烷基芳基磺酸盐分子量及其分布与吸附性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以苯及其同系物、脂肪酰氯和α-溴代烷等为主要原料,精细合成了十八种结构明确、单一且高纯度的烷基芳基磺酸盐,经两相滴定法测定其活性物含量均大于95%。确定了液/固界面吸附的液固比为60,饱和吸附时间为32h。测定了五种平均分子量和分子量分布不同的烷基芳基磺酸盐复配体系的吸附等温线,分别考察了平均分子量、分子量分布、温度、无机盐、醇以及碱对复配体系在油砂/石英砂表面的吸附量的影响。结果表明:对五种分子量分布复配体系吸附量依次降低的顺序为递增分布、正态分布、反正态分布、递减分布、均匀分布;复配体系在油砂表面的吸附量随着磺酸盐的平均分子量的增大而增大,随温度的升高而降低,随NaCl浓度的增加而增加,随NaOH和Na2CO_3含量的增加而增加,随着NaHCO_3和KHCO_3含量的增加而降低,随着醇浓度及醇碳链的增加而逐渐降低,另外,在低浓度时MgCl_2、CaCl_2和Na_2SO_4比NaCl对吸附的影响显著。NaCl对油砂表面的吸附比对石英砂表面吸附的影响略大。异丁醇对复配体系在油砂表面吸附的影响依次大于叔丁醇、正丁醇。
     采用旋滴法测定了45℃时复配烷基芳基磺酸盐体系与系列正构烷烃、大庆油田采油一厂原油及原油各组分的模拟油相间的界面张力。平均分子量为390的各复配体系的最小烷烃碳数均为9,最小烷烃碳数对应的界面张力值由小到大的复配体系为:反正态分布<递增分布<均匀分布<正态分布<递减分布;平均分子量为404复配体系除递增分布和递减分布复配体系的最小烷烃碳数为11外,其余各复配体系的最小烷烃碳数均为10,且最小烷烃碳数对应的界面张力值由小到大的复配体系为:反正态分布<递增分布<均匀分布<正态分布<递减分布;平均分子量为418的各复配体系的最小烷烃碳数均为10,最小烷烃碳数对应的界面张力值由小到大的复配体系为:反正态分布<递增分布<均匀分布<递减分布<正态分布;平均分子量为432及446的各复配体系的最小烷烃碳数均为11,最小烷烃碳数对应的界面张力值由小到大的复配体系为:反正态分布<递增分布<均匀分布<正态分布<递减分布。随着NaOH浓度的增加,油水动态界面张力最小值逐渐降低,在最佳碱浓度(0.2mol/L)时出现最低值,随后逐渐升高,最终趋于平衡。随着表面活性剂浓度的增加界面张力开始降低,当表面活性剂浓度达到一个值时,界面张力随着表面活性剂浓度的增加而升高。平均分子量为432的复配体系降低油水界面张力的能力最强,与一厂原油的匹配效果最佳。一厂原油及原油各组分与复配烷基芳基磺酸盐的平均分子量404~432最为匹配,油水界面张力可达到超低界面张力值。反正态分布复配体系降低油水界面张力的能力相对较强,与原油各组分的界面关系匹配较好;而递减分布复配体系降低油水界面张力的能力相对较差。
Eighth kinds of alkylaryl sulfonate which had clear structure and high purity were synthesized from benzene and its analogies, acyl chloride and alkyl halide. The content of all the products were all over 95% determined by two-phase titration.
     Liquid-solid ratio of solid/liquid interface adsorption was 60, and saturation adsorption time was 32 hours. The isotherms and the adsorption amount of five types of molecular weight distribution formed from the mixture of five molecular weight alkyl aryl sulfonates on solid-liquid interface were measured. The impacts of the molecular weight, molecular weight distribution, adsorption temperature, the inorganic salt , alkalis and alcohols on the adsorption of alkyl aryl sulfonates compound on the oil sand / quartz sand surface were discussed, respectively. The results showed that the adsorption amount of five types of molecular weight distribution formed from alkyl aryl sulfonate compounds were in turn decreased reduce in the following order, i.e., the incremental distribution, normal distribution, reverse normal distribution, decreasing distribution, uniform distribution; while the adsorption amount of alkyl aryl sulfonate compound on the oil sands surface increased with their molecular weights, decreased with the adsorption temperature, increased with the NaCl concentration, increases with the increasing NaOH and NaCO_3 concentration , decreases with increasing NaHCO_3 and KHCO_3 concentration, and gradually decreases with the increasing alcohols concentration and alcohols carbon chain.. The effect of NaCl on the adsorption of the alkyl aryl sulfonate compound on the oil sands surface was slightly larger than on the quartz sand surface.Moreover, it was found that the effect of addition of CaCl_2, MgCl_2, Na_2SO_4 etc. on the adsorption amount was more significant than NaCl. The effect of the isobutanol on the adsorption of complex systems was in turn bigger than tertiary butanol and n-butyl alcohol.
     The interface tension of alkyl aryl sulfonates compound with series of n-alkanes, the simulation oil phase of crude oil and its various components in 1th plant of Daqing oilfield was measured by spin-drop method at 45℃.The nmin of alkyl aryl sulfonates compound system which average molecular weight were 390, 432 and 446, were 9 ,11 and 11, and the nmin corresponding to the minimum interfacial tension value from small to large complex systems were showed as: reverse normal distribution< incremental distribution< uniform distribution< normal distribution< descending distribution. The nmin of 404 molecular weight complex systems were 10 except incremental distribution and descending distribution were 11, and then the nmin corresponding to the minimum interfacial tension value from small to large complex systems were showed as: reverse normal distribution< incremental distribution< uniform distribution< normal distribution< descending distribution. The nmin of 418 molecular weight complex systems were 10 , and the nmin corresponding to the minimum interfacial tension value from small to large complex systems were showed as: reverse normal distribution< incremental distribution< uniform distribution< descending distribution < normal distribution. The minimum dynamic interfacial tension was decreased with the increasing NaOH concentration, and it was lowest When best caustic concentration (0.2mol/L), then it was increased, finally, it tended to be balanced. The interfacial tension was decreased with the increasing alkyl benzene sulfonate compound concentration, When the surfactant concentration reached a value, the interfacial tension was increased with the increasing concentration. The 432 molecular weight complex systems were the best to increase the Oil-water interfacial tension ,and they matched best with the crude oil of 1th plant of Daqing oilfield. The crude oil of 1th plant and its various components matched best with the 404~432 molecular weight complex systems, and the Oil-water interfacial tension can reach ultra-low interfacial tension values. Reverse normal distribution complex systems the ability to reduce the interfacial tension was relatively strong, and the interface between the components of crude oil matched best. Descending distribution complex systems the ability to reduce the interfacial tension was relatively poor.
引文
[1]徐燕莉.表面活性剂的功能[M].北京:化学化工出版社, 2000, 1~2.
    [2]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社, 1991, 10~50.
    [3]于涛,丁伟,罗洪君.油田化学剂[M].北京:石油工业出版社, 2002: 67~69.
    [4]李干佐,林元,王秀文,等. Tween80表面活性剂复合驱油体系研究[J].油田化学, 1994, 11(2): 152~156.
    [5]张国印,伍晓林,廖广志,等.三次采油用烷基苯磺酸盐类表面活性剂研究[J].大庆石油地质与开发, 2001, 20(2): 26~28.
    [6]崔正刚,邹文华,孙雪芳,等.重烷基苯磺酸盐/碱/原油体系的界面张力[J].油田化学, 1999, 16(2): 153~157.
    [7]邹文华,崔正刚,张天林.重烷基苯磺酸盐驱油剂中试产品的应用性能[J].日用化学工业, 2002, 32(6): 16~19.
    [8] Debons F. E., Pedersen L.D., Whining L.E., U S Pat. 4822501, 1989.
    [9]朱友益,沈平平.三次采油复合驱用表面活性剂合成、性能及应用[M].北京石油工业出版社, 2002. 9~20.
    [10]黄宏度.石油羧酸盐和大庆原油间的界面张力[J].江汉石油学院学报, 1993, 14(4): 53~57.
    [11]秦同洛.三次采油概述[M].国外油田土程, 1992 ,8(1): 1~8.
    [12]卡斯特T. P.,索默尔顿W. H.,凯利J. F.,杨普华译.化学驱提高石油采收率[M].石油工业出版社, 1988. 325~350.
    [13]赵福麟.油田化学[M].东营:石油大学出版社, 2000: 101~128.
    [14]杨普华,杨承志.化学驱油提高石油采收率[M].北京:石油工业出版社, 1988, 25.
    [15] Kalpakci, Bayram, Jeans, et al. Surfactant combinations and Enhanced Oil Method Employing Same[P]. US 4811788, 1989.
    [16]彭朴.采油用表面活性剂[M].北京:化学工业出版社, 2003. 19~22.
    [17]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社, 2003. 5~85, 429~488.
    [18]郭锋.二元驱表面活性剂在固/液界面吸附规律的研究[D].济南:山东大学, 2007: 6~13.
    [19]赵国玺,朱瑶.表面活性剂作用原理[M].北京:中国轻工业出版社, 2003. 152~167.
    [20]赵传钧,朱卓群,张常群.十二烷基苯磺酸钠在硅藻土上的吸附热力学[J].北京化工大学学报, 1994, 21(1): 12~15.
    [21]苏海云,赵传钧.十二烷基苯磺酸钠-石英砂体系吸附等温线的研究[J].北京化工大学学报, 1996(2): 1~4.
    [22]苑慧莹,李川,单存龙,等.碱对烷基苯磺酸盐吸附损失的影响研究[J].油田化学, 2007, 24(3): 250.
    [23]崔正刚,刘世霞,何江莲.重烷基苯磺酸盐在大庆油砂上的静态吸附损失研究[J].油田化学, 2000(4): 359~363.
    [24]颜肖慈,罗明道.界面化学[M].北京:化学工业出版社, 2005, 16~18, 69~159.
    [25] Rosen M. J., Surfactant and Interfacial Phenomena[M]. New York:John Wiley & sons,1989.Ch 2.
    [26]沈钟,赵振国,王果庭.胶体与表面化学[M].北京:化学工业出版社(第三版), 2004. 245~248.
    [27]杨捷.系列烷基苯磺酸盐异构体纯化合物的合成、界面性能及构效关系的研究[D].大连:大连理工大学, 2005.
    [28]赵宇.系列烷基芳基磺酸盐纯化合物的合成及界面性能的研究[D].大连:大连理工大学, 2006.
    [29]李国桥.烷基芳基磺酸盐同系物合成及其界面性能[D].大庆:大庆石油学院, 2007: 36~39.
    [30]岳金明.烷基芳基磺酸盐的精细合成及定量构效关系研究[D].大庆:大庆石油学院, 2007: 29~30.
    [31]李干佐,宋淑娥,王秀文.十二烷基磺酸钠在不同油-水界面上的吸附[J].山东大学学报(理学版), 1990(4): 489~493.
    [32]程杰成,张月先,包亚臣.烷基苯磺酸盐弱碱体系对油水界面张力的影响[J].大庆石油学院学报, 2004, 28(3): 73~93.
    [33]赵国玺,程玉珍,欧进国,等.正离子表面活性剂与负离子表面活性剂在水溶液中的相互作用[J].化学学报, 1980, 38(5): 409~420.
    [34]罗世地,莫春生. Tween 80分子在气-液界面上的动态吸附量研究[J].广州化工, 2007, 35(3): 15~18.
    [35]张磊,王晓春,俞稼镛,等.空气/水界面2,5-二丙基-4-十一烷基苯磺酸钠的表面动态扩张流变性质[J].物理化学学报, 2007, 23(10): 1652~1656.
    [36]赵国玺.表面活性剂复配原理[J].石油化工, 1987, (16), 45~52.
    [37]班秋林,戎宗明,胡英.表面活性剂复配规律的研究—温度组成相图法[J].日用化学工业, 1993(2): 55~59.
    [38] Schwartz A. M.,Perry J. W.,Surface Active Agents, Vol.1, Chapter 6,Intersc., N.Y. 1949.
    [39]李干佐,郑立强,徐桂英,等.阴/阴离子表面活性剂复配[J].科学通报,1993, 38(22): 2042.
    [40]邹利宏,方云,吕栓锁.阴-阳离子表面活性剂复配研究与应用[J].日用化学工业, 2001(5): 37~40.
    [41]南延青,郝力生.正负离子表面活性剂复配系统[J].化学进展,2007, 19(9): 1291~1298.
    [42]朱瑶.表面活性剂复配规律——第五讲碳氟表面活性剂与碳氢表面活性剂混合体系的特性[J].日用化学工业, 1988(05): 38~43.
    [43]赵国玺,朱瑶,周亚平,等.碳氟表面活性剂与碳氢表面活性剂混合水溶液的表面吸附和胶团形成——Ⅱ.全氟辛酸钠-十烷基硫酸钠体系[J].化学学报, 1984(05): 416~423.
    [44]丁慧君,张凤荣,赵国玺.十烷基硫酸钠-全氟辛酸钠混合表面活性剂在四氯乙烯-水界面上的吸附及胶团形成[J].高等学校化学学报, 1985, (09): 832~836.
    [45]黄长根. FC/CH表面活性剂复配在电子布化学处理中的应用[J].玻璃纤维, 2010(05): 29~33.
    [46] Gutcho, S. L., Surtactants and Sequestrant, Noyes, Park Ridge, N. Y. 1977.
    [47] Cheng Jie-cheng, Zhang Yue-xian, Bao Ya-chen. Effect of Na_2CO_3/Alkyl Benzene Sulfonate/Polymer system on interfacial tension between oil and water[J]. Journal of Daqing Petroleum Institute, 2004, 28(3): 73~93.
    [48]李安军.十九烷基芳基磺酸盐合成及性能研究[D].大庆:大庆石油学院, 2009: 23~29.
    [49]高晓宇.十七烷基二甲苯系列磺酸盐的合成及性能研究[D].大庆:大庆石油学院, 2009: 25~33.
    [50] Wangl Ling, Zhang Lu, Chu Yan-ping, et al. Surface Properties of Sodium Branched-alkylbenzenesulfonates[J]. Acta Physico-chimica Sinica, 2004, 20(12): 1451~1454.
    [51] Jang Xiao-ming, Zhang Lu, AN Jing-yi, et al. Surface Properties of Sodium Alkylbenzenesulfonates with Additional Side Chains[J]. Acta Physico-chimica Sinica, 2005, 21(12): 1426~1430.
    [52]王瑞.烷基苯磺酸盐类驱油剂精细合成与结构表征[D].大庆:大庆石油学院, 2007.
    [53]王翀.高纯度十四烷基对二甲苯磺酸钠异构体合成与性能研究[D].大庆:大庆石油学院, 2007.
    [54]岳金明.烷基芳基磺酸盐的精细合成及定量构效关系研究[D].大庆:大庆石油学院, 2007.
    [55]刘红娟.长链烷基乙苯磺酸盐精细合成及性能研究[D].大庆:大庆石油学院, 2008.
    [56] GB/T 5173—1995.表面活性剂和洗涤剂阴离子活性物的测定-直接两相滴定法[S].北京:中国标准出版社, 1995.
    [57]赵传钧,朱卓群,苏海云.十二烷基苯磺酸钠在硅藻土上的吸附热力学[J].北京化工大学学报, 1991, 21(l): 12~15.
    [58]赵国玺,朱瑶.表面活性剂作用原理[M].北京:中国轻工业出版社, 2003, 1: 152~167.
    [59]刘昆元,张卫东.驱油剂在油砂上吸附热力学研究[J].北京化工大学学报, 1997, 24(l): 9~13.
    [60]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社, 2002, 93~97.
    [61]徐巍. Tween 80吸附影响因素研究以及共存物对其在中砂上吸附的影响[D].吉林大学, 2008.
    [62]顾惕人,朱瑶.表面化学[M].北京:科学出版社, 1994.
    [63]周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社, 1996, 248.
    [64]于涛,童维,宿雅彬,丁伟.结构及助剂对十五烷基芳基磺酸盐吸附性能的影响[J].应用化学, 2010, 27(4): 466~469.
    [65]王培义,徐宝才,王军.表面活性剂——合成·性能·应用[M].北京:化学工业出版社, 2007, 174~179.
    [66] Zhao Yu, Dong Ya-hong, Bi Cai-feng, et al. Study on Dynamic Interfacial Tension of a Series of Alkylbenzene Sulfonates with Alkane [J].Acta Chimica Sinica, 2008, 66(7): 799~802.
    [67]杨迎花,程绍玲.三元复合驱体系/大庆原油间界面张力研究[J].天津科技大学学报, 2004, 19(4): 31~33.
    [68]林梅钦,杨红生,乔爱军,等.大庆原油活性组分及相关界面性质[J].石油大学学报(自然科学版), 2003, 27(5): 92~95.
    [69]林梅钦,杨红生,纪淑玲,等.克拉玛依原油中各组分的乳化性质[J].石油学报(石油加工), 2002, 18(3): 65~69.
    [70] Speight J. G.., Asphaltenes in crude oil and bitumens: structure anddispersion[A]. Schramm L. L., Suspension: Fundamentals and applications in the petroleum industry[C]. Washington D C: Americal Chemican Society, 1996: 377~401.
    [71] Li Mingyuan, Lin Meiqin, Yang Hong-sheng, et al.Water-in-crude oil emulsion from the Norwegian Continental Shelf Part VI Diffuse reflectance fourier transform infrared characterization of interfacially active fractions from North Sea crude oil [C]. SjoblomJ.Emulsion-A fundamental and practical approach[C]. NATOASI Series, 1992: 157~172.
    [72]徐志成,安静仪,马金石,等.孤岛原油乳化活性组分剖析[J].油田化学, 1996, 16(2): 163~166.
    [73]范维玉,宫传廷,南国枝,等.稠油组分油水界面Zeta电势及其影响因素研究[J].石油大学学报(自然科学版), 2003, 27(4): 116~119.
    [74]范维玉,宋远明,南国枝,等.水包稠油乳状液稳定性研究:稠油官能团组分分离及其油水界面黏度考察[J].石油学报(石油加工), 2001, 17(增刊): 1~8.
    [75] Fan Wei-yu, Song Yuan-ming, Nan Guo-hai, et al. Effects of different heavy crude oil fractions on the stability of oil-in-water emulsions-Isolation of functional fractions from heavy crude oil and study of their properties[J]. Petroleum Science, 2004, 1(3): 66~71.
    [76] Schramm L. L. , Fundamentals and applications in the petroleum Industry[C]. W-ashington D C: American Chemical Society, 1992. 1~49.
    [77]丁德磐,孙在春,徐梅清.原油各组分表面膜性质的研究[J].石油大学学报(自然科学版), 1998, 22(3): 82~83.
    [78] Yang Xiao-li, Lu Wan-zhen. Study on Interfacial Film Properties of Asphalenes and Resins Langmuir Blodgett Technique[J]. Acta Petrolei Sinica( Petroleum Sect-ion), 1999, 15(3): 5~9.
    [79]严方,谢永杰.大庆原油四组分分析及界面性质研究[J].化学分析计量, 2009, 18(4): 20~24.
    [80]刘立伟,侯吉瑞,岳湘安,等.复合体系与原油接触时间对界面张力的影响[J].钻采工艺, 2007, 30(6): 113~115.
    [81]丁伟,李安军,于涛,曲广淼,程杰成.烷基芳基磺酸盐结构对原油-表面活性剂-碱体系油-水界面张力的影响[J].石油学报(石油加工), 2010, 26(1): 36~40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700