用户名: 密码: 验证码:
鸭瘟病毒gE基因功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.鸭瘟病毒gE基因的序列特征及密码子偏爱性的生物信息学分析本实验室注册的鸭瘟病毒(Duck plague virus, DPV) gE基因全长为1473bp (GenBank登录号为EU071044)。用生物信息学软件分析gE基因及该基因编码的蛋白,结果表明该基因编码490个氨基酸的多肽,含有信号肽切割位点,在整个多肽链中存在21个抗原决定簇、4个潜在的酰基化位点、29个磷酸化位点和6个N-糖基化位点;gE糖蛋白是典型的Ⅰ型膜蛋白,N端由396个氨基酸组成胞外区,中间为23个氨基酸组成跨膜区,C端为71个氨基酸组成胞内区;亚细胞定位分析表明gE糖蛋白主要位于细胞质;系统进化树分析显示DPV gE与α-疱疹病毒亚科中的马立克病毒属(Mardivirus)亲缘关系较近;同时分析了DPV gE基因密码子偏爱性,结果表明DPV gE基因在同义密码子中较偏爱第三位为A和T的密码子,如选择原核表达系统表达该蛋白则要选择宿主表达菌,才能利于DPV gE基因的体外表达。
     2.鸭瘟病毒gE基因的克隆、原核表达及其多克隆抗体的制备用Primer Premier5.0软件设计一对鸭瘟病毒(DPV)gE基因序列的特异性引物,采用PCR方法从鸭瘟病毒基因组DNA中扩增gE基因,将gE基因片段克隆至pMD18-T载体中,用双酶切(EcoR I和Xho I)方法和DNA测序鉴定正确后,命名为pMD18-T-gE。并采用酶切的方法将gE基因正向插入原核表达载体pET32a(+) (EcoR I和XhoI位点间),成功构建了重组表达质粒pET32a-gE。将该重组表达质粒转化到表达宿主菌BL21(DE3)、BL21(pLysS)和Rosseta中,用IPTG诱导,经过对表达宿主菌、诱导温度、诱导时间的优化,确定了该重组表达质粒的最佳诱导条件为在表达宿主菌Rosseta中用0.2mmol/L IPTG,30℃条件下诱导4.5h,表达出了大小约为74KD的重组蛋白pET32a/DPV-gE,且主要以包涵体形式存在。将表达产物用包涵体洗涤方法纯化后,高纯度的表达蛋白与等量弗氏佐剂混合作为免疫原,经过四次免疫家兔,获得了兔抗重组蛋白pET32a/DPV-gE的多克隆抗体。血清用饱和硫酸铵法粗提IgG,并经High Q阴离子交换柱层析纯化后,得到了特异性强的兔抗重组蛋白pET32a/DPV-gE的抗体IgG。
     3.鸭瘟病毒gE蛋白在病毒感染宿主细胞中的定位本研究将纯化的兔抗重组蛋白pET32a/DPV gE IgG作为一抗,用间接免疫荧光技术检测DPV gE蛋白在病毒感染鸭胚成纤维细胞内的定位,结果显示早在感染DPV 5.5 h后,细胞质中检测到特异性荧光点,在感染后9-24h荧光强度增强,在感染36h时绿色荧光广泛分布在细胞浆中,之后随着细胞病变在48 h时胞浆中的绿色荧光开始减弱,且一些绿色荧光聚集且靠近核区域,60h细胞病变脱落形成空斑,此时绿色荧光减少且减弱。
     4.鸭瘟病毒gE基因在感染宿主细胞中的转录和表达特征本研究应用实时荧光定量PCR方法和Western blotting检测DPV感染鸭胚成纤维细胞后DPV gE基因的转录和表达情况。结果表明gE基因在DPV感染后4h时开始转录,8h检测到表达,在感染36h后转录和表达量最高,随后逐渐降低。且DPV gE基因在鸭胚成纤维细胞中表达产物的分子量约为54KD。
     5.利用间接免疫酶组化法(IPA)检测DPV gE蛋白在感染鸭组织中的分布规律本研究将30日龄鸭人工感染DPV强毒,在感染病毒后于不同的时间点采集不同的器官或组织,并制备切片,用兔抗重组蛋白pET32a/DPV-gE IgG作为一抗,用间接免疫酶组化法(IPA)检测DPV gE蛋白在感染鸭组织中的分布规律。在感染后6h DPV gE蛋白在免疫器官(胸腺、法氏囊、脾)中被检测到,在感染后8h-12h检测到DPV gE蛋白分布在哈德氏腺、食道、腺胃、肝和肠道,且随感染时间增加阳性信号也增强,在感染后24h-48h在肾、肺、心、脑也检测到DPV gE蛋白。
     6.用间接免疫荧光方法(IFA)检测DPV gE蛋白在感染鸭组织中的分布将30日龄鸭人工感染DPV强毒,在感染病毒后于不同的时间点采集不同的器官或组织,用兔抗重组蛋白pET32a/DPV-gE IgG作为一抗,经建立优化的间接免疫荧光(IFA)方法检测DPV gE蛋白在鸭体组织中的分布。结果显示感染鸭瘟病毒后DPV gE蛋白分布在免疫器官(脾脏、法氏囊、胸腺、哈德氏腺)、消化器官(肝脏、肠道、食管、腺胃)及实质器官(肾、心、脑及肺)。在感染后4h, DPV gE蛋白首先在脾脏和法氏囊中检测到,随后在感染后8h在哈氏腺、胸腺、肝脏和肠道也检测gE蛋白,在感染后12h在肾、心、肺和脑中也开始检测到弱阳性信号,且随感染时间从12h到216h阳性信号逐渐增多。
     7.基于重组蛋白pET32a/DPV-gE的间接ELISA法检测鸭瘟病毒抗体的建立及应用本研究基于纯化的重组蛋白pET32a/DPV-gE建立了间接ELISA方法检测DPV血清抗体。重组蛋白pET32a/DPV-gE最佳包被稀释度为1:100(2ug/100ul),最佳酶标二抗的稀释度为1:1000,最佳血清稀释度为1:160。用建立的DPV-gE-ELISA方法检测鸭沙门氏菌(Salmonella anatum, S.anatum)、鸭大肠杆菌(E.coli)、鸭疫里默氏菌(RA)阳性血清和鸭病毒性肝炎病毒(DHV),结果均显示阴性;批内或批间重复试验的变异系数均小于10%;可以检测出经1:1280倍稀释的DPV阳性血清。用DPV-gE-ELISA与本实验室已建立的包被DPV全病毒ELISA法(DPV-ELISA)对55份地方鸭血清进行检测,结果显示,与DPV-ELISA的符合率为87.27%。
1. Bioinformation analysis of sequence characteristics and codon bias of duck plague virus gE gene. DPV gE gene was 1473bp, and the GenBank accession number was EU071044. The characteristics of the protein encoding DPV gE gene were analyzed by the bioinformatics software, the results showed that DPV gE gene was encoded a protein comprising 490 amino acids, which contained an N-terminal signal peptide,21 antigenic determinants,4 potential palmitoylation sites,29 phosphorylation sites, and 6 glycosylation sites. DPV gE was a type-I membrane protein that could be resolved into 3 distinct functional domains:a 396-amino-acid extracellular domain, a 23-amino-acid hydrophobic transmembrane domain, and a 71-amino-acid cytoplasmic domain. Subcellular location analysis demonstrated that gE mainly located in the cytoplasm, and the phylogenetic tree analysis showed that DPV gE was evolutionarily closer to the mardivirus genus of the Alphaherpesvirinae subfamily. Meanwhile, the codons usage bias analysis revealed that DPV gE was strong bias towards the synonymous codons with A and T at the third codon position. And we should choose the host bacteria, which should impove the expression of the exogenous genes, if gE was expressed by using the prokaryotic expression system.
     2. Cloning, prokaryotic expression and polyclonal antibody preparation of DPV gE gene. The primers were designed based on the sequence of DPV gE by Primer Premier 5.0. DPV gE gene was amplified from the genome of DPV by PCR, and cloned into pMD18-T vector, which was identified by restriction enzymes digestion (EcoR I and Xho I) and sequenced. The correct recombinant vector was named pMD18-T-gE. Then gE gene from the pMD18-T-gE vector with two restriction enzymes digestion was subcloned into the prokaryotic expression vector pET-32a (+) to generate the recombinant plasmid pET32-gE. And the recombinant plasmid pET32-gE was transformed into E. coli BL21(DE3), BL21(pLysS) and Rosseta strain, expressed by IPTG (isopropylβ-D-thiogalactopyranoside) induction, and the analysis of the expression conditions was optimized, which contained the expressed host strans、the different induction time and temperature. The result showed that the optimal condition was 0.2mmol/L IPTG as inductor, duration of 4.5 hours at 30℃, and SDS-PAGE analysis showed that the induced expressed protein is about 74 KD, and the recombinant protein was mostly existed in inclusion examined by soluble analysis, and purified by washing inclusion body, and used to immunize rabbits for the preparation of polyclonal antibody, which was subsequently obtained by using ammonium sulfate precipitation and High-Q anion-exchange chromatography, and the pET32a/DPV-gE antiserum had a high level of specificity.
     3. Cellular localization of DPV gE protein in DPV-infected cells. The cellular localization of DPV gE protein was tested with the anti-DPV polyclonal IgG as the first antibody by indirect immunofluorescence analysis. The result showed that specific fluorescence was first appeared in cytoplasm at 5.5h PI (post infection), and the fluorescence was stronger from 9 to 24h PI gradually. At 36h PI, these fluorescence granules was detected widely distributed in the cytoplasm, and became more bigger and brighter. The gE-specific fluorescence was gradually diminished at 48h PI with the cytopathic effect (CPE), and a deal of the specific fluorescence was concentrated in the juxtanuclear region. Then at 60h PI, the gE-specific fluorescence was sparser and weaker following the cytoplasm disintegration in infected cells, when the DEFs cells were exfoliated and the plaques size become bigger.
     4. The transcription and expression characteristics of DPV gE gene in DPV-infected host cells. The transcription and expression characteristics of DPV gE gene were determined by real-time quantitative PCR and western blotting. These results revealed that the transcripts of DPV gE were appeared at 4 h post infection (PI), and its expression products were detected at 8h PI, and the transcripts and expression products were up to a peak at 36h PI, thereafter both of them were reduced. And the molecular weight of expression products was approximate 54 KD in lysates of DPV-infected cells.
     5. The distribution of DPV gE protein in experimentally DPV-infected ducks detected by indirect immunoperoxidase assay (IPA).30-day-old ducks were intramuscularly inoculated with DPV CHv strain, and the different tissues were collected from DPV-infected ducks at sequential time points. And the tissues were tested with the polyclonal pET32a/DPV-gE IgG as the first antibody by indirect immunoperoxidase assay (IPA). The result showed that DPV gE was first detected in the immunological organs (Bursa of Fabricius, thymus and spleen) at 6h PI (post infection), then it appeared in the Harders glands, macrophages, glandularis ventriculus, liver and intestine at 8h-12h PI, and the intensity of positive staining in various tissues increased steadily, finally, in the kidney, lung, myocardium and cerebrum at 24h-48h PI.
     6. The distribution of DPV gE protein in experimentally DPV-infected ducks detected by indirect immunofluorescence assay (IFA).30-day-old ducks were intramuscularly inoculated with DPV CHv strain, and the different tissues were collected from DPV-infected ducks at sequential time points. And the distribution of DPV gE on DPV-infected ducks was detected with the polyclonal pET32a/DPV-gE IgG as the first antibody by indirect immunofluorescence assay (IFA). DPV gE was distributed in the immunological organs (spleen, Bursa of Fabricius, thymus, Harders glands), digestive organs (liver, intestine, esophagus, glandularis ventriculus) and other parenchymatous organ (kidney, myocardium, cerebrum, lung). And DPV gE was first seen in the BF and spleen at 4h PI (post infection), then it was detected in Harderian gland, thymus, liver and the intestine at 8h PI, and it was shown in the kidney, lung, myocardium, and cerebrum 12h PI. And the positive fluorescent signals increased from 12h to 216h PI.
     7. Development and application of an indirect ELISA based on the recombinant protein pET32a/DPV-gE for detecting the antibody against duck plague virus. Based on the purified recombinant protein pET32a/DPV-gE, DPV-gE-ELISA was developed for detecting the DPV serum antibodies. And the optimum conditions for DPV-gE-ELISA were determined, and the results showed that the optimized concentration of the recombinant protein pET32a/DPV-gE is l:100(2μ.g/100μl), the enzyme linked antibody dilution is 1:1000, and the dilution of the examined serum is 1:160. Duck S.anatum, duck E.coli, duck riemirella anatipestifer (RA) and duck hepatitis virus (DHV) were employed as negative controls, and detected by DPV-gE-ELISA, and the result was negative. The coefficients of intra-assay and inter-assay variation were less than 10%, and DPV-gE-ELISA could detect DPV positive antiserum with a dilution of 1:1280. To evaluate the effect of the DPV-gE-ELISA,55 duck serum samples collected from several duck flocks were simultaneously tested by the DPV-gE-ELISA and the whole DPV antigen as coated antigen ELISA method (DPV-ELISA). The results revealed that DPV-gE-ELISA have higher coincidence compared with the DPV-ELISA (about 87.27%).
引文
[1].李琦涵,姜莉.人类疱疹病毒的病原生物学[M],化学工业出版社,2009.
    [2].Davison A.J.Herpesvirus systematics[J]. Vet Microbiol,2010,143(1):52-69.
    [3].Mettenleiter T.C., Klupp B.G., Granzow H. Herpesvirus assembly:a tale of two membranes[J].Curr Opin Microbiol,2006,9(4):423-429.
    [4].McGeoch D.J., Davison A.J., Dolan A., et al. Molecular evolution of the Herpesvirales[M], Academic Press Elsevier Ltd,2008.
    [5].徐耀先,周晓峰,刘立德.分子病毒学[M],湖北科学技术出版社,2000.
    [6],Spear G.P. Entry of alphaherpesviruses into cells[J]. Virology,1993,4(3):167-180.
    [7].Dingwell K.S., Johnson D.C. The herpes simplex virus gE-gl complex facilitates cell-to-cell spread and binds to components of cell junctions[J]. J Virol,1998,72(11):8933-8942.
    [8].Collins W.J., Johnson D.C. Herpes simplex virus gE/gl expressed in epithelial cells interferes with cell-to-cell spread[J]. J Virol,2003,77(4):2686-2695.
    [9].Johnson D.C, Webb M., Wisner T.W., et al. Herpes simplex virus gE/gl sorts nascent virions to epithelial cell junctions, promoting virus spread[J]. J Virol,2001,75(2):821-833.
    [10].Dunn W., Chou C, Li H., et al. Functional profiling of a human cytomegalovirus genome[J]. Proc Natl Acad Sci USA,2003,100:14223-14228.
    [11].Zimmermann W., Broil H., Ehlers B., et al. Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA repIication[J]. J Virol,2001,75(3): 1186-1194.
    [12].Lee L.F., Wu P., Sui D., et al. The complete unique long sequence and the overall genomic organization of the GA strain of Marek's disease virus[J]. Proc Natl Acad Sci USA,2000,97(11): 6091-6096.
    [13].Tyler S.D., Peters G. A., Severini A. Complete genome sequence of cercopithecine herpesvirus 2 (SA8) and comparison with other simplexviruses[J]. VlroIogy,2005,331(2): 429-440.
    [14].Li Y., Huang B., Ma X., et al. Molecular characterization of the genome of duck enteritis virus[J]. Virology,2009,391(2):151-161.
    [15].Perelygina L., Zhu L., Zurkuhlen H., et al. Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey[J]. J Virol, 2003,77(11):6167-6177.
    [16].Delhon G., Moraes M.P., Lu Z., et al. Genome of bovine herpesvirus 5[J]. J Virol,2003, 77(19):10339-10347.
    [17].Klupp B.G., Hengartner C.J., Mettenleiter T.C., et al. Complete, annotated sequence of the pseudorabies virus genome[J]. J Virol,2004,78(1):424-440.
    [18].McGeoch D.J., Dalrymple M.A., Davison A.J., et al. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1[J]. J Gen Virol,1988,69 (Pt 7): 1531-1574.
    [19].Dolan A., Jamieson F.E., Cunningham C., et al. The genome sequence of herpes simplex virus type 2[J]. J Virol,1998,72(3):2010-2021.
    [20].Izumiya Y., Jang H.K., Kashiwase H., et al. Identification and transcriptional analysis of the homologues of the herpes simplex virus type 1 UL30 to UL40 genes in the genome of nononcogenic Marek's disease virus serotype 2[J]. J Gen Virol,1998,79 (Pt 8):1997-2001.
    [21].Davison A.J., Dolan A., Akter P., et al. The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome[J].J Gen Virol,2003,84(Pt 1):17-28.
    [22].Dolan A., Cunningham C, Hector R.D., et al. Genetic content of wild-type human cytomegalovirus[J]. J Gen Virol,2004,85(Pt 5):1301-1312.
    [23].Roizman B., Knipe D.M., et al. Herpes simplex viruses and their replication. in:Knipe D.M., Howley P.M., Griffin D.E., (ed). Fields virology,5eds [M], Lippincott Williams & Wilkins, Philadelphia,2006,2399-2460.
    [24].Manjiri Sethna J.P.W. Mutational Analysis of the Herpes Simplex Virus Type 1 Giycoprotein E Promoter[J]. Virology,1993,196:532-540.
    [25].Singer S.J. The structure and insertion of integral proteins in membranes[J]. Annu Rev Cell Biol,1990,6:247-296.
    [26].王勤,郭万柱,徐志文,等.伪狂犬病病毒Fa株gE基因的克隆与序列的比较分析[J].畜牧兽医学报,2003,34(34):389-393.
    [27].Fuchs W., Rziha H.J., Lukacs N., et al. Pseudorabies virus glycoprotein gI:in vitro and in vivo analysis of immunorelevant epitopes[J].J Gen Virol,1990,71 (Pt 5):1141-1151.
    [28].Jacobs L. Glycoprotein E of pseudorabies virus and homologous proteins in other alphaherpesvirinae[J].Arch Virol,1994,137:209-228.
    [29].Jacobs L. Glycoprotein E of pseudorabies virus and homologous proteins in other alphaherpesviranae[J].Arch. Virol,1994,137:209-228.
    [30].Tyborowska J., Reszka N., Kochan G., et al. Formation of Pseudorabies virus glycoprotein E/I complex in baculovirus recombinant system[J].Acta Virol,2006,50(3):169-174.
    [31].姜焱.伪狂犬病病毒上海株gE-gI-/GFP+/LacZ+缺失株的构建及其免疫原性初步研究[D].南京:南京农业大学,2002.
    [32].Rebordosa X.P.J., Perez-Pons J.A., Lloberas J., et al. Glycoprotein E of bovine herpesvirus type 1 is involved in virus transmission by direct cell-to-cell spread[J]. Virus Res,1996,45:59-68.
    [33]Jacobs L., Rziha H.J., Kimman T.G., et al. Deleting valine-125 and cysteine-126 in glycoprotein gI of pseudorabies virus strain NIA-3 decreases plaque size and reduces virulence in mice[J]. Arch Virol,1993,131(3-4):251-264.
    [34].Tyborowska J., Bienikowska-Szewczyk K., Rychlowski M., et al. The extracellular part of glycoprotein E of bovine herpesvirus 1 is sufficient for complex formation with glycoprotein I but not for cell-to-cell spread [J]. Arch Virol,2000,145(2):333-351.
    [35].Johnson D.C., Huber M.T. Directed egress of animal viruses promotes cell-to-cell spread[J]. Virology,2002,76:1-8.
    [36].Wisner T., Brunetti C., Dingwell K., et al. The Extracellular Domain of Herpes Simplex Virus gE Is Sufficient for Accumulation at Cell Junctions but Not for Cell-to-Cell Spread[J]. J Virol, 2000,74(5):2278-2287.
    [37].Polcicova K., Goldsmith K., Rainish B.L., et al. The Extracellular Domain of Herpes Simplex Virus gE Is Indispensable for Efficient Cell-to-Cell Spread:Evidence for gE/gl Receptors[J]. J Virol,2005,79(18):11990-12001.
    [38].Mettenleiter T.C. Pathogenesis of neurotropic herpes viruses:role of viral glycoproteins in neuroinvasion and transneuronal spread[J]. Virus Res,2003,92(2):197-206.
    [39]. Brideau A.D., Enquist L.W., Tirabassi R.S. The role of virion membrane protein endocytosis in the herpesvirus life cycle[J]. J Clin Virol,2000,17(2):69-82.
    [40].Tirabassi R.S., Enquist L.W. Role of envelope protein gE endocytosis in the pseudorabies virus life cycle[J]. J Virol,1998,72(6):4571-4579.
    [41].Ao J.Q., Wang J.W., Chen X.H., et al. Expression of pseudorabies virus gE epitopes in Pichia pastoris and its utilization in an indirect PRV gE-ELISA[J]. J Virol Methods,2003,114(2): 145-150.
    [42].Johnson D.C., Ligas M.W. Herpes simplex viruses lacking glycoprotein D are unable to inhibit virus penetration:quantitative evidence for virus-specific cell surface receptors[J]. J Virol 1988,62:4605-4612.
    [43].Geraghty R.J., Krummenacher C., Cohen G.H., et al. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor[J]. Science,1998,280(5369): 1618-1620.
    [44].Spear P.G., Longnecker R. Herpesvirus entry: an update[J]. J Virol,2003,77(19): 10179-10185.
    [45].Forrester A., Farrell H., Wilkinson G., et al. Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted[J]. J Virol,1992,66(1): 341-348.
    [46]. Roop C., Hutchinson L., Johnson D.C. A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H[J]. J Virol,1993, 67(4):2285-2297.
    [47].Voorhees P., Diegnan E., van Donselaar E., et al. An acidic sequence within the cytoplasmic tail domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface[J]. EMBO J,1995,14:4961-4975.
    [48].Jones B G., Thomas L., Molloy S.S., et al. Intracellular trafficking of furin is modulated by the phosphorylation state of a casein kinase Ⅱ site in its cytoplasmic tail[J]. EMBO J,1995,14: 5869-5883.
    [49].Tirabassi R.S., Enquist L.W. Mutation of the YXXL endocytosis motif in the cytoplasmic tail of pseudorabies virus gE[J]. J Virol,1999,73(4):2717-2728.
    [50].Olson J.K., Bishop G.A., Grose C. Varicella-Zoster virus Fc receptor gE glycoprotein:serine/threonine and thyrosine phosphorylation of monomeric and dimeric forms[J]. J Virol,1997,71:110-119.
    [51].Olson J.K., Grose C. Endocytosis and recycling of varicella-zoster virus Fc receptor glycoprotein gE:internalization mediated by a YXXL motif in the cytoplasmic tail[J]. J Virol, 1997,71(5):4042-4054.
    [52].Olson J.K., Grose C. Complex formation facilitates endocytosis of the varicellazoster virus gE:gI Fc receptor[J]. J Virol,1998,72(2):1542-1551.
    [53].Al-Mubarak A., Simon J., Coats C., et al. Glycoprotein E (gE) specified by bovine herpesvirus type 5 (BHV-5) enables trans-neuronal virus spread and neurovirulence without being a structural component of enveloped virions[J]. Virology,2007,365(2):398-409.
    [54].Tirabassi R.S., Townley R.A., Eldridge M.G., et al. Characterization of pseudorabies virus mutants expressing carboxy-terminal truncations of gE:evidence for envelope incorporation, virulence, and neurotropism domains[J]. J Virol,1997,71(9):6455-6464.
    [55].Brack A.R., Klupp B.G., Granzow H., et al. Role of the cytoplasmic tail of pseudorabies virus glycoprotein E in virion formation[J]. J Virol,2000,74(9):4004-4016.
    [56].Alconada A., Bauer U., Sodeik B., et al. Intracellular traffic of herpes simplex virus glycoprotein gE:characterization of the sorting signals required for its trans-Golgi network localization[J]. J Virol,1999,73(1):377-387.
    [57].Moffat J., Mo C., Cheng J.J., et al. Functions of the C-terminal domain of varicella-zoster virus glycoprotein E in viral replication in vitro and skin and T-cell tropism in vivo[J]. J Virol, 2004,78(22):12406-12415.
    [58].Mijnes J.D.F., Lutters B.C.H., Vlot A.C., et al. Structure-function analysis of the gE-gI complex of feline herpesvirus.Mapping of gI domains required for gE-gI interaction, intracellular transport, and cellto-cell spread. [J], J Virol,1997,71:8397-8398.
    [59].Bell.S., Cranage M., Borysiewicz L., et al. Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1[J]. J Virol,1990,64(5):2181-2186.
    [60].Whitbeck J.C., Knapp A.C., Enquist L.W., et al. Synthesis, processing,and oligomerization of bovine herpesvirus 1 gE and gI membrane proteins[J]. J Virol,1996,70:7878-7884.
    [61].Yao Z.,Jackson W., Forghani B., et al. Varicella-zoster virus glycoproteins gpI/gpIV receptor: expression, complex formation, and antigenicity within the vaccinia virus-T7 RNA polymerase transfection system [J]. J Virol,1993,67:305-314.
    [62].Farnsworth A., Johnson D.C. Herpes Simplex Virus gE/gl Must Accumulate in the trans-Golgi Network at Early Times and Then Redistribute to Cell Junctions To Promote Cell-Cell Spread[J]. J Virol,2006,80(7):3167-3179.
    [63].Snyder A., Wisner T.W., Johnson D.C. Herpes simplex virus capsids are transported in neuronal axons without an envelope containing the viral glyeoproteins[J]. J Virol,2006,80(22): 11165-11177.
    [64].Whealy M.E., Card J.P., Robbins A.K., et al. Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins[J]. J Virol,1993,67:3786-3797.
    [65].Van de Walle G.R., Favoreel H.W., Nauwynck H.J., et al. Antibody-induced intemalization of viral glycoproteins and gE-gI Fc receptor activity protect pseudorabies virus-infected monocytes from efficient complement-mediated lysis[J]. J Gen Virol,2003,84(Pt 4):939-948.
    [66].Dingwell K.S., Brunetti C.R., Hendricks R.L., et al. Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells[J]. J Virol,1994, 68(2):834-845.
    [67].Dingwell K.S., Doering L.C., Johnson D.C. Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus[J]. J Virol,1995,69(11):7087-7098.
    [68]. Straus H.S.E., Williams R.K. Varicella-zoster virus glycoproteins E and I expressed in insect cells form a heterodimer that requires the N-terminal domain of glycoprotein I[J]. Virology,1997, 233:382-391.
    [69]. Zuckermann F.A., Mettenleiter T.C., Schreurs C., et al. Complex between glycoproteins gI and gp63 of pseudorabies virus:its effect on virus replication[J]. Virology,1988,62:4622-4626.
    [70]. Polcicova K., Biswas P.S., Banerjee K., et al. Herpes keratitis in the absence of anterograde transport of virus from sensory ganglia to the cornea[J]. Proc Natl Acad Sci USA,2005,102(32): 11462-11467.
    [71]. Mettenleiter T.C. Herpesvirus assembly and egress[J]. J Virol,2002,76(4):1537-1547.
    [72].Rixon F.J., Addison C., Mclauchlan J. Assembly of enveloped tegument structures (L particles)can occur independenly of virion maturation in herpes simplex virus type 1-infected cells[J]. J Gen Virol,73(Pt 2):277-284.
    [73].O'Regan K.J., Bucks M.A., Murphy M.A., et al. A conserved region of the herpes simplex virus type 1 tegument protein VP22 facilitates interaction with the cytoplasmic tail of glycoprotein E (gE)[J]. Virology,2007,358(1):192-200.
    [74].Fuchs W., Klupp B.G., Granzow H., et al. Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49[J]. J. Virol, 2002,76(16):8208-8217.
    [75].Farnsworth A., Goldsmith K., Johnson D.C. Herpes simplex virus glycoproteins gD and gE/gI serve essential but redundant functions during acquisition of the virion envelope in the cytoplasm [J]. J Virol,2003,77(15):8481-8494.
    [76].Muggeridge M.I. Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycolproteins gB,gD,gH and gL in transfected cells[J]. J Gen Virol,2000,81(Pt 8):2017-2027.
    [77].Lyman M.G., Curanovic D., Enquist L.W. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts[J]. PLoS Pathog,2008,4(5): e1000065.
    [78].Ch'ng T.H., Spear P.G., Struyf F., et al. Glycoprotein D-independent spread of pseudorabies virus infection in cultured peripheral nervous system neurons in a compartmented system[J]. J Virol,2007,81(19):10742-10757.
    [79].Snyder A., Polcicova K., Johnson D.C. Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons[J]. J Virol,2008,82(21): 10613-10624.
    [80].Butchi N.B., Jones C., Perez S., et al. Envelope protein Us9 is required for the anterograde transport of bovine herpesvirus type 1 from trigeminal ganglia to nose and eye upon reactivation[J]. J Neurovirol,2007,13(4):384-388.
    [81].Wang F., Tang W., McGraw H.M., et al. Herpes simplex virus type 1 glycoprotein E is required for axonal localization of capsid, tegument, and membrane glycoproteins[J]. J Virol,2005, 79(21):13362-13372.
    [82].Curanovic D., Enquist L.W. Virion-incorporated glycoprotein B mediates transneuronal spread of pseudorabies virus[J]. J Virol,2009,83(16):7796-7804.
    [83].Brideau A.D., Card J.P., Enquist L.W. Role of pseudorabies virus Us9, a type II membrane protein, in infection of tissue culture cells and the rat nervous system[J]. J Virol,2000,74(2): 834-845.
    [84].Enquist L.W., Tomishima M.J., Gross S., et al. Directional spread of an a-herpesvirus in the nervous system[J].Vet Microbiol,2002,86(1-2):2005-2016.
    [85].Tomishima M.J., Enquist L.W. A conserved alpha-nerpesvirus protein necessary for axonal localization of viral membrane proteins[J].J.Cell.Biol,2001,154(4):741-752.
    [86].LaVail J.H., Tauscher A.N., Sucher A., et al. Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid[J].Neuroscience,2007,146(3):974-985.
    [87].Wisner T.W., Johnson D.C. Redistribution of cellular and herpes simplex virus proteins from the trans-golgi network to cell junctions without enveloped capsids[J]. J Virol,2004, 78(21):11519-11535.
    [88].Fadly AM Glisson JR, McDougald LR, Nolan Lk, Swayne DE: Duck Virus Enteritis.. In Diseases of Poultry.12th edtion. Editied by Saif YM[M]. American:Wiley-Blackwell,2008: 384-393.
    [89].程安春,汪铭书,文明,等.鸭瘟病毒基因文库的构建及其核衣壳蛋白基因的发现、克隆与鉴定[J],高技术通讯,2006,16(9):948-953.
    [90].Nakamura Y., Gojobori T., Ikemura T. Condon usuage tabulate form the international DNA sequence databases:status for the year 2000[J]. Nucl Acids Res,2000,28(1):292-295.,
    [91].Marchler-Bauer A., Anderson J.B., Cherukuri P.F., et al. CDD:a Conserved Domain Database for protein classification [J]. Nucleic Acids Res,2005,33:D192-196.
    [92].Hopp T.P., Woods K.R. Prediction of protein antigenic determinants from amino acid sequences[J]. Proc Natl Acad Sci USA,1981,78(6):3824-3828.
    [93].Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein[J]. J Mol Biol,1982,157(1):105-132.
    [94].Moller S., Croning M.D., Apweiler R. Evaluation of methods for the prediction of membrane spanning regions[J]. Bioinformatics,2001,17(7):646-653.
    [95].Blom N., Gammeltoft S., Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites[J]. J Mol Biol,1999,294(5):1351-1362.
    [96].Nielsen H.E.J., Brunak S. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites[J]. Protein Eng,1997,10(1):1-6.
    [97].Bendtsen JD N H, von Heijne G. Improved prediction of signal peptides:Signa1P 3.0[J]. J Mol Biol,2004,340(4):783-795.,
    [98].Ren J., Wen L., Gao X., et al. CSS-Palm 2.0:an updated software for palmitoylation sites prediction [J]. Protein Eng Des Sel,2008,21(11):639-644.
    [99].Cuff J A, Barton G J. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction[J]. Proteins,1999,34(4):508-519.
    [100].Kelley L.A., Stemberg M.J. Protein structure prediction on the Web:a case study using the Phyre server[J]. Nat Protoc,2009,4(3):363-371.
    [101].Lambert C, Leonard N., De Bolle X., et al. ESyPred3D:Prediction of proteins 3D structures[J]. Bioinformatics,2002,18(9):1250-1256.
    [102].Shawky S.S.T., Shivaprasad H.L. Pathogenicity of a low-virulence duck virus enteritis isolate with apparent immunosuppressive ability[J]. Avian Dis,2000,44(3):590-599.
    [103].Tamura K., Dudley J., Nei M., et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24(8):1596-1599.
    [104].Mullan L.J., Bleasby A.J. Short EMBOSS User Guide. European Molecular Biology Open Software Suite[J].Brief Bioinform,2002,3(1):92-94.
    [105].Zhao L.C., Cheng A.C., Wang M.S., et al. Characterization of codon usage bias in the dUTPase gene of duck enteritis virus [J]. Progress in Natural Science,2008,18(9):1069-1076.
    [106].Wright F. The'effective number of codens'used in a gene[J]. Gene,1990,87(1):23-29.
    [107].Yin H.P., Guo W.Z., Xu Z.W., et al. Analysis of factors shaping synonymous codon usage in pseudorabies virus[J]. Journal of Zhejiang University (Agric. Life Sci.),2007,33(3):247-253.
    [108]Jiang P., Sun X., Lu Z. Analysis of synonymous codon usage in Aeropyrum pernix K1 and other Crenarchaeota microorganisms [J]. J Genet Genomics,2007,34(3):275-284.
    [109].张成岗,贺福初.生物信息学方法与实践[M].北京:科学出版社,2002,17-25.
    [110].张春霆.生物信息学的现状与展望[J],世界科技研究与发展,2000,22(6):17-20.
    [111].Chang H., Cheng A., Wang M., et al. Complete nucleotide sequence of the duck plague virus gE gene[J].Arch Virol,2009,154(1):163-165.
    [112].严钦,俞慧清,成国祥.蛋白糖基化与免疫研究进展[J].现代免疫学,2008,28(2):165-168.
    [113].Rudd P.M., Elliott T., Cresswell P., et al. Glycosylation and the immune system[J], Science, 2001,291(5512):2370-2376.
    [114].Fournillier A., Wychowski C., Boucreux D., et al. Induction of hepatitis C virus E1 envelope protein-specific immune response can be enhanced by mutation of N-Glycosylation sites[J]. J Virol,2001,75(24):12088-12097.
    [115].Drisdel R.C., Alexander J.K., Sayeed A., et al. Assays of protein palmitoylation[J]. Methods, 2006,40(2):127-134.
    [116].Sorek N., Bloch D., Yalovsky S., et al. Protein lipid modifications in signaling and subcellular targeting[J]. Curr Opin Plant Biol,2009,12(6):714-720.
    [117].Berry E.A., Dalby A.R., Yang Z.R., et al. Reduced bio basis function neural network for identification of protein phosphorylation sites: comparison with pattern recognition algorithms[J]. Comput Biol Chem,2004,28(1):75-85.
    [118].沈婵娟.鸭瘟病毒UL51基因部分特性及其基因工程蛋白应用的研究[D].四川农业大学,2010.
    [119].来鲁华.蛋白质的结构预测与分子设计[M].北京:北京大学出版社,1993.
    [120].孙涛,程安春,汪铭书,等.鸭肠炎病毒UL6基因B细胞表位的预测及其主要抗原域的原核表达[J].中国兽医科学,2008,38(11):939-945.
    [121].Apostolopoulos V., Yu M., Corper A.L., et al. Crystal structure of a non-canonical low-affinity peptide complexed with MHC class I: a new approach for vaccine design[J]. J Mol Biol,2002,318(5):1293-1305.
    [122].Barlow D.J., Edwards M.S., Thornton J.M., et al. Continuous and discontinuous protein antigenic determinants[J]. Nature,1986,322 (6081):747-748.
    [123].李慧昕.鸭肠炎病毒部分基因结构及相关功能的初步研究[D].中国农业科学院,2007.
    [124]. Liu S., Chen S., Li H., et al. Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV)[J]. Gene.2007,401(1-2): 88-96.
    [125].Fauquet C.M., Mayo M.A., Maniloff J., et al. Virus Taxonomy: Classification and Nomenclature of Viruses:Eighth Report of the International Committee on the Taxonomy of Viruses[M]. San Diego: Academic Press; 2005.
    [126].Shawky S., Schat K.A. Latency sites and reactivation of duck enteritis virus[J]. Avian Dis, 2002,46(2):308-313.
    [127]. Plummer P. J., Alefantis T., Kaplan S., et al. Detection of duck enteritis virus by polymerase chain reaction[J]. Avian Dis,1998,42(3):554-564.
    [128]. Moriyama E.N., Powell J.R. Codon usage bias and tRNA abundance in Drosophila[J]. J Mol Evol,1997,45(5):514-523.
    [129].Duret L., Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis[J]. Proc Natl Acad Sci U S A,1999,96(8): 4482-4487.
    [130]. Marin A., Gonzalez F., Gutierrez G., et al. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cervisiae and Escherichia coli[J]. Nucleic Acids Res,1998,26(19): 4540.
    [131]. Sakai H., Washio T., Saito R., et al. Correlation between sequence conservation of the 5' untranslated region and codon usage bias in Mus musculus genes[J]. Gene,2001,276(1-2): 101-105.
    [132]. Fedorov A., Saxonov S., Gilbert W. Regularities of context-dependent codon bias in eukaryotic genes[J]. Nucleic Acids Res,2002,30(5):1192-1197.
    [133].石秀凡,黄京飞,柳树群,等.人类基因同义密码子偏好的特征以及与基因GC含量的关系[J].生物化学与生物物理进展,2002,29(3):411-414.
    [134]. Rodriguez-Trelles F., Tarrio R., Ayala F.J. Switch in codon bias and increased rates of amino acid substitution in the Drosophila saltans species group[J]. Genetics,1999,153(1): 339-350.
    [135].顾万君,马建民,周童,等.不同结构的蛋白编码基因的密码子偏性研究[J].生物物理学报,2002,18(1):81-86.
    [136]. Cai M.S., Cheng A.C., Wang M.S., et al. Characterization of synonymous codon usage bias in the duck plague virus UL35 gene[J]. Intervirology,2009,52(5):266-278.
    [137].孙铮,马亮,Murphy Robert W.,等Wolbachia pipientis wMel基因组水平上的密码子使用分析[J].中国科学,2009,39(10):948-953.
    [138].Bulmer M. The selection-mutation-drift theory of synonymous codon usage[J]. Genetics, 1991,129(3):897-907.
    [139]. Gu W., Zhou T., Ma J., et al. Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales[J]. Virus Res,2004,101(2):155-161.
    [140]. Zhou T., Gu W., Ma J., et al. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses[J]. Bio Systems,2005,81(1):77-86.
    [141].Liu Q., Dou S., Ji Z., et al. Synonymous codon usage and gene function are strongly related in Oryza sativa[J]. BioSystems,2005,80(2):123-131.
    [142].Kennedy S.P., Ng W.V., Salzberg S.L., et al. Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence[J]. Genome Res,2001,11(10):1641-1650.
    [143]. Chiapello H., Lisacek F., Caboche M., et al. Codon usage and gene function are related in sequences of Arabidopsis thaliana[J]. Gene.1998,209(1-2): GC1-GC38.
    [144]. Pan H., Cao R., Liu L., et al. Molecular cloning and sequence analysis of the duck enteritis virus UL5 gene[J]. Virus Res,2008,136(1-2):152-156.
    [145]. Li H., Liu S., Kong X., et al. Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV): a proof for the classification of DEV[J]. Virus Genes, 2006,33(2):221-227.
    [146]. Jia R., Cheng A.C., Wang M.S., et al. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus[J]. Virus Genes,2009,38(1):96-103.
    [147]. An R., Li H., Han Z., et al. The u131 to u135 gene sequences of duck enteritis virus correspond to their homologs in herpes simplex virus 1[J]. Acta virol,2008,52(1):23-30.
    [148]. Xie W., Cheng A.C., Wang M.S., et al. Expression and characterization of the UL31 protein from duck enteritis virus[J]. Virol J,2009,6:19.
    [149]. Cai M.S., Cheng A.C., Wang M.S., et al. His6-tagged UL35 protein of duck plague virus: expression, purification, and production of polyclonal antibody[J]. Intervirology,2009,52(3): 141-151.
    [150]. Liu F., Ma B., Zhao Y., et al. Characterization of the gene encoding glycoprotein C of duck enteritis virus[J]. Virus Genes,2008,37(3):328-332.
    [151]. Zhao L.C., Cheng A.C., Wang M.S.et al. Identification and characterization of duck enteritis virus dUTPase gene[J]. Avian Dis,2008,52(2):324-331.
    [152]. Shen C.J., Cheng A.C., Wang M.S., et al. Identification and characterization of the duck enteritis virus UL51 gene[J]. Arch Virol,2009,154(7):1061-1069.
    [153]. Zhao Y., Wang J.W., Liu F., et al. Molecular analysis of US10, S3, and US2 in duck enteritis virus[J]. Virus Genes,2009,38(2):243-248.
    [154]. Husak P.J., Kuo T., Enquist L.W. Pseudorabies virus membrane proteins gI and gE facilitate anterograde spread of infection in projection-specific neurons in the rat[J]. J Virol,2000,74(23): 10975-10983.
    [155]. Babic N., Klupp B., Brack A., et al. Deletion of glycoprotein gE reduces the propagation of pseudorabies virus in the nervous system of mice after intranasal inoculation[J]. Virology,1996, 219(1):279-284.
    [156].张瑶.鸭瘟病毒UL26.5基因的原核表达及在病毒感染细胞定位研究[D].雅安:四川农业大学,2009.
    [157].宋涌,程安春,汪铭书,等.聚合酶链反应(PCR)检测鸭瘟病毒方法的建立和应用[J].中国兽医杂志,2005,41(2):17-20.
    [158].J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译.分子克隆实验指南(第三版)[M].北京:科学出版社,2003.
    [159].徐超.鸭瘟病毒gC基因的发现、原核表达和应用研究[D].雅安:四川农业大学,2008.
    [160].葛菡.鸭瘟强毒TK基因的原核表达及在感染鸭组织亚细胞定位研究[D].雅安:四川农业大学,2008.
    [161].李育阳.基因表达技术[M].北京:科学技术出版社;2002.
    [162]. Nuc P., Nuc K. Recombinant protein production in Escherichia coIi[J]. Postepy biochemii, 2006,52(4):448-456.
    [163]. Trabbic-Carlson K., Liu L., Kim B., et al. Expression and purification of recombinant proteins from Escherichia coli:Comparison of an elastin-like polypeptide fusion with an oligohistidine fusion[J]. Pro teinSci,2004,13 (12):3274.
    [164].招丽婵,程安春,汪铭书,等.鸭瘟病毒dUTPase基因克隆、原核表达及在病毒感染宿主亚细胞中的定位分析[J].畜牧兽医学报,2008,39(8):1087-1093.
    [165].吴春涛,王建华,侯艳梅,等.牛疱疹病毒Ⅰ型gB基因的原核表达及产物的抗原性分 析[J].中国兽医科学,2006,36(7):523-528.
    [166]. Weerasinghe C.U., Learmonth G.S., Gilkerson J.R., et al. Equine herpesvirus 1 glycoprotein D expressed in E. coli provides partial protection against equine herpesvirus infection in mice and elicits virus-neutralizing antibodies in the horse[J]. Vet Immunol Immunopathol,2006,111(1-2): 59-66.
    [167].安乃荔.应用硫氧环蛋白促进外源蛋白在大肠杆菌中的可溶性表达[J].病毒学报,1999,15(2):130-135.
    [168]. Swartz J.R. Advances in Escherichia coli production of therapeutic proteins[J]. Curr Opin Biotechnol,2001,12(2):195-201.
    [169]. Ghiasi H., Kaiwar R., Nesbum A.B., et al. Baculovirus-expressed glycoprotein E (gE) of herpes simplex virus type-1 (HSV-1) protects mice against lethal intraperitoneal and lethal ocular HSV-1 challenge[J]. Virology,1992,188(2):469-476.
    [170]. Kimman T.G., De Leeuw O., Kochan G., et al. An Indirect Double-Antibody Sandwich Enzyme-Linked Immunosorbent Assay (ELISA) using Baculovirus-Expressed Antigen for the Detection of Antibodies to Glycoprotein E of Pseudorabies Virus and Comparison of the Method with Blocking ELISAs[J]. Clin Diagn Lab Immunol,1996,3(2):167-174.
    [171]. Morenkov O.S., Sobko Yu.A., Panchenko O.A. Glycoprotein gE blocking ELISAs to differentiate between Aujeszky's disease-vaccinated and infected animals[J]. J Virol Methods, 1997,65(1):83-94.
    [172]. Morenkov O.S., Fodor N., Fodor I. Indirect ELISAs based on recombinant and affinity-purified glycoprotein E of Aujeszky's disease virus to differentiate between vaccinated and infected animals [J]. Acta Vet Hung,1999,47(1):137-150.
    [173]. Letellier C., Delangre A., De Smet A., et al. Characterization of monoclonal antibodies directed against the bovine herpesvirus-1 glycoprotein E and use for the differentiation between vaccinated an infected animals[J]. Vet Microbiol,2001,83(4):301-315.
    [174].贾海波,周莉,汪洋,等.斜带石斑鱼生长催乳素基因全长cDNA的克隆,表达及其免疫荧光分析[J].高技术通讯,2004,14(4):76-82.
    [175].刘岳龙,秦爱建,金文杰,等.鸡贫血病毒VP1基因在大肠杆菌中的高效表达及其生物学特性的初步分析[J].病毒学报,2002,18(1):61-65.
    [176]. Chen S.P., Ellis T.M., Lee M.C., et al. Comparison of sensitivity and specificity in three commercial foot-and-mouth disease virus non-structural protein ELISA kits with swine sera in Taiwan[J]. Vet Microbiol,2007,119:164-172.
    [177]. Gutierrez G., Alvarez I., Fondevila N., et al. Detection of bovine leukemia virus specific antibodies using recombinant p24-ELISA[J]. Vet Microbiol,2009,137:224-234.
    [178]. Liu H.J., Kuo L.C., Hu Y.C., et al. Development of an ELISA for detection of antibodies to avian reovirus in chickens[J]. J Virol Methods,2002,102:129-138.
    [179]. Paweska J.T., van Vuren P.J., Kemp A., et al. Recombinant nucleocapsid-based ELISA for detection of IgG antibody to Rift Valley fever virus in African buffalo[J]. Vet Microbiol,2008,127: 121-128.
    [180].朱立平,陈学清.免疫学常用试验方法[M].北京:人民军医出版社,2000.
    [181]. Miller W.J., Skinner J.A., Foss G.S., et al. Localization of the fragile X mentalretardation 2 (FMR2) protein in mammalian brain[J]. Eur J Neurosci,2000,12(1):381-394.
    [182]. Yan B., Cheng A.C., Wang M.S., et al. Application of an indirect immunofluorescent staining method for detection of Salmonella enteritidis in paraffin slices and antigen location in infected duck tissues[J]. World J Gastroenterol,2008,14(5):776-781.
    [183].程安春,韩晓英,汪铭书,等.用间接免疫荧光染色法检测鸭病毒性肠炎病毒在人工感染鸭体内的侵染过程和分布规律[J].畜牧兽医学报,2007,38(9):942-946.
    [184].Shen H.B., Chou K.C. Virus-PLoc:a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells[J]. Biopolymers,2007,85(3): 233-240.
    [185].Foster T.P., Chouljenko V.N., Kousoulas K.G. Functional and physical interactions of the herpes simplex virus type 1 UL20 membrane protein with glycoprotein K[J]. J Virol,2008,82(13): 6310-6323.
    [186]. Nair R., Rost B. Better prediction of sub-cellular localization by combining evolutionary and structural information[J]. Proteins,2003,53(4):917-930.
    [187].柳忠辉,吕昌龙主编.免疫学常用实验技术[M].北京:科学出版社,2002.
    [188].郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CH强毒株在鸭胚成纤维细胞中形态发生学的研究[J].畜牧兽医学报,2006,37(3):274-280.
    [189].郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CH强毒株感染鸭胚成纤维细胞的超微结构观察[J].中国兽医学报,2005,25(06):632-635.
    [190].刘军.PACS-1在单纯疱疹病毒Ⅰ型糖蛋白B位于分泌面高尔基体网络中的作用[D].第四军医大学病原生物学教研室,2001.
    [191].Zhu Z., Hao Y., Gershon M.D., et al. Targeting of glycoprotein I (gE) of varicella-zoster virus to the trans-Goligi network by an AYRV sequence and an acidic ammo-rich patch in the cytosolic domain of the molecule[J]. J Virol,1996,70(10):6563-6575.
    [192]. Miller LK. Baculovirus structure[M].The baculovims,New Year:Plenum Press,1997.
    [193].徐超,李欣然,信洪一,等.鸭瘟病毒gC基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(12):1038-1044.
    [194]. Han X.J., Wang J.W., Ma B. Cloning and Sequence of Glycoprotein H Gene of Duck Plague Virus[J]. Agricultural Sciences in China,2006,5(5):397-402.
    [195].葛菡,徐超,程安春,等.鸭瘟病毒TK基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(04):297-302.
    [196].Li H.X., Liu S.W., Han Z.X., et al. Comparative analysis of the genes UL1 through UL7 of the duck enteritis virus and other herpesviruses of the subfamily Alphaherpesvirinae[J]. Genetics and Molecular Biology,2009,32(1):121-128.
    [197]. Zhao Y., Wang J. W., Ma B., et al. Molecular analysis of duck enteritis virus US3, US4, and US5 gene[J]. Virus Genes,2009,38(2):289-294.
    [198].Hu Y., Zhou H., Yu Z., et al. Characterization of the genes encoding complete US10, SORF3, and US2 proteins from duck enteritis virus[J]. Virus Genes,2009,38(2):295-301.
    [199].Kubista M., Andrade J.M., Bengtsson M. The real-time polymerase chain reaction[J]. Mol Aspects Med,2006,27 (2-3):95-125.
    [200].韩俊英,曾瑞萍.荧光定量PCR技术及其应用[J].国外医学遗传学分册,2000,23(3):117-120.
    [201].Feldman L., Rixon F.J., Jean J.H., et al. Transcription of the genome of pseudorabies virus (A herpesvirus) is strictly controlled[J]. Virology,1979,97(2):316-327.
    [202].寸韡,张莹,刘龙丁,等.单纯疱疹Ⅰ型病毒即刻早期基因上游调控序列分析[J].生物化学与生物物理进展,2006,33(1):77-82.
    [203].Henley D.C., Weir J.P. The relative stability of selected herpes simplex virus type 1 mRNAs[J]. Virus Res,1991,20(2):121-132.
    [204]. Spear P., Roizman, B. In Tooze, J. Molecular Biology of Tumor Viruses, Part Ⅱ, DNA Tumor Viruses,2nd edn[M]. Cold Spring Harbor Laboratory,1980.
    [205]. Weir J.P., Narayanan P.R. The use of β-galactosidase as a marker gene to define the regulatory sequences of the herpes simplex virus type 1 glycoprotein C gene in recombinant herpesviruses[J]. Nucleic Acids Research,1988,16:10267-10282.
    [206]. Malmarugan S., Sulochana S. Comparison of Dot-ELISA passive haemagglutination test for the detection of antibodies to duck plague[J]. Indian Veterinary Journal,2002,79(7):648-651.
    [207]. Lu L.T., Cheng A.C., Wang M.S., et al. Polyclonal antibody against the DPV UL46M protein can be a diagnostic candidate[J]. Virol J,2010,7:83.
    [208].徐耀基,黄引贤.应用琼脂凝胶沉淀试验检测鹅鸭病料中的鸭瘟病毒[J].中国畜禽传染病.1992,65(4):30-31.
    [209].索化夷,汤承,岳华,等.实时荧光定量TaqMan-PCR检测鸭瘟病毒方法的建立[J].中国预防兽医学报.2006,28(3):332-335.
    [210].宋涌,程安春,汪铭书,等.聚合酶链反应(PCR)检测鸭瘟病毒方法的建立和应用[J].中国兽医杂志.2005,41(2):17-20.
    [211].李凯年.用PCR诊断水禽的鸭瘟[J].中国家禽,2002,24(02):50.
    [212]. Cheng A.C.,Wang M.S., Liu F., et al. The Preliminary Application of PCR in Research of Clinical Diagnosis and Mechanisms of Immunity and Pathogeny of Duck Plague Virus (DPV)[J]. Chinese Journal of Virology,2004,20(04):364-370.
    [213].Hansen W.R., Nashold S.W., Docherty D.E., et al. Diagnosis of duck plague in waterfowl by polymerase chain reaction[J]. Avian Dis,2000,44(2):266-274.
    [214].Islam M.R., Nessa J., Halder K.M. Detection of duck plague virus antigen in tissues by immunoperoxidase staining[J]. Avian Pathol,1993,22(2):389-393.
    [215].Islam M.R., Khan M.A. An immunocytochemical study on the sequential tissue distribution of duck plague virus[J]. Avian Pathol,1995,24(1):189-194.
    [216].Shawky S. Target cells for duck enteritis virus in lymphoid organs[J]. Avian Pathol,2000, 29(6):609-616.
    [217].徐超,程安春,汪铭书,等.间接酶免疫组化检测DPV在感染鸭体内细胞定位的研究和应用[J].中国兽医学报,2007,27(5):640-644.
    [218].Qi X.F., Yang X.Y., Cheng A.C., et al. The pathogenesis of duck virus enteritis in experimentally infected ducks:a quantitative time-course study using TaqMan polymerase chain reaction[J]. Avian Pathol,2008,37(3):307-310.
    [219].程安春,韩晓英,朱德康,等.间接免疫荧光染色检测石蜡切片中的鸭病毒性肠炎病毒和抗原定位[J].中国兽医学报,2008,28(8):871-875.
    [220].蔡文琴,王波沄.实用免疫细胞化学与核酸分子杂交技术[M],四川科学技术出版社,1994.
    [221]. Li C, Shen C., Cheng A., et al. Development and application of an indirect immunoperoxidase assay for the detection of Duck swollen head hemorrhagic disease virus antigen in Pekin ducks (Anas platyrhynchos)[J]. J Vet Diagn Invest,2010,22(1):10-19.
    [222]. Fernandez de Marco M., Salguero F.J., Bautista M.J., et al. An immunohistochemical study of the tonsils in pigs with acute African swine fever virus infection[J]. Res Vet Sci,2007,83: 198-203.
    [223].王伯沄,李玉松,黄高昇.病理学技术[M].人民卫生出版社,2001.
    [224].茹国美.4种抗原修复方法对免疫组化结果的影响[J].现代中西医结合杂志,2006,15(24):3370-3370.
    [225].李科,杨红,徐钢,等.不同抗原修复液对免疫组化结果的影响[J].中国组织化学与细胞化学杂志,2006,15(1):110-112.
    [226].许益民.免疫过氧化物酶染色方法[M].中国农业出版社,2001.
    [227]. Shen C., Cheng A., Wang M., et al. Expression and distribution of the duck enteritis virus UL51 protein in experimentally infected ducks[J]. Avian Dis,2010,54(2):939-947.
    [228]. Confer A.W., Fulton R.W., Step D.L., et al. Viral antigen distribution in the respiratory tract of cattle persistently infected with bovine viral diarrhea virus subtype 2a[J]. Vet pathol,2005, 42(2):192-199.
    [229].刘军连,徐志凯,喻启桂,等.单克隆抗体间接免疫荧光试验检测生殖器单纯疱疹病毒感染[J].第四军医大学学报,2004,25(8):728-729.
    [230].卢受异,余业东,廖明,等.H5亚型禽流感病毒间接免疫荧光快速诊断方法的建立[J].中国预防兽医学报,2006,28(001):76-80.
    [231].张舍郁,程安春,汪铭书,等.间接免疫荧光检测石蜡切片中鸭肿头出血症病毒及抗原定位方法的初步建立[J].中国农业科学.2008,41(3):868-874
    [232].杨汉春.动物免疫学[M].北京:中国农业大学出版社,1996.
    [233].Montgomery R.D., Maslin W.R. A comparison of the gland of harder response and head-associated lymphoid tissue (HALT) morphology in chicken and turkeys[J]. Avian Dis,1992, 36:755-759.
    [234].Bang B.G., Bang, F.B. Localised lymphoid tissue and plasma cells in para-ocular and para-nasal organ systems in chickens[J]. Am J Pathol,1968,53:735-751.
    [235].Payne A.P. The harderian gland:a tercentennial review[J]. J Anat,1994,185:1-49.
    [236]. Qi X., Yang X., Cheng A., et al. Intestinal mucosal immune response against virulent duck enteritis virus infection in ducklings[J]. Res Vet Sci,2009,87(2):218-225.
    [237]. Yang X., Qi X., Cheng A., et al. Intestinal mucosal immune response in ducklings following oral immunisation with an attenuated Duck enteritis virus vaccine[J]. Vet J,2010,185(2): 199-203.
    [238].Akter S., Islam M.A., Hossain M.T., et al. Characterization and pathogenicity of duck plague virus isolated from natural outbreaks in ducks of Bangladesh[J]. Bangl.J.Vet.Med,2004,2 (2):107-111.
    [239].Wolf K., Burke C.N., Quimby M.C. Duck viral enteritis:microtiter plate isolation and neutralization test using the duck embryo fibroblast cell line[J]. Avian Dis,1974,18(3):427-434.
    [240].齐雪峰,程安春,汪铭书,等.鸭瘟病毒抗体间接ELISA检测试剂盒的研制[J].中国兽医科学,2007:37(38):690-694.
    [241].Toro H., Kaleta E.F. Absence of neutralising antibodies to duck plague virus in the commercial duck and goose populations in West Germany (1980-1985)[J]. Avian Pathol,1986, 15(1):57-62.
    [242]. Alvarado J.F., Dolz G., Herrero M.V., et al. Comparison of the serum neutralization test and a competitive enzyme-linked immunosorbent assay for the detection of antibodies to vesicular stomatitis virus New Jersey and vesicular stomatitis virus Indiana[J]. J Vet Diagn Invest.2002, 14(13):240-242.
    [243].Chao Y.P., Law W., Chen P.T., et al. High production of heterologous proteins in Escherichia coli using the thermo-regulated T7 expression system[J]. Appl Microbiol Biotechnol,2002, 58(54):446-453.
    [244].王光华,独军政,丛国正,等.猪口蹄疫病毒VP1结构蛋白抗体间接ELISA方法的建立[J].生物工程学报,2007,23(5):961-966.
    [245].Buchner J., Pastan I., Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins:single-chain immunotoxins from renaturation of bacterial inclusion bodies[J]. Anal Biochem,1992,205(2):263-270.
    [246]. Kleine T., Bartsch S., Blaser J., et al. Preparation of active recombinant TIMP-1 from Escherichia coli inclusion bodies and complex formation with the recombinant catalytic domain of PMNL-collagenase[J]. Biochemistry,1993,32(51):14125-14131.
    [247]. Kit S., Awaya Y, Otsuka H., et al. Blocking ELISA to distinguish pseudorabies virus-infected pigs from those vaccinated with a glycoprotein gⅢ deletion mutant[J]. J Vet Diagn Invest,1990,2(1):14-23.
    [248]. Alonso A., Gomes M.P.D., Martins M.A., et al. Detection of foot-and-mouth disease virus infection-associated antigen antibodies:comparison of the enzyme-linked immunosorbent assay and agar gel immunodiffusion tests[J]. Prev Vet Med.1990,9:233-240.
    [249].项朝荣.表达绿色荧光蛋白的伪狂犬基因缺失病毒的构建[D].河南农业大学,2007.
    [250]. Masihi K.N., Lange W. Enzyme-linked immunosorbent assay for the detection of influenza type-specific antibodies[J]. J Immunol Methods.1980,36(2):173-179.
    [251]. Richardson L.S., Yolken R.H., Belshe R.B., et al. Enzyme-linked immunosorbent assay for measurement of serological response to respiratory syncytial virus infection[J]. Infect Immun, 1978,20:660-664.
    [252].Mohan S.B., Warren R.C., Richardson M.D. Sero-diagnosis of invasive aspergillosis: attempts to determine antigen and antibody relevance to infection[J]. Mycopathologia,1980,70(1): 37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700