天津湿地景观格局动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地被誉为“自然之肾”,不仅是人类最重要的生存环境,也是众多野生动植物的重要生存环境之一,具有多种生态功能和社会经济价值。天津湿地作为环渤海滨海湿地的重要组成部分,有大量属国家一、二级保护的鸟类。然面近几十年来,受人类活动的影响,天津市湿地面积萎缩,严重影响湿地鸟类栖息地和湿地鸟类的迁徙、繁殖。木研究在RS和GIS技术的支持下,以天津市1999、2003、2007年的三期TM影像为数据源,在经湿地特征信息提取后,采用传统的日视解译分类方法,并结合其它非遥感资料以及高清晰影像作为辅助于段,获得了天津湿地基本信息。在此基础上,木研究把天津湿地分成2大类12小类,并利用ARCMAP软件统计分析得出三个时间段湿地面积变化情况,经Fragstats3.0和Excel软件处理后得到天津湿地景观格局的动态变化。
     结果表明:天津湿地总面积从1999年的312088.725hm2增加到2007年的328133.61hm2,增加了4.89%;湿地面积增加的主要原因是人工湿地特别是盐田面积大幅增加,人工湿地8年间共增加了24043hm2,其中盐田增加25699.57hm2,其它人工湿地总量减少不多,自然湿地相反减少了7.38%,表明湿地的主要功能受到很大影响。一些重要的景观格局指数的计算结果表明,天津湿地景观的破碎化程度在一直加剧,斑块类型更加多样化,湿地景观中没有明显的优势类型且各斑块类型在景观中均匀分布。湿地类型转化的基本规律表现为天然湿地向人工湿地、人工湿地向农林用地、农用地向建设用地转换,人类的开发活动已经转向一些人为干扰较少的潮间带、滩涂区以及河流河口水域、浅海水域、湖泊和沼泽等地区。湿地景观格局的变化对湿地水禽生境产生重要影响。
     本研究根据资料的叮靠性,将各种驱动指标加以组合、归纳为2个大类和20个变量指标,建立驱动因素指标体系。由于上述指标体系中多个指标之间具有一定的相关关系,先对各指标数据进行标准化处理后,采用“最大方差正交旋转法”对所驱动因素进行提取和筛选,分析驱动因子的载荷系数,并评价它们对景观格局变化的驱动权重。在驱动因素的社会系统中,人口和经济等因素对湿地匀景观格局变化影响较大,随着天津市经济发展水平的提高,产业结构并未得到改善,尤其是第二产业仍然占较大比重;人口因子的作用则表现在城市人口急剧增长,快速城市化导致的城市的实体的扩张占用大量农田和湿地;在农业因子中,粮食产量的提高通过扩大种植面积挤占湿地来实现,而随着农业技术的提高则有利于湿地景观格局的改善。在自然系统中,全球气候变化导致的气温和降水的变化对湿地景观格局也有一定影响,但由于本研究的时间跨度短而表现并不明显。
     本论文根据1999年和2003年计算的湿地类型转移概率矩阵,以及各种约束因子和适宜性图集,利用CA-Markov模型模拟预测未来2015年和2023年天津湿地景观格局。预测结果表明:随着时间推移,天津湿地总面积先增加后减少。主要原因是,从天然湿地向人工湿地、人工湿地向农田和旱地、农田和旱地向城镇和工业用地转换的过程中,天然湿地向人工湿地转变的速度基本不变,而人工湿地损失的速度由慢变快。
     本研究以滨海新区为例,讨论了在湿地景观格局日益破碎化、人工化的背景下天津湿地景观保护规划的原则和相关策略。保护框架应该以河流廊道、古贝壳堤和牡蛎滩为基础,优先保护和恢复河流廊道的自然形态和生态功能,并和古贝壳堤和牡蛎滩一起构成网格状的保护结构。跨区域调水为湿地景观带来新的水源,但同时雨水的收集、处理和回用作为新的水源。湿地景观的恢复还包括湿地植物的恢复和水禽栖息地的恢复。
Known as the kidney of the nature, Wetland is not only the most important living environment for human beings, but also the habitats for wildlives. As part of the Bohai Sea Coastal Area, Tianjin is of local, regional and international significance for south-north migratory birds in eastern Asia, and many of them are listed in the Red Book of China. However, due to human activities in recent decades, the decrease of wetland area seriously affected the wetland birds'habitat, migration and propagation. Supported by the remote sensing and geographical information system, this research used three periods of Tianjin TM images in1999,2003and2007as the data source to acquire the wetland patch data. The main classification and mapping method is traditional visual interpretation in combination with non-RS images and other materials with high resolutions. According to the study area's condition, the wetland was divided into two major categories and12sub-classes. The patch changes during three periods were analyzed by ARCMAP software and the dynamic change of wetland landscape pattern was processed by using Fragstats3.0and Excel software.
     The result shows that:the total area of wetland patch increased4.89%, from312088.725hm2in1999to328133.61hm2in2007, mainly attributing to the increase of constructed wetlands, especially salt fields. The salt fields increased significantly in8years from24043hm2to25699.57hm3, while other types of constructed wetlands and natural ones reduced. The natural wetlands lost7.38%on the contrary. Some important landscape pattern indices calculated show that in the spatial distribution the degree of the wetland landscape fragmentation was aggravated. Wetland patch types are getting more diversified, evenly distributed without apparent advantage ones. The main wetland type transition rule is natural wetlands to constructed ones, then to agricultural fields and forests, finally to development areas. Human development activities have shifted to inter-tidal zone, tide silt beach, river estuary, shallow sea water area, swamps and reservoir wetlands where human didn't touch before. The wetland landscape pattern changes led to big changes on waterfowl habitats.
     Based on the reliability of the information, the research selected20variables and divided then into2types to build up the driving factors indices system:social and natural ones. All indicators are standardized first because some are correlated to others. Then the research used "maximum variance orthogonal rotation" method to extract and filter the driving factors, analyze the driving weight and evaluate their impacts on landscape pattern change. The result shows:in the social driving factors, demographic and economic factors have significant impact on the changes of wetland landscape pattern. Further analysis explains that with fast economic development, the situation of the industrial structure is not improved. Population factor reflects that rapid urban population growth has led to urban physical expansion to intensive agricultural fields and wetlands. Food production increase was achieved via expanding the farmland to wetlands. New agricultural technology improvement helps improve the wetland landscape pattern. In the natural system, changes in temperature and precipitation caused by global climate change also affect the wetland landscape pattern, but the performance is not obvious because of the short time span of the study.
     Further, based on the wetland transition matrixes between1997and2003, the constrain factors and suitability set generated by MCE, this paper uses CA-Markov model to simulate wetland landscape pattern in2015and2023. The research shows that:the total area of Tianjin wetlands increase first then decrease in the future. The reason is, during the transition from natural wetlands to constructed wetlands, constructed wetlands to farmland and dry land, farmland and dry land to construction and industrial land use, the speed from natural wetlands to constructed wetlands has little change, while the constructed wetlands lose faster.
     Finally, this paper takes the Binhai New Area as case to discuss the wetland conservation principles and strategies. The wetland protect framework should base on the river corridor, the ancient shell dike and oyster beaches, and give priority to protect and restore the natural shape of the river corridor and ecological functions. Inter-regional water transportation will bring new water source, while rainwater collection, treatment and reuse are important as well. The wetland restoration also includes wetland plants restoration and waterfowl habitat restoration.
引文
[1]布仁仓,胡远满,常禹.景观指数之间的相关分析[J].生态学报,2005,25(10):2764-2775.
    [2]陈利项,傅伯杰.干扰的类型、特征及其生态学意义[J].生态学报,2000,20(4):581-586.
    [3]陈佑启,杨鹏.国际上土地利用土地覆被变化研究的新进展[J].经济地理,2001,21(1):95-100.
    [4]陈刚起,牛焕光,吕宪国.三江平原沼泽研究[M].北京:科学出版社,1996.
    [5]崔丽娟,张明祥.湿地评价研究概述[J].世界林业研究,2002,15(6):46-54.
    [6]丁圣彦,梁国付,姚孝宗.牛明功.河南沿黄湿地景观格局及其动态研究[M].北京:科学出版社,2007:1-2.
    [7]杜林芳.天津市东方白鹳栖息地变化研究[D].北京:北京林业大学图书馆.
    [8]傅娇艳,丁振华.湿地生态系统服务,功能和价值评价研究进展[J].应用生态学报,2007,18(3):681-686.
    [9]高义,苏奋振,孙晓宇,薛振山.珠江口滨海湿地景观格局变化分析[J].热带地理,2010,30(3):215-226.
    [10]郭笃发.利用马尔科夫过程预测黄河三角洲新生湿地土地利用/覆被格局的变化[J].土壤,2006,38(1):42-47.
    [11]顾丽,王新杰,龚直文,付尧,刘俊.北京湿地景观监测与动态演变[J].地理科学进展,2010,29(7):789-796.
    [12]胡蓓蓓,王军,许世远,陈晶晶,刘耀龙,谢翠娜,叶明武,赵庆良.天津市近50a来降水变化分析[J].干旱区资源与环境,2009,23(8):71-74.
    [13]胡茂桂,傅晓阳,张树清.基于元胞自动机的莫莫格湿地土地覆被预测模拟[J].资源科学,2007,29(2):142-148.
    [14]江波,欧阳志云,苗鸿,郑华,白杨,庄长伟,方瑜.海河流域湿地生态系统服务功能价值评价[J].生态学报,2011,31(8):2236-2244.
    [15]李春燕,刘志杰,韩国彬,张希祥,韩大柱.天津大黄堡湿地自然保护区资源现状及保护对策[J].天津农林科技,2007,28(6):11-13.
    [16]李秀珍,布仁仓,常禹.景观格局指标对不同景观格局的反应[J].生态学报,2004,24(1):123-134.
    [17]李宁云,袁华,田昆,彭涛.滇西北纳帕海湿地景观格局变化及其对土壤碳库的影响[J].生态学报,2011,31(24):7388-7396.
    [18]李洪远,孟伟庆.滨海湿地环境演变与生态恢复[M].北京:化学工业出版社,2012.
    [19]黎夏,叶嘉安.基于神经网络的元胞自动机及模拟复杂土地利用系统[J].地理研究,2005,24(1):19-27.
    [20]李晓文,肖笃宁,胡远满.辽东湾滨海湿地景观规划预案分析与评价[J].生态学报,2002,22(2):224-232.
    [21]李雪瑞.天津市土地利用变化与城市扩展研究[D].北京:北京林业大学图书馆.
    [22]李学宁.天津滨海贝壳堤成因与海岸线的演变[J].资源调查与环境,2009,30(1):9-15.
    [23]刘纪远.中国资源环境遥感宏观调查与动态研究[M].北京,中国科学出版社,1996.
    [24]刘晓辉,吕宪国,姜明,商丽娜,王锡刚.湿地生态系统服务功能的价值评估[J].生态学报,2008,28(11):5625-5631.
    [25]吕宪国,黄锡畴.我国湿地研究进展-献给中国科学院长春地理研究所成立40周年[J].地理 科学,1998,18(4):293-299.
    [26]马建章,贾竞波.野生动物管理学[M].哈尔滨:东北林业大学出版社,1990.
    [27]梅安新,彭望碌.遥感导论[M].北京,高等教育出版社,2001.
    [28]孟宪民.湿地与全球环境变化[J].地理科学,1999,19(5):385-391.
    [29]宁书年.遥感图像处理与应用[M].地震出版社,1995.
    [30]欧维新,杨桂山,李恒鹏.苏北盐城海岸带景观格局时空变化及驱动力分析[J].地理科学,2004,4(5):610-615.
    [31]欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报,1999,19(5):607-613.
    [32]天津市人民政府.天津区县年鉴[M].天津:天津市社会科学院出版社,2000.
    [33]天津市人民政府.天津区县年鉴[M].天津:天津市社会科学院出版社,2004.
    [34]天津市人民政府.天津区县年鉴[M].天津:天津市社会科学院出版社,2006.
    [35]天津市人民政府.天津区县年鉴[M].天津:天津市社会科学院出版社,2008.
    [36]王凤琴,苏海潮,刘利华.天津七里海湿地鸟类区系及类群多样性研究[J].天津农学院学报,2003,10(3):16-22.
    [37]苏洁琼,王炬.气候变化对湿地景观格局的影响研究综述[J].环境科学与技术,2012,35(4):74-81.
    [38]索安宁,于永海,韩富伟.辽河三角洲盘锦湿地景观格局变化的生态系统服务价值响应[J].生态经济,2011,240(6):147-51.
    [39]孙广友.中国湿地科学的进展与展望[J].地球科学进展,2000,15(6):666-672.
    [40]邬建国.景观生态学-格局、过程、尺度与等级[M].北京:高等教育出版社,2000.
    [41]王凤琴,赵欣如,周俊起.天津大黄堡湿地自然保护区鸟类调查[J].动物学杂志,2006,5:72-81.
    [42]王凤琴,赵欣如,周俊启,李春燕,吴学东,何建水,何瑞艳,杨哗.天津大黄堡湿地自然保护区的水禽生态[J].河北大学学报,2008,28(4):427-432.
    [43]王凤琴.天津地区湿地水禽组成及多样性分析[J].安徽农业科学,2008,36(20):8623-8625.
    [44]王静等.土地资源遥感监测与评价方法[M].北京:科学出版社,2006.
    [45]王根绪,郭晓寅,程国栋.黄河源区景观格局与生态功能的动态变化[J].生态学报,2002,22(10):1587-1598.
    [46]王良健,包浩生,彭补拙.基于遥感与GIS的区域土地利用变化的动态监测与预测研究[J].经济地理,2000,20(2):47-50.
    [47]王宪礼,肖笃宁,布仁仓.辽河三角洲湿地的景观格局分析[J].生态学报,1997,17(3):317-323.
    [48]王学平.遥感图像几何校正原理及效果分析[J].计算机应用与软件,2008,25(9):102-105.
    [49]王学高,李国良,何森.天津地区湿地水禽区系的研究[J].动物科学和动物医学,1999,16(5):11-16.
    [50]吴可勤等译(ClarkJ.R.,1996)海岸带管理于册[M].北京:海洋出版社,2000.
    [51]徐岚.利用马尔柯大过程预测东陵景观格局的变化[J].应用生态学报,1993,4(3):270-277.
    [52]姚士谋,陈振光.中国大都市的空间扩展[M].合肥,中国科技大学出版社,1997.
    [53]袁泽亮.天津大黄堡湿地生物多样性及保护利用[J].林业资源管理,2005(6):65-68.
    [54]杨桂山,施雅风.江苏滨海潮滩湿地对潮位变化的生态响应[J].地理学报,2002,57(3):325-332.
    [55]杨维康,钟文勤,高行宜.鸟类栖息地选择研究进展[J].干旱区研究,2000,17(3):71-78.
    [56]杨昕,汤国安,邓凤东ERDAS遥感数字图像处理实验教程[M].北京:科学出版社,2009:25-42.
    [57]曾辉.快速城市化地区景观的复合研究—以深圳龙华地区为例(博士论文).北京大学图书馆,1999.
    [58]张宁.天津年鉴[M].天津:天津科学技术出版社,2003.
    [59]张华兵,刘红玉,郝敬锋,李玉凤.自然和人工管理驱动下盐城海滨湿地景观格局演变特征与空间差异.生态学报,2012,32(1):0101-0110.
    [60]张峥,刘爽,朱琳,冯颖.湿地生物多样性评价研究-以天津古海岸与湿地自然保护区为例[J].中国生态农业学报,2002,10(1):76-78.
    [61]赵士洞,赖鹏飞,商界环保协会(香港)等译.千年生态系统评估报告集(二).北京:中国环境科学出版社,2007.
    [62]庄大方,刘纪远.中国土地利用程度的区域分异模刑研究[J].自然资源学报,1997,12(2):105-111.
    [63]周成虎,孙战利,谢一春.地理元胞自动机研究[M].北京:科学出版社,1999.
    [64]周平,蒙吉军.区域生态风险管理研究进展[J].生态学报,2009,29(4):2097-2106.
    [65]周婷,蒙吉军.区域生态风险评价方法研究进展[J].生态学杂志,2009,28(4):762-767.
    [66]Amoros, C et al. The reversible process concept applied to the environmental management of large river systems[J]. Environmental Management,1987 (11):607-617.
    [67]Batty M, Xie Y. Modeling in side GIS:Parti:Model structures, exploratory spatial analysis[J]. International Journal of Geographic Information Systems,1994,8(3):291-307.
    [68]Cormier S M, Smith M, Norton S, Neiheise 1 T. Assessing ecological risk in watersheds:A case study of problem formulation in the Big Darby Creek watershed, Ohio, USA(J). Environmental Toxicology and Chemistry,2000,19:1082-96.
    [69]Costanza, R. et al. The value of the world's ecosystem services and natural capital(J). Nature,1977, 387:253-260.
    [70]Couclelis, From H. Cellular automata to urban models:New principles for model development and implementation[J]. Environment and Planning B:Planning and Design,1997,24 (2):165-174.
    [71]Daily GC. Nature's Service:Social Depentence on Natural Ecosystems[M]. Washington DC: Island Press,1997.
    [72]David Moreno-Mateos, Mary E. Power, Francisco A. Comin, Roxana Yockteng. Structural and Functional Loss in Restored Wetland Ecosystems[J]. PLoS Biology,2012,10(1):e1001247.
    [73]Deshler, D. Techniques for generating futures perspectives. In Brckett, Ralph G. (Ed), continuing Education in the Year 2000. New Directions for continuing Education, No.36. San Fransisco:Jossey-Bass.1987.
    [74]EPA (US Environmental Protection Agency). Framework for Ecological Risk Assessment. EPA /630/R-92/001. Risk Assessment Forum,Washington, DC, U SA.1992.
    [75]EPA(US Environmental Protection Agency). EPA Guidelines for ecological risk assessment. EPA /630/R 95/002F. Fed Reg 63(93):26846-924. May 14.1998.
    [76]Forman, R. T. T., and Godron, M. Landscape Ecology(M). New York:Academic Press.1986.
    [77]Froneman,A.,Mangnall, M.J.,Little, R.M.,Crowe,T.M.Waterbird assemblages and associated habitat characteristics of farm ponds in the West Cape,South Africa(J).Biodiversity and Conservation,2001,10:251-270.
    [78]George P. Malanson. Riparian landscapes(M). Cambridge University press.1993.
    [79]Gren I M, Groth K H, Sylven M. Economic Values of Danube Floodplains [J]. Journal of Environmental Management,1995,45:333-345.
    [80]Halis, A. J. Wetland Biodiversity and the Ramsar Convention:the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity(M). Ramsar Convention Bureau and Ministry of Environment and Forestry, India.1997.
    [81]Hey, R D. Environmentally Sensitive River Engineering. In Geoffrey Petts and Peter Calow(ed) River Restoration(M). Blackwell Science Ltd.1996.
    [82]Huss, W. R. and Honton, E. J. Scenario Planning, what style should you use?(J).Long Range Planning,1987.20.
    [83]Johnson R K, Munns W R, Tyler P L, Marajh-whittemore P, Finkelstein K, Munney K, Short F T, Melville A, Hahn S P. Weighing the evidence of ecological risk from chemical contamination in the estuarine environment adjacent to the Portsmouth naval shipyard, Kittery, Maine, USA(J). Environmental Toxicology and Chemistry,2002,21:182-94.
    [84]Kelly N M. Changes to the Landscape Pattern of Coastal North Carolina Wetlands Under the Clean Water Act,1984-1992[J]. Landscape Ecology,2001,16:3-16.
    [85]Kingsford, R. T. and Thomas, R. F. Use of satellite image analysis to track wetland loss on the Murrumbidgee River floodplain in arid Australia,1975-1998 [J]. Water Science and Technology. 2002,45(11):45-53.
    [86]Knaapen, J. P. and Scheffer, M. et al., Estimating habitat isolation in landscape planning(J). Landscape and Urban Planning,1992,23:1-16.
    [87]Kuzila, M. S., Rundquist, D. C. and Green, J. A. Methods for estimating wetland loss:the Rainbasin region of Nebraska,1927-1981[J]. Journal of Soil and Water Conservation,1991,46(6):441-446.
    [88]Landis W G, Regional Scale Ecological Risk Assessment:Using the Relative Risk Model(M).Boca Rat on:CRC Press,2005.
    [89]LIN Li, YOHEI S, HAIHONG Zhu. Simulating spatial urban expansion based on a physical [J]. Landscape and Urban Planning.2003(64):67-76.
    [90]MacArthur R H, MacArthur J W, Preer J. On bird species Diversity (II) Prediction of bird censuses from habitat measurements [J]. American Naturalist.1962,96:167-174.
    [91]Maing J K, Marsh S E. Assessment of Environmental Impacts of River Basin Development on the Riverine Forests of Eastern Kenya Using Multi-temporal Satellite Data[J]. Int J Remote Sensing, 2001,22(14):2701-2729.
    [92]McHarg, I. Design with nature(M). New York:Natural History Press.1969.
    [93]McHarg, I. Human ecological planning at Pennsylvania(J). Landscape planning,1981(8):109-120.
    [94]Miller D A, Hurst G A. Habitat use of eastern wild turkeys in central Mississippi [J]. Wild Management.l999,63(1):210-222.
    [95]Munyati C. Wetland Change Detection on the Kafue Flats, Zambia, by Classification of A Multitemporal Remote Sensing Image Dataset[J]. Int J Remote Sensing,2000,21(9):1787-1806.
    [96]Naiman, R J et al. Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum[J]. Ecology,1987(68):1139-1156.
    [97]Ndubisi, Forster, De Meo, Terry, Ditto, Nels D.Environmentally sensitive areas:a template for developing greenway corridors(J). Landscape and Urban Planning,1995,33:159-177.
    [98]Porter, M. Competitive advantage(M). New York:Free Press.1985.
    [99]Richard L. Schroeder, Western Energy and Land Use Team.Habitat Suitability Index Model Availability for Wetland Cover Types. Western Energy and Land Use Team, Division of Biological Services, Research and Development, Fish and Wildlife Service, U.S. Dept. of the Interior,1985.
    [100]Neubert L, S ant en L, Schadschneider A, et al, Single vehicle data of highway traffic:A statistical analysis[J]. Phys Rev,1999, (E60):6480-6490.
    [101]Peterjohn, W T, and Correll, D L. Nutrient dynamics in an agricultural watershed:observations on the role of a riparian forest[J]. Ecology,1984 (65):1466-1475.
    [102]Pattanayak S K. Valuing watershed services:concepts and empirics from Southeast Asia [J]. Agriculture Ecosystems& Environment,2004,104:171-184.
    [103]Petersen, C et al. stream management J]. Emerging global similarities,1987(6):166-179.
    [104]Ringland, G. Scenario planning:managing the future(M). John Wiley & Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto.1998.
    [105]Smith, D S, Hellmund, P C(eds). Ecology Qf Greenways(M). Minneapolis:University of Minnesota Press,1993.
    [106]Simth, Luijten J C. A systematic method for generating 1 and us e pattern s using tochastic rules and basic landscape characteristics:Result s for a Cololombian hillside Watershed [J]., Agriculture Ecosystems& Environment,1991,95:427-441.
    [107]Steinitz, C. A framework for theory and practice in landscape planning(J). GIS Europe 1993,07: 42-45.
    [108]Steinitz, C. A Framework for Theory Applicable to the Education of Landscape Architects (and Other Environmental Design Professionals(J). Landscape Journal,1990,10:136-143.
    [109]Steiner F., Blair J., Mcsherry L., Guhathakurta S., Marruffo J. and holm M. A watershed at a watershed:the potential for environmentally sensitive area protection in the upper San Pedro Drainage Basin(Mexico and USA)(J). Landscape and Urban Planning 2000,49:129-148.
    [110]Stern P C O R, Young, D. Druckman(ed), Global Environmental Change:Understanding the Human Dimension. National Research Council Report [R].Washington D.C.1992.
    [111]Su Liying. Comparative feeding ecology of the Red-Crowned and White-Naped Cranes(A). MA Thesis, University of Missouri[C], Columbia, Missouri.1993.
    [112]Turner MG, O'Neill RV, Gardner RH, et al.1989. Effects of changing spatial scale on the analysis of landscape pattern(J). Landscape Ecology,3(3):153-162
    [113]Tischendorf L. Can landscape indices predict ecological processes consistently?[J] Landscape Ecology,2001,16:235-254.
    [114]Tony Prato, Donald Hey. Economic analysis of wetland restoration along the Illinois river[J]. American Water Resources Association,2006,42(1):125-131.
    [115]Turner R. K.,J. Van den Bergn, T. Soderqvist, A.Barendregt, J, Van den Straaten, E. Maltby,EC. Van Ierland. Ecological-economic analysis of wetlands:Scientific integration for management and policy(J).Ecological Economics,2000,35:7-23.
    [116]Wolfram, S. Statistical Mechanics of Cellular Automata[J]. Reviews of Modern Physics,55 (3): 601-644 July 1983. Wolfram, S. Theory and Applications of Cellular Automata[J]. World Scientific, Singapore,1986.
    [117]Zonneveld, I.S. Land Evaluation and Landscape Science(M).Enschede:ITC Press.1979.
    [118]Vink, A.P.A. Landscape Ecology and Landuse(M). NY:Longman.1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700