T H汉纳著,胡定等译.锚固技术在岩土工程中的应用[M].北京:中国建筑工业出版社,1987.
    91. Theodore R Crown, Pry Mix. Shotcrete nozzling, "Concrete international design and Construction",1981,(1).
    92. W G Pariseau. An equivalent plasticity theory for jointed rock masses [J]. Int. J. Rock Mech. Min Sci,1999,36:907-918.
    93. W Z Zhuang. Prediction of crack growth from bolt holes in a disc [J]. Int. J. Fatigue.2000,22: 241-250.
    94. Waller, E Sprayed. Concrete in repair and strengthening work[C]. Proc. Symp. On sprayed concrete, London,1998.
    95. Wiberg N E, Li X D. A post-processed error estimate and an adaptive procedure for the semi-discrete finite element method in dynamic analysis [J]. Int. J. Numer. Meth. Eng.1994, 37:3585-3603.
    96. Wiberg N E, Moller P. Formulation and solution of hierarchical finite element equations [J]. Int. J. Numer. Meth. Eng,1988,26:1213-1233.
    97. Wiberg N E, Zeng L F, Li X D. Error estimation and adaptivity in elastodynamics [J]. Computer Methods in Applied Mechanics and Engineering,1992,101:369-395.
    98. Wood DE等.喷混凝土支护在隧道工程中的应用及发展[J].隧道译从,1991(2).
    99. Yoshinaka R, Sakayuchi S, Shimizu T, et al. Experimental study on the rock bolt reinforcement in discontinuous rocks[C]. Proc.6th Cong ISRM, Montreal,1987:1329-1332.
    100. Zhang Y T, L Wang, P Chen. Analysis of concrete dam/foundation interaction [J]. Dam Engineering,1990, (4).
    101. Zhang Youtian. External water Pressure on Tunnels in Mountain Area [M]. Modern Tunneling Science and Technology, Swets&Zeitlinger,2000.
    102. Zhu W, Li S. Application of dynamic construction mechanics of rock masses and damage model of energy to engineering practice[C]. Proc.9th. Int. Confr on Computational Methods and Advances in Geomechanics, Wuhan,1997:299-304.
    103. Zhu W, Zhang Y J. Effect of supporting surrounding rocks by bolts and its application to high slope of three gorges flight lock[C]. Proc.Int. Sypm on Anchoring and Grouting Technique, Guangzhou,1994:188-196.
    104. Zhu Yue ming, et al. Some adaptive techniques for solution of free seepage flow through arch dam abutments [A]. In:Proc of the Int Symp on Arch Dams[C], Nanjing,1992.
    105. Zienkiewicz O C, Gago J P, DE S R, Kelly D W. The hierarchical concept in finite element analysis [J]. Computers & Structures,1983,16(1-4):53-65.
    106. Zienkiewicz O C, Irons B M., Scott F C, Campbell J. Three dimensional stress analysis [A]. In: Proc. IUTAM Symp. On High Speed Commuting of Elastic Structures [M], Belgium, Univ. of Liege Press,1971:413-433.
    107. Zienkiewicz O C, Phillips D V. An automatic mesh generation scheme for plane and curved surface by isoparametric co-ordinates [J]. Int. J. Num. Meth. Eng,1971,3:519-528.
    108. Zienkiewicz O C, Zhu J Z, Gong N G. Effective and practical h-p version adaptive analysis procedures for the finite element method [J]. Int. J. Numer. Meth. Eng,1989,28(1-6): 879-891.
    109. Zienkiewicz O C, Zhu J Z. A simple error estimator and adaptive procedure for practical engineering analysis [J]. Int. J. Numer. Meth. Eng,1987,24:337-357.
    110. Zienkiewicz O C, Zhu J Z. Adaptivity and mesh generation [J]. Int. J. Numer. Meth. Eng,1991, 32:783-810.
    111. Zienkiewicz O C. The Finite Element Method [M].3rd Edn. McGraw-Hill, New York,1977.
    112.蔡永昌,张湘伟,骆少明.数值流形方法在连续体数值分析中的应用[J].力学与实践,1999,21(6):53-54.
    113.蔡永昌,张湘伟.使用高阶覆盖位移函数的数值流形方法及其应力精度的改善[J].机械工程学报,2000,36(9):20-25.
    114.曹文贵,速宝玉.流形元覆盖系统自动形成方法之研究[J].岩土工程学报,2001,23(2): 187-190.
    115.曹文贵,速宝玉.岩体锚固支护的数值流行方法模拟及其应用[J].岩上工程学报,2001,23(5):581-583.
    116.陈国周,贾金清.锚杆与土体界面渐进破坏的解析解[J].岩土力学,2007,27(增):321-326.
    117.陈洪凯,唐红梅,工蓉.锚固岩体参数的等效方法研究[J].应用数学和力学,2001,22(8):862-868.
    118.陈胜宏,Egger P,熊文林.加锚节理岩体流变模型及三维弹粘塑性有限元分析[J].水利学报,1998,(9):41-47.
    119.陈胜宏,程昭.水工结构分析p-型自适应有限单元法研究[J].水利学报,2001,(11):62-69.
    120.陈胜宏,强晟,陈尚法.加锚岩体的三维复合单元模型研究[J].岩石力学与工程学报,2003,22(1):1-8.
    121.陈胜宏,王鸿儒,熊文林.岩体三维弹粘塑性块体理论的初步研究[J].武汉水利电力学院学报,1990,23(6):55-61.
    122.陈胜宏.高坝复杂岩石地基及岩石高边坡稳定分析[M].北京:中国水利水电出版社,2001.
    123.陈胜宏.块状结构岩体渗流分析方法的探讨[J].水利学报,1991,(10):27-31.
    124.陈胜宏.岩坡中楔形体的稳定分析[J].水利学报,1990,(11):18-26.
    125.陈胜宏.岩体的广义弹粘塑性块体理论[J].水利学报,1996,(1):78-84.
    126.陈卫忠.节理岩体损伤断裂时效机理及其工程应用[D].武汉:中国科学院武汉岩土力学研究所博十学位论文,1992.
    127.陈欣,周维垣,黄岩松,杨若琼.三维界面元的数值计算方法及应用[J].岩土力学,2004,24(增):61-64.
    128.陈玉祥,王霞,刘少伟.锚杆支护理论现状及发展趋势探讨[J].西部探矿工程,2004(10).
    129.陈祖煜.土质边坡稳定分析—原理,方法,程序[M].中国水利水电出版社,2005.
    130.程东幸,潘炜,刘大安等.锚固节理岩体等效力学参数三维离散元模拟[J].岩土力学,2006,27(12):2]27-2132.
    131.程良奎,李象范.岩土锚固·土钉·喷射混凝上—原理、设计与应用[M].北京:中国建筑工业出版社,2008.
    132.程良奎.喷锚支护的工作特性与作用原理[J].地下工程,1981(5).
    133.程良奎.喷锚支护的几个力学问题[J].金属矿山,1982(5).
    134.程良奎.我国岩土锚固技术的现状与发展[M].北京:地震出版社,2001.
    135.程良奎.岩土锚固的基本原理与力学作用[J].工业建筑,1993(1).
    136.程良奎.岩土锚固的现状与发展[J].土木工程学报,2001,34(3):7-12.
    137.程良奎.岩土锚固研究与新进展[J].岩石力学与工程学报,2005,24(21):3803-3810.
    138.程昭,陈胜宏.水工结构的三维阶谱有限单元法[J].水利学报,1999,(12):53-58.
    139.单忠刚.锚杆种类与选择[J].煤炭技术,2005(6).
    140.邓建辉,熊文林,葛修润.节理岩体自适应有限元分析方法及其工程应用[J].岩石力学与工程学报,1995,14(3):246-254.
    141.东北勘测设计院主编.地下洞室的锚喷支护[M].北京:水利出版社,1981.
    142.费文平,张林,谢和平.P型自适应有限单元法及其在岩土工程中的应用[J].岩土力学,2004,25(11):1727-1732.
    143.费文平,陈胜宏.三维稳定渗流的P型自适应有限元分析[J].岩土力学,2004,25(2):211-215.
    144.费文平,陈胜宏.水工结构的三维P型弹粘塑性自适应有限单元法[J].水力学报,2003,3:86-92.
    145.冯学敏,陈胜宏,含复杂裂隙网络岩体渗流特性研究的复合单元法[J].岩石力学与工程学报,2006,5:918-924.
    146.冯学敏,陈胜宏.不连续岩体的三维渗流复合单元法初步研究[J].岩石力学与工程学报,2006,1:93-99.
    147.高谦,宋建国,余伟健等.金川深部高应力巷道锚喷支护设计与数值模拟技术[J].岩土工程学报,2007,29(2):279-284.
    148.葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报,1998,10(1): 8-19.
    149.顾元通,丁桦.无网格法及其最新进展[J].力学进展,2005,35(3): 323-337.
    150.郭映龙,叶金汉.节理岩体锚固效应研究[J].水利水电技术,1992(7): 41-44.
    151.韩军,丁秀丽,朱杰兵.岩土锚固技术的新进展[J].长江科学院院报,2001,18(5): 65-67.
    152.韩立军,蒋斌松,贺永年.构造复杂区域巷道挖顶卸压原理与支护技术实践[J].岩石力学与工程学报,2005,24(增2):5549-5554.
    153.何则干,陈胜宏.加锚节理岩体的复合单元法研究[J].岩土力学,2007,8:1544-1550.
    154.何则干,陈胜宏.加锚岩体的阶谱复合单元法研究[J].岩石力学与工程学报,2006,8:1698-1704.
    155.胡静.水工结构中含排水孔渗流场的分析方法研究[D].武汉:武汉大学博士学位论文,2003.
    156.江波.锚杆支护理论发展与现状[J].山西建筑,2007(7).
    157.姜清辉,丰定祥.三维非连续变形分析方法中的锚杆模拟[J].岩土力学,2001,22(2):176-178.
    158.姜清辉,丰定祥.三维非连续变形分析方法中角-面接触模型的研究[J].岩石力学与工程学报,2000,19(增):930-935.
    159.蒋良潍,黄润秋Mindlin位移解推求锚固段侧阻力分布方法中的奇异性问题[J].岩土工程学报,2006,28(9):1112-1117.
    160.蒋树屏,王缙敏,唐树名,罗斌.岩土锚固技术研究与工程应用[M].北京:人民交通出版社,2010.
    161.焦玉勇,葛修润,刘泉声,冯树仁.三维离散单元法及其在滑坡分析中的应用[J].岩土工程学报,2000,22(1):101-104.
    162.金丰年,翁杰,许宏发.岩锚吊车梁设计计算方法研究[J].岩土力学,2005,26(增):175-179.
    163.康洪普.煤巷锚杆支护成套技术及其工程应用[J].岩石力学与工程学报,2005(21).
    164.雷晓燕.三维锚杆单元理论及其应用[J].工程力学,1996,13(2): 50-60.
    165.李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报,1995-1, 17(1):24-31.
    166.李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    167.李术才,朱维申.加锚节理岩体断裂损伤模型及其应用[J].水利学报,1998,8:52-56.
    168.李术才.加锚断续节理岩体断裂损伤模型及其应用[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,1996.
    169.李术才等.加锚断续节理岩体破坏机理及工程应用[M].北京:科学出版社,2010.
    170.李树忱,程玉民.数值流形方法及其在岩石力学中的作用[J].力学进展,2004,34(4):446-454.
    171.李卧东.无网格法理论研究及其在工程中的应用[D].武汉:华中科技大学博士学位论文,2000.
    172.李新平,朱维申.多裂隙岩体的等效弹性损伤连续模型及有限元分析[C].第四届全国岩土力学数值分析与解析方法讨论论文集,泰安,1991:1-8.
    173.李永明,汪卫明,陈胜宏.阶谱块体单元法及其在连续介质力学问题中的应用[J].岩土力学,2002,23(3):362-367.
    174.林绍忠.对称逐步超松弛预处理共轭梯度法的改进迭代格式[J].数值计算与计算机应用,1997,4:266-270.
    175.凌建明.节理岩体损伤力学及时效损伤特征的研究[D].上海:同济大学博士学位论文,1992.
    176.刘保国.岩体等效变形参数及侧压系数的非线性最小二乘估计[J].岩石力学与工程学报,1996,15(3):263-268.
    177.刘波,韩彦辉Flac 3D原理、实例与应用指南[M].北京:人民交通出版社,2005.
    178.刘建国.水胀式锚杆在隧道施工中的应用[J].现代隧道技术,2003,40(2):62-64.
    179.刘建明,陈晓知.岩石边坡锚杆锚固的性能研究[J].西部探矿工程,2005,1:104.
    180.刘军,李仲奎.非连续变形分析(DDA)方法研究现状及发展趋势[J].岩石力学与工程学报,2004,23(5):839-845.
    181.刘宁,卓家寿.节理岩体的三维随机有限元及可靠度计算[J].岩石力学与工程学报,1995,14(4):297-305.
    182.刘欣,朱德懋,陆明万,张雄.基于流形覆盖思想的无网格方法的研究[J].计算力学学报,2001,18(1):21-27.
    183.刘再华,董国兴,王文安.工程结构抗断设计基础[M].武汉:华中理工大学出版社,1990.
    184.卢兴利.深部巷道破裂岩体块系介质模型及工程应用研究[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,2010.
    185.罗朝廷.我国喷射混凝土技术的发展·岩土锚固工程新技术[M].北京:人民交通出版社,1998.
    186.罗先启.锚杆销钉机理的弹性有限元分析[D].武汉:武汉水利电力大学硕士学位论文,1990.
    187.吕涛,石济民,林振宝.区域分解算法—偏微分方程数值解新技术[M].北京:科学出版社,1992.
    188.潘家铮.水工结构分析与计算机应用[M].北京:北京科学技术出版社,1995.
    189.彭振斌.锚固工程设计计算与施工[M].北京:中国地质大学出版社,1997.
    190.彭志强,王水林,葛修润.单位分解法,无网格法,数值流形方法之形函数的内在联系[J].岩石力学与工程学报,2002,21(增):2429-2431.
    191.强晟,陈胜宏.不连续岩体的三维弹粘塑性复合单元模型研究[J].岩石力学与工程学报,2004,23(20):3390-3396.
    192.强晟,陈胜宏.一种新的三维岩体锚杆单元模型[J].岩石力学与工程学报,2001.20(增2):1476-1482,
    193.强晟.三维弹粘塑性复合单元法研究[D].武汉:武汉大学博士学位论文,2005.
    194.任青文,余天堂.块体单元法的理论和计算模型[J].工程力学,1999,16(1):67-77.
    195.任青文.块体单元法及其在岩体稳定分析中的应用[J].河海大学学报,1995,23(1):1-7.
    196.盛金星,速宝玉等.裂隙岩体渗流-弹塑性应力耦合分析[J].岩石力学与工程学报,2005,19(3):304-309.
    197.盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[D].中国科学院研究生院博士学位论文,2002.
    198.石根华著,裴觉民译.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.
    199.苏自约,林强有,丁国贵,王贤能.岩土锚固技术的新发展与工程实践[M].北京:人民交通出版社,2008.
    200.孙建生,永久哲夫.一个新的节理岩体力学分析模型及其应用[J].岩石力学与工程学报,1994,13(3):193-204.
    201.孙钧,杜世开.隧洞围岩稳定的时间效应及其设计判据,岩石力学在工程中的应用[M].北京:知识出版社,1989.
    202.孙钧,旺炳铿.地下结构有限元法解析[M],同济大学出版社,1988.
    203.孙亮.中空注浆锚杆的应用实践[J].铁道建筑,2005,7:45-46.
    204.孙卫军,周维垣.裂隙岩体弹塑性损伤本构模型[J].岩石力学与工程学报,1990, 9(2):108-119.
    205.唐明辉,晏鄂川等.工程地质模拟的理论与方法[M].武汉:中国地质大学出版社,2002.
    206.屠丽南等.水泥锚杆[M].北京:煤炭工业出版社,1989.
    207.汪卫明,陈胜宏.三维岩石块体系统的自动识别方法[J] .武汉水利电力大学学报,1998,31(5):51-55.
    208.汪卫明,陈胜宏.岩体的三维弹粘塑性阶谱块体单元法[J].岩石力学与工程学报,2003,22(4):525-534.
    209.汪卫明,徐明毅,陈胜宏.三维裂纹扩展的不变网格有限元分析方法[J].岩石力学与工程学报,2001,20(增2):1608-1612.
    210.汪卫明,徐明毅,陈胜宏.水工结构的块体元和有限元耦合分析方法[J].岩石力学与工程学报,2001,20(增1):1029-1033.
    211.汪远年,李世海.断续节理岩体随机模型三维离散元数值模拟[J].岩石力学与工程学报,2004,23(21):3625-3658.
    212.王拉才.岩体锚固机理研究及应用[D].武汉:中国科学院武汉岩土所博士学位论文,1995.
    213.王书法,朱维申,李术才,陈胜宏.加锚岩体变形分析的数值流形方法[J].岩石力学与工 程学报,2002,21(8):1120-1123.
    214.王水林,葛修润.四个物理覆盖构成一个单元的流形方法及应用[J].岩石力学与工程学报,1999,18(3):312-316.
    215.王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1988.
    216.王芝银,李云鹏.数值流形方法中的几点改进[J].岩土工程学报,1998,20(6):33-36.
    217.工芝银,工思敬,杨志法.岩石大变形分析的流形方法[J].岩石力学与工程学报,1997,16(5):399-404.
    218.邬爱清,任放,董学晟.DDA数值模型及其在岩体工程上的初步应用研究[J].岩石力学与工程学报,1997,16(5):411-417.
    219.夏仲存.中国水利水电工程应用湿喷混凝土技术概况[J].水利水电施工,2001(3).
    220.肖明.地下洞室群稳定隐式锚杆单元的三维弹塑性有限元分析[J].岩土工程学报,1992,14(5):19-26.
    221.谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):74-82.
    222.欣顿,欧文.有限元程序设计[M].北京:新时代出版社,1982.
    223.徐干成,白洪才,郑颖人等.地下工程支护结构[M].北京:中国水利水电出版社,2001.
    224.徐靖南.压剪应力作用下多裂隙岩体的力学特性-理论分析与模型试验[D].北京:中国科学院博十学位论文,1993.
    225.许桂生,陈胜宏.模拟排水孔的复合单元法研究[J].水动力学研究与进展,2005,20(2):215-220.
    226.许桂生,陈胜宏.无压渗流分析的复合单元法[J].岩土力学,2005,26(5):745-749.
    227.许桂生.岩体渗流分析的复合单元法研究[D].武汉:武汉大学博士学位论文,2005.
    228.闫英明等.岩土锚固技术手册[M].北京:人民交通出版社,2004.
    229.阎莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社,2004.
    230.剡公瑞.岩石混凝上类材料的断裂机理模型研究及其工程应用[D].北京:清华大学博士学位论文,1994.
    231.杨松林,朱焕春,刘祖德.加锚层状岩体的本构模型[J].岩土工程学报,2001,23(4):427-430.
    232.杨天鸿,唐春安等.岩石破裂过程的渗流特性理论、模型与应用[M].北京:科学出版社,2004.
    233.杨晓东.中国岩石力学与工程学会锚固与注浆分会.锚固与注浆技术手册[M].北京:中国电力出版社,2009.
    234.杨延毅,王慎跃.加锚节理岩体的损伤增韧止裂模型研究[J].岩土工程学报,1995,17(1):9-17.
    235.杨延毅.加锚层状岩体的变形破坏过程加固效果分析模型[J].岩石力学与工程学报,1994,13(4):309-317.
    236.杨延毅.节理裂隙岩体损伤-断裂力学模型及其在岩土工程中的应用[D].北京:清华大学博士学位论文,1990.
    237.叶金汉.裂隙岩体的锚固特性及其机理[J].水利学报,1995,9:68-74.
    238.叶黔元.岩石的内时损伤本构模型[C].第四届全国岩土力学数值分析与解析方法讨论论文集,泰安,1991:85-90.
    239.尤春安,高明,张利民等.锚固体应力分布的实验研究[J].岩土力学,2004,25(增):63-66.
    240.尤春安.全长粘结式锚杆的受力分布[J].岩石力学与工程学报,2000, 19(3):339-341.
    241.于学馥,郑颖人等.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983.
    242.翟才旺.水胀锚杆及其在水电工程的应用[J].人民黄河,1995,1:52-53.
    243.战宝玉,毕宣可,尤春安,芦兴利等.锚固体应力分布规律的数值模拟分析[J].岩土力学,2006,27(增):935-938.
    244.张发明,刘宁,赵维烦.预应力锚索加固技术的力学行为与群锚效应分析[J].岩石力学与工程学报,2005,24(增1):5072-5075.
    245.张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,24(2):188-192.
    246.张家识等.锚喷支护施工[M].北京:煤炭工业出版社,1984.
    247.张乐文,李术才.岩土锚固现状与发展[J].岩石力学与工程学报,2003(7).
    248.张乐文.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):628-632.
    249.张强勇,朱维申.加索损伤岩体联合作用模型及其工程应用[A].第五届全国岩石力学与工程学术大会论文集[C],中国科学技术出版社,1998:479-483.
    250.张武,张宪宏.节理岩体的弹性模型[J].岩土工程学报,1992,14(2): 54-61.
    251.张孝松.龙滩水电站地下洞室群布置及监控设计[J].岩石力学与工程学报,2005(21).
    252.张玉军,刘谊平.锚固正交各向异性岩体的三维弹塑性有限元分析[J].岩石力学与工程学报,2002,21(8):1115-1119.
    253.张玉军.考虑水-应力耦合作用的地下洞室的锚杆支护效果[J].岩石力学与工程学报,2005,24(15):2683-2688.
    254.张玉军.锚固岩体流变特性的模型试验及理论研究[D].上海:同济大学博士学位论文,1992.
    255.章青,卓家寿.加锚岩体的界面应力元模型[J].岩土工程学报,1998, 20(5): 5053.
    256.赵德安,蔡小林,Swoboda G等.锚杆单元及其在黄土隧道计算中的若干问题[J].岩石力学与工程学报,2004,23(24):4183-4189.
    257.赵宁.带锚杆结构分析的界而元法[J].水利水电科技进展.1995,15(5): 37-41.
    258.赵长海,董在志,陈群香.预应力锚固技术[M].北京:中国水利水电出版社,2001.
    259.赵长海.预应力锚固技术[M].北京:中国水利水电出版社,2001.
    260.郑颖人等.地下工程锚喷支护设计指南[M].北京:中国铁道出版社,1988.
    261.郑重远等.树脂锚杆[M].北京:煤炭工业出版社,1983.
    262.中国工程建设标准化协会标准.喷射混凝土加固技术规范[S].北京:中国建筑工业出版社,2004.
    263.中国航空研究院.应力强度因子手册[M].北京:科学出版社,1981.
    264.中国科学技术情报研究所重庆分所.喷锚支护及测试技术文集[M].北京:科学技术文献出版社,1987.
    265.中国岩土锚固工程协会.岩土锚固新技术[M].北京:人民交通出版社,1998.
    266.中华人民共和国国家标准.锚杆喷射混凝土支护技术规范(GB50086-2001)[S].因家质量技术监督局发布.
    267.周绍武.预应力锚索作用机理研究[D].武汉:武汉水利电力大学硕士学位论文,1994.
    268.周维垣,寇晓东.无单元法及其在岩土工程中的应用[J].岩土工程学报,1998,20(1): 5-9.
    269.朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.
    270.朱浮声.锚喷加固设计方法[M].北京:冶金工业出版社,1993.
    271.朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.
    272.朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    273.朱维申,李术才.裂隙岩体加锚增韧的模型试验研究[R].中国科学院武汉岩上力学研究所科研报告,1995.
    274.朱维申,任伟中,张玉军等.开挖条件下节理围岩锚固效应的模型试验研究[J].岩上力学,1997,18(1):1-7.
    275.朱维申,任伟中.船闸边坡节理岩体锚固效应的模型试验研究[J].岩石力学与工程学报,2001,20(5):720-725.
    276.诸德超,傅子智等译,H.卡德斯图赛主编.有限元法手册[M].北京:科学出版社,1996.
    277.诸德超.升阶谱有限元法[M].北京:国防工业出版社,1993.
    278.卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    279.邹志辉,汪志林.锚杆在不同岩体中的工作机理[J].岩土工程学报,1993,15(6):71-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700