脂肪环“燕尾型”共聚物LB膜的制备及光刻性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以248run KrF紫外光作为光刻光源、Langmuir-Blodgett (LB)膜技术为主要成膜手段,设计合成了一系列具有特殊结构和功能基团的高分子化合物,其中包括作为抗蚀剂成膜组分的两亲性分子长链烷基甲基丙烯酰胺;作为抗蚀剂光敏感组分的烯丙基丙二酸二金刚烷甲酯(DAdMAMA),烯丙基丙二酸二环己基甲酯(DCyMAMA),以及甲基丙烯酸-1-甲酯(AdMMA),甲基丙烯酸环己基甲酯(CyMMA),甲基丙烯酸薄荷基酯(MeMMA)(见图1);并通过自由基共聚将成膜组分与光敏组分进行聚合,并用红外光谱(FT-IR)、质谱(MS)、紫外光谱(UV)、核磁共振氢谱(1HNMR)、碳谱(13CNMR)、凝胶渗透色谱(GPC)和热重-差示扫描量热法(TG-DSC)对单体及聚合物的结构、组成、分子量和热稳定性进行了表征。研究了其成膜性能及光刻性质,并对光刻机理进行了的探究。
     研究表明,甲基丙烯酰胺的烷基链长度及其在共聚物中的含量对成膜性能有较大影响,共聚物中高含量的N-十六烷基甲基丙烯酰胺对系列光敏组分的成膜性能有很大帮助,在水面上能形成紧密排列的Langmuir膜并可转移至不同材质的固体基片上形成均匀的LB多层膜;另一方面,高含量的成膜组分虽然使得共聚物的成膜性能提高,但是光敏组分含量的降低使得共聚物对紫外光的敏感性降低,从而导致在光刻的过程中需要更多的能量才能得到较好的光刻图形。如要制备较高分辨率的光刻图形,共聚物应在保证较高的光敏感性基础上,具有较好的成膜性能。以下几种能够达到上述要求的光致抗蚀剂,包括投料比HDMA: DAdMAMA=8:2的h2a20, HDMA:AdMMA=6:4的hla40, HDMA:DCyMAMA=7:3的h2d30。
     以h2a20为例,图2所示为p(HDMA-DAdMAMA)[h2a20]单层膜转移到石英基片上的紫外光谱图,从图中我们可以看出,在0-26层时,紫外吸收强度变化随层数呈现良好的线性关系,之后紫外吸收变化开始变缓,说明26层后LB膜的转移比开始减小,成膜性能下降证明Langmuir膜能够均匀地转移到基片上,说明在38层以下可以制备得到排列有序的多层LB膜。图2石英基片上h2a20LB膜沉积不同层数的紫外吸收图谱(86层,Y型,SP=31mN/m);插图为LB膜在193nm处吸光度与沉积层数的关系
     图3为硅基片上4l层h2a20LB膜AFM图,表面有大小均一,平整突起,说明h2a20能够形成均匀有序的LB膜。图3.硅基片上共聚物h2a20LB膜的原子力显微镜图,(a)为高度图,(b)为3D图
     除了具有较好的成膜性能,h2a20LB膜通过248nm光刻工艺能够得到较高分辨率的光刻图形和金属刻蚀模型。研究结果表明,聚合物h2a20具有一定的光敏感性,图4为在31mN/m下的15层h2a20分别在硅基片和镀铬玻璃基片表面的光刻图形(光刻条件:曝光时间为60min,显影条件为丙酮显影5s或TMAH显影20s)。图4左图为硅片上15层ha20LB膜曝光显影后放大500倍的光学显微镜图,右图为镀铬玻璃基片上16层h2a0LB膜曝光显影后放大500倍的光学显微镜图(光刻条件:曝光时间为60min,显影条件为丙酮显影3s或TMAH显影10s)
     分别用紫外,红外,凝胶渗透色谱,示差扫描量热法(TG-DSC)对共聚物LB膜的光刻机理进行了初步探索。研究结果表明,在248nm曝光下,h2a20共聚物分子首先发生金刚烷甲基侧链的断裂生成羧酸结构,当曝光时间足够长时,还会发生主链的断裂。
     图5推测h2a20的光分解机理
In this paper, a series of new "Swallow tailed" photoresists containing amphipathic molecule N-Alkyl methyl acrylamide as film components and a seris of light sensitive components containing Allyl-malonic acid-diadamantane ester (DAdMAMA), Allyl-malonic acid-cyclohexyl Methyl ester, and Adamantane methyl methacrylate (AdMMA), Cyclohexyl methyl methacrylate (CyMMA), Menthol methyl methacrylate (MeMMA)(Fig1); The composition and molecular weight of these copolymers were characterized by1H NMR and gel permeation chromatography (GPC), respectively. Their properties of film-forming, lithographic performance and lithography mechanisms were also explored. Fig1Polymer structure diagram
     The monolayer behavior at air/water interface and Langmuir film transfer ability of copolymers were determined by the length and the mole fraction of alkyl in acrylamide in copolymers. The copolymer containing high mole fraction of hexadecyl group could form condensed monolayer on air/water interface, and could be transferred to different substrates to form homogeneous LB films. Through studying, better photopatterning of copolymers, h2a20(HDMA:DAdMAMA=8:2); h1a40(HDMA:AdMMA=6:4) and h2d30(HDMA:DCyMAMA=7:3), could be obtained.
     Take p(HDMA-DAdMAMA)[h2a20] as an example, the linear relationship between the absorbance and the number of deposited layers in Figure2suggested that a regular deposition of the copolymer monolayer took place, resulting in uniform h2a20LB films. We observed that the absorbation was propotion to monolayer deposited from2and26layers, and then slowly increase because of lowing of transfer ratio, indicating that regular multilayers ranging from2to26layers could be formed. Fig2UV absorption of p(HDMA-AdMAMA)[h2a20] LB films (Inset:plots of the absorbance at192nm vs. the numberof LB films deposited).
     AFM planar graph and3-D images of15layers of h2a20LB films were measured (Figure3). High orientation and order of the molecules in LB films could be observed, suggesting that a regular deposition of the copolymer monolayer took place.
     Figure3AFM planar graph (left) and3-D (right) images of15layers of h2a20LB films on silicon.
     Photolithographic properties of these copolymers were also investigated. Photopatterns15layers of h2a20LB films with the resolution of0.75μm could be obtained by deep UV irradiation, followed by development with acetone or TMAH solution (Figure4).
     Figure4Optical micrograph of photopatterns of15layers p(HDMA-DAdMAMA)[h2a20] LB films on silicon. Right:Optical micrograph of etched pattern of chrome films on glass substrate.
     The photodecomposition mechanism of h2a20LB films irradiated with deep UV light was explored. UV-vis, FT-IR, GPC, TG-DSC were used to explore characteristics of h2a20LB films irradiated. Possibly photodecomposition mechanism of h2a20LB films is shown in Fig5.
     Fig5Plausible photodecomposition mechanism of h2a20
引文
[1]刘加峰.光刻技术在微电子设备的应用及发展,电子技术与信息[J],2004,17:24-27
    [2]王国彪.光制造科学与技术的现状和展望[J],机械工程学报,2011.21.157
    [3]刘晓莉,李霄燕,邵敏权.光刻技术及其新进展[c],光机电信息;2005,09:12-15
    [4]周辉,杨海峰.光刻与微纳制造技术的研究现状及展望[J].加工、测量与设备,2012,09:613-618
    [5]郑金红.光刻胶的发展及应用[J].精细与专用化学品.2006,16:24-30
    [6]K. Ronse. Resist and process implementation issues in future lithography processes for ULSI applications[J], Microelectronic Engineering.2003,67-68:300-305
    [7]I. Karafyllidis. Design of a dedicated parallel processor for the simulation of the photolithography process using a genetic algorithm[J]. Eng. App. Artif. Intel.1999,12:411-427
    [8]J. Matsui, M. Mitsuishi, T. Miyashita. Photophysical Behavior of Pyrene Molecules in Polymer Nano-sheets[J]. Kobunshi Ronbunshu.2003,60(12):673-681
    [9]郑金红,黄志齐,陈昕等.193 nm光刻胶的研制[J].感光科学与光化学.2003,04:300-311
    [10]郑金红,黄志齐,文武等ULSI用193nm光刻胶的研究进展[J].精细化工.2005,05:348-353
    [11]陈庆修.光刻胶及其发展趋势[J];化学试剂.1993,15:219-222
    [12]占平平.EUV光刻技术进展[J].科技信息.2011,21:44-45
    [13]曾国良.有机高分子LB膜的制备及其应用研究[D].郑州大学.2007
    [14]孙磊,戴庆元,乔高帅等.从特征尺寸的缩小看光刻技术的发展[J].显微、测量、微细加工技术与设备.2008,10:186-190
    [15]晏凯.248nm光致抗蚀剂成膜树脂研究进展[J].信息记录材料.2008,2:37-43
    [16]Kim T, Chan K C, Crooks R M. Polymeric Self-Assembled Monolayers.4. Chemical, Electrochemical, and Thermal Stability of of ω-Functionalized, Self-Assembled Diacetylenic and Polydiacetylenic Monolayers [J]. J Am Chem Soc.1997,119:189-193
    [17]I. Langmuir. Constitution and fundamental properties of solids and liquids.II. Liquids [J]. J. Am. Chem. Soc.,1917,39:1848-1906
    [18]C. Bubeck. Preparation and characterization of mono-and multilayers [J]. Polym. J.,1991, 23:603-611
    [19]祝文秀,金春水,匡尚奇等.提高极紫外光谱纯度的多层膜设计及制备[J].光学学报,2012,32:281-286
    [20]童志义,高劲冲.向50 nm拓进的光学光刻技术[J].电子工业专用设备.2001,30:l-7
    [21]姜军,周芳,曾俊英等.光刻技术的现状和发展[J].红外技术.2002,24:8-13
    [22]邹应全.光致抗蚀剂的研究与应用进展[c].数字成像技术及影像材料科学.2006
    [23]H. Gokan, S. Esho, Y. J. Onishi. Dry etch resistance of organic materials Electrochem[J]. Soc.,1983,130:143-146
    [24]许箭,陈力,田凯军等.高档光刻胶材料的分子结构[c].中国感光学会成立30周年庆祝大会暨2011年学术年会论文摘要集
    [25]王春伟,李弘等.化学放大光刻胶高分子材料研究进展[J].高分子通报.2005,(2):70-79
    [26]John L. Sturtevant; Will Conley; Stephen E. Webber. Photosensitization in dyed and undyed APEXE DUV resist Proc[J]. SPIE.1996,2724:273-273
    [27]李葰,微电子工业用光刻胶[J].上海化工.2004
    [28]J. M. J. Frechet, E. Eichler, H. Ito, C. G. Willson. Poly (p-tert-butoxycarbo-nyloxystyrene):a convenient precursor to p-hydroxystyreneresins[J], Polymer.,1983,24:995-1000
    [29]H. Ito, C. G. Willson, J. M. J. Frechet etc. Positive/negative mid UV resist with high thermal stability Proc[J]. SPIE.,1987,771:24-31
    [30]H. Ito, L. A. Pederson, K. N. Chiong, S. Sonchik, C. Tsai etc. Sensitive electron beam resist systems based on acid-catalyzed deprotection[J], Proc. SPIE.,1989,1086:11-21
    [31]刘建国,郑家燊,李平等.聚羟基苯乙烯在光致抗蚀剂中的应用及其合成[J].感光科学与光化学,2006,24:67-74
    [32]J. B. Kim, B. W. Lee, H. J. Yun, Y. G. Kwon etc.193-nm photoresists based on norbornene copolymers with derivatives of bile acid[J]. Chem. Lett.,2000,4:414-415
    [33]袁琼燕,王向朝.国际主流光刻机研发的最新进展[J].中国光学期刊网.2007,1,44:57-64
    [34]朱杰,孙润广.LB膜技术在生命科学中的应用研究[J].生命科学仪器.2005,1:5-8
    [35]陈琛,袁立丽.LB膜技术的应用综述[J].合肥师范学院学报.2009,27:93-99
    [36]柯善明,刘来军等.LB薄膜技术在尖端材料制备中的应用[J].材料导报.2005,19:6-8
    [37]Wenjian Xu, Tiesheng Li, Gouliang Zeng etc. Studies on photolithography and photoreaction of copolymercontaining naphthyl in ultrathin nanosheetsinduced by deep UV irradiation[J], Journal of Photochemistry and Photobiology A:Chemistry 2008,194:97-104
    [38]U. Kumar, A. Pandya, R. Sinta etc. Probing the environmental stability and bake latitudes of acetal vs. ketal protected polyvinylphenol DUV resist systems[J]. Proc. SPIE.,1997,3049: 135-145
    [39]S. J. Choi, S. Y. Jung, C. H. Kim.etc. Design and properties of new deep-UV positive photoresist[J]. Proc. SPIE.,1996,2724:323-331.
    [40]H. J. Kim, Y. S. Chung. Investigation on dissolution rate effect of newly prepared polystyrene copolymer on the profiles of DUV resist[J]. Proc. SPIE.,2001,4345:528-538
    [41]M. Murate, E. Kobayashi, M. Yamachika. Positive deep-UV resist based on silylated poly(hydroxystyrene)[J]. J. Photopolym. Sci. Tech.,1992,5:79-84
    [42]J. M. Frechet, E. Eichler, H. Ito, C. G. Willson. Poly (p-tert-butoxycarbo-nyloxystyrene):a convenient precursor to p-hydroxystyreneresins[J]. Polym.,1983,24:995-1000
    [43]H. Ito, C. G. Willson, J. M. J. Frechet. Positive/negative mid UV resist with high thermal stability[J]. Proc. SPIE.,1987,771:24-31
    [44]H. Ito, L. A. Pederson, K. N. Chiong, S. Sonchik, C. Tsai etc. Sensitive electron beam resist systems based on acid-catalyzed deprotection[J]. Proc. SPIE.,1989,1086:11-21.
    [45]C. H. Noh, S. K. Lee, B. Moon K. Honda. Novel deep UV photoresist with thermally crosslinkable photoacid generator Proc[J]. SPIE.,2001,4345:536-542
    [46]S. Malik, A. J. Blakeney, L. Ferreira etc. Lithographic propertied of novel acetal-derivatized hydroxyl styrene polymers Proc[J]. SPIE.,1999,3678:388-400
    [47]T. Fujimori, S. Tan, T. Aoai etc. Structural design of a new class of acetal polymer for DUV resists Proc[J]. SPIE.,2000,3999:579-590
    [48孙磊,戴庆元,吴日新.从特征尺寸的缩小看光刻技术的发展[J]_显微、测量、微细加工技术与设备.2008,46:186-190
    [49]郑金红,黄志齐,侯宏森等.248 nm深紫外光刻胶[J].感光科学与光化学.2003,21:346-356
    [50]王力元.分子玻璃光致抗蚀剂研究进展[D].中国感光学会2008非银盐影像技术及材料发展与应用学术研讨会论文集,2008:125-129
    [51]徐娜,刘玉芹,王金玲.分子玻璃光致抗蚀剂研究进展[J],吉林化工学院学报.2012,29:12-16
    [52]舒航,刘敬成,王春林等.光敏甲基丙烯酸酯共聚物的合成及在负性光致抗蚀剂中的应用[J].高分子材料科学与工程.2012.11:22-26
    [53]许文俭,李铁生,曾国良等.含萘基的光抗蚀剂超薄膜的显影和光分解性质的研究[J].功能材料.2007,38:253-257
    [54]X. D. Li, A. Akoi, T. Miyashita. Macromolecules[J],1997,30:2194-2196
    [55]Y. Guo, F. Feng, T. Miyashita. Macromolecules[J],1999,32:1115-1118
    [56]Y. Guo, M. Mitsuishi, T. Miyashita. Macromolecules[J],2001,34:3548-3551
    [57]T. Miyashita, M. Nakaya, A. Aoki. Supramolecular Science[J],1998,5:363-365
    [58]A. Aoki, T. Miyashita[J]. Polymer,2001,42:7307-7311
    [59]T. Li, M. Misuishi, T. Miyashita[J]. Thin Solid Films,2001,389:267-271
    [60]T. Li, M. Mitsubishi, T. Miyashita[J]. Thin Solid Films,2004,446:138-142
    [61]T. Li, M. Mitsubishi, T. Miyashita[J]. Adv. in Tech. of Mater, and Mater. Proc.,2005,7: 209-214
    [62]Y. Guo, F. Feng, T. Miyashita[J]. Macromolecules,1999,32:1115-1118
    [63]T. Li, J. Chen, M. Mitsubishi, T. Miyashita[J]. J. Mater. Chem.2003,13:1565-1569
    [64]Tiesheng Li, Masaya Mitsuishi, Tokuji Miyashita. Ultrathin polymer Langmuir-Blodgett films for microlithography[J].Thin Solid Films.2004,446:138-142
    [65]Tiesheng Li, Masaya Mitsuishi, Tokuji Miyashita. Photopatterning of heterostructured polymer Langmuir-Blodgett films[J], Thin Solid Films,2008,516:2115-2119
    [66]Tiesheng Li,Wenjian Xu.Caiqin Tang etc. Controllable Photopatterning and Photochemical Properties of Novel Copolymer Containing Dianthracene Langmuir-Blodgett Films[J], Journal Of Polymer Science:Part B:Polymer Physics 2012,50:139-147
    [67]Wenjian Xu, Tiesheng Li, Gaojian Li etc. Novel polymeric nonionic photoacid generators and corresponding polymer Langmuir—Blodgett (LB) films for photopatterning[J], Journal of Photochemistry and Photobiology A:Chemistry 2011,219:50-57
    [68]巫文强,柯旭,黄晔等.新型玻璃刻蚀用光刻胶的研制[J],应用化学,2007,24:134-139
    [69]巫文强,新型光刻胶及玻璃刻蚀应用研究[D].四川大学.2006
    [70]许文俭,李铁生,任方方等.利用Langmuir技术构筑的光抗蚀剂聚合物纳米薄膜的表面微观结构及在光刻蚀方面的应用(I):气液界面上聚合物单分子膜表面行为的研究[J],中州大学学报.2009,26:103-109
    [7l]汤彩琴.新型深紫外光致抗蚀剂的制备及其光刻性能研究[D].郑州大学.2009
    [72]张敏.丙二酸二芘酯类聚合物LB膜的制备及其光刻性质[D].郑州大学.2011
    [73]Jean M. J. Frtfchet, Francine Bouchard, Francis M. Houlihan etc. Design and synthesis of novel allylic and benzylic copolycarbonates susceptible to acidolytic or thermolytic depolymerization[J], Makromol. Chem., Rapid Commun.1,1986,121-126
    [74]Juan Lopez-Gejo, Joy.Kunjappu, J. Zhou etc. Polycycloalkanes as Potential Third-Generation Immersion Fluids or Photolithography at 193 nm[J], Chem. Mater.2007,19:3641-3647
    [75]Kazuya Matsumoto, Elizabeth A. Costner, Isao Nishimura etc. High Index Resist for 193 nm Immersion Lithography[J], Macromolecules 2008,41:5674-5680
    [76]Anguang Yu, Heping Liu, James P. Blinco etc. Patterning of Tailored Polycarbonate Based Non-Chemically Amplified Resists Using Extreme Ultraviolet Lithography[J], Macromol. Rapid Commun.2010,31:1449-1455
    [77]Hawa Yagci Acar, Jennifer J. Jensen, Kevin Thigpen etc. Evaluation of the Spacer Effect on Adamantane-Containing Vinyl Polymer Tg's[J], Macromolecules.2000,33:3855-3859

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700