用户名: 密码: 验证码:
秸秆和土壤耕作氮磷动态效应研究及其流失风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是农业大国,农作物秸秆是自然界中数量极其丰富的资源,我国每年农作物秸秆产量达7亿吨之多,目前秸秆资源的利用中存在利用率和利用效率低的问题,造成了天然资源的巨大浪费与环境污染。同时,随着农业生产水平的提高,尤其近年来氮磷肥的过量使用,通过降雨径流及排水径流流失的化肥N、P已成为影响水体环境的一个重要农业面源污染源,造成水体的严重富营养化。
     本实验分别于2005-2006年在江苏南通和南京进行,采用大田实验研究了秸秆和土壤耕作对直播稻田土壤理化性质和产量的影响,采用盆栽模拟实验研究秸秆和土壤耕作稻田土壤和水层氮磷动态效应,为实现作物可持续高产、高效、安全提供科学依据;为实现农业的可持续发展和农村生态环境保护提供理论参考。
     主要结论如下:
     1、秸秆和土壤耕作下土壤理化性质和产量研究
     秸秆还田显著降低土壤容重、增大土壤总孔隙度、非毛管孔隙度,对毛管孔隙度的影响相对较小,连续两年秸秆还田土壤容重降低了2.27-4.45%,土壤总孔隙度和非毛管孔隙度分别增加了1.39-6.49%、22.77-54.76%;秸秆还田显著增加土壤有机质含量、全氮含量和速效磷含量,连续两年秸秆还田分别提高了11.52-17.47%、2.83-7.21%和12.9-31.60%,同时促进土壤速效钾含量的增加;秸秆还田对水稻有效穗数的增加、结实率和千粒重的提高具有促进作用,有利于增加产量,但不利于穗粒数的增加,差异性不显著。
     土壤耕作方式显著影响土壤物理性质的垂直差异性,土壤耕作深度越深,影响越显著,同时显著影响化学性质的垂直分布,免耕使土壤营养表层富集,深翻耕促使不同土层之间的平均化,连续两年深翻耕、连续两年浅翻耕和连续两年旋耕处理可以提高有效穗数、结实率和千粒重,对产量具有促进作用,连续两年免耕处理有利于穗粒数的提高。
     第一年深翻耕第二年免耕处理(DN和DNs)显著增加土壤毛管孔隙度,深翻耕对容重、总孔隙度和非毛管孔隙度的影响至少保持两年,同时削弱了深翻耕对土壤化学性质的影响,但深翻耕的影响仍较为显著,对产量的影响居于连续两年免耕和连续两年深翻耕之间。
     2、秸秆和土壤耕作土壤氮磷动态效应研究
     秸秆显著增加土壤全氮含量,同时增强土壤对氮素的吸收和固定;有秸秆处理中,土壤耕作方式主要通过影响秸秆的垂直分布,对土壤全氮含量动态具有明显的影响,无秸秆处理中,土壤耕作方式主要通过影响基肥的垂直分布对不同土层的全氮含量产生影响;基肥氮素主要被主要分布层土壤吸收固定,分蘖肥氮素43.08-69.06%被0-7cm土层吸收固定;施用分蘖肥后,0-21cm土壤全氮含量第2天达到最大值,第7天土壤全氮含量低于施肥前水平。
     施用分蘖肥之前,有秸秆处理具有较低的土壤速效磷含量,秸秆显著增强追肥后土壤对磷的吸收,秸秆分布在0-7cm土层最为明显;施用追肥后,有秸秆处理土壤速效磷含量增加量明显大于无秸秆处理,但有秸秆处理土壤速效磷含量下降较快,追肥15天以后有秸秆处理又具有较低的土壤速效磷含量;基肥磷主要被主要分布层土壤吸收,土壤耕作方式通过影响基肥的施用深度,显著影响速效磷的垂直分布;追肥磷60.56-69.38%被0-7cm土层吸收固定,施用追肥对0-7cm土层土壤速效磷含量的影响最为显著;施用追肥后,土壤速效磷含量大部分处理和土层第2天达到最大值。
     3、秸秆和土壤耕作水层氮磷动态效应及其流失几率评价
     施肥后0-7天是N、P流失的关键时期,秸秆可以显著降低施肥初期稻田全氮、全磷、氨态氮和硝态氮含量,基肥、分蘖肥和穗肥施用后1-7天,有秸秆各处理水层全氮含量比无秸秆各处理平均降低37.48%、28.17%和23.39%;施用基肥和分蘖肥后1-7天,有秸秆各处理水层全磷含量比无秸秆各处理平均降低106.10%和194.50%;施用分蘖肥后7天内有秸秆处理免耕、旋耕、浅翻耕和深翻耕稻田水氨态氮含量分别比无秸秆处理低8.74%、27.55%、15.10%和19.98%,硝态氮含量分别降低56.04%、42.59%、44.66%和30.43%。土壤耕作方式对稻田水层全氮和全磷含量产生较为明显的影响,基肥后耕作深度对水层全氮、全磷含量的影响占主导因素,水层全氮、全磷含量与耕作深度呈负相关;追肥后秸秆的分布对水层全氮、全磷含量的影响占主导因素,秸秆掩埋的越深对水层全氮全磷含量的影响越小。施肥后7天内水层全氮含量的可用一级反应方程(y=C_0×e~(-kt))进行拟合表征,水层全磷含量符合乘幂方程(y=C_0×t~(-k)),拟合结果均达到极显著水平,在此基础上构建出施肥7天N、P流失几率评价模型,氮流失量(kg·ha~(-1))=∑(C0×e~(-kt))×AR×10~(-2) t∈[1,7],磷流失量(kg·ha~(-1))=∑(C0×t~(-k))×AR×10~(-2) t∈[1,7];N、P流失对环境的影响系数分别采用0.17和0.83,对不同处理进行评价,可以得出从N、P流失对环境的影响角度,有秸秆处理N、P流失对环境污染的影响比无秸秆处理减少42.25%(Ns)、41.82%(Rs)、43.12%(Ls)、38.31%(Ds);浅翻耕+秸秆处理对环境N、P污染的影响最小,是较为理想的处理组合。
Straw is the extreme resource in nature. As a big agricultural country, ourcountry's straw output amount to 700 million ton. At present there was low useefficiency in straw resource and that caused huge waste and environment pollution. Atthe same time along with the improvement of the agriculture, especially the excessiveuse of nitrogen and phosphorus fertilizer, the nitrogen and phosphorus in fertilizerthrough the rainfall and drainage to water, which could cause water bodyeutrophication had become an important rural plane source pollution.
     This experiment, which was conducted in Nanjing and Nantong from 2005 to2006, by adopting field experiment, did research on the paddy soil physico-chemicalproperties and the yield under straws and tillage, and, by adopting potted simulatingexperiment, did research on the influence of straws and tillage on nitrogen andphosphorus dynamic. The purposes of this research were to supply the scientific basisfor the sustainable development of the crops high yield, high efficiency and safety andprovide the theoretical references to the protection of the rural ecologicalenvironment.
     The results were as follows:
     1 The study of straw returning and soil tillage on soil physieochemieal propertiesand yield
     Straw returning significantly decreased the bulk density and increased the totalporosity and non capillary porosity, but had relatively effects on capillary porosity.After two years straw rettming soil bulk density reduced 2.27-4.45%, total porosityand non capillary porosity increased 1.39-6.49% and 22.77-54.76% respectively. Inthe meanwhile, straw retuning also significantly increased the soil organic matter,total nitrogen content and available phosphorus content, which increased11.52-17.47%, 2.83-7.21% and 12.9-31.6% after two years straw retuning. Theavailable potassium was increased too. The straw retuning increased the yield, number of available panicles, 1000-grain weight and the yield, however, it had a negative butinapparent effect on the increasing of the kernel number.
     Soil tillage significantly influenced the vertical diversity of soil physicalproperties. The deeper the soil tillage was, the more remarkable the effect was. At thesame time it impacted the vertical distribution of soil chemical properties. No-tillagecaused nutrient enrichment on the soil surface-layer, while deep plowing urgeddifferent layers approaching average level. DD, LL and RR may increase paniclenumber, seed setting rate and 1000-grain weight and promote the yield. NN was goodfor the increasing of panicle number.
     DS and DNs significantly enhanced soil capillary porosity. The deep plowinginfluenced bulk density, total porosity and non capillary porosity two years at least;meanwhile weakened its effect on soil chemical property. But its influence was stillsignificant and its effects to yield between NN and DD.
     2 The research on straw and soil tillage to the dynamic effect of soil nitrogen andphosphorus
     Straws markedly enhanced the content of soil total nitrogen, and assimilation andsequestration of soil to nitrogen at the same time. In the straws treatments, tillagemethods had an evident impact on soil total nitrogen dynamic content mainly by theway of affecting the vertical distribution of straws, while, in the non-strawstreatments, tillage methods influenced the total nitrogen content in different soil layersby affecting the vertical distribution of basal fertilizer. N of basal fertilizer mainly beabsorbed and fixed by major soil distribution, 43.08-69.06% of the nitrogen offilleting fertilizer was absorbed and fLxed by 0-7cm soil layer; after applying tilleringfertilizer, soil total nitrogen content in 0-21 cm soil layer achieved the maximum valueon the 2nd day, and on the 7th day it would be lower than the level before fertilizerapplication.
     Before applying filleting fertilizer, treatments with straws had a lower availablephosphorus content in the soil, and straws significantly enhanced the absorbing of soilto phosphorus after topdressing fertilizer, and this phenomena was most evident in0-7cm soil layer. After applying top-dressing fertilizer, in straws treatments, theincrease of soil available P content was evidently more than those without straws, butsoil available P content in straws treatments decreases more rapidly and 15 days aftertop-dressing fertilizer straws treatment soil would have a lower content of soil available P. P of basal fertilizer mainly be absorbed by major soil distribution layer.Tillage methods markedly affected vertical distributions of available P by affecting theapplying depth of basal fertilizer. 60.56-69.38% of the P of top-dressing fertilizer wasabsorbed and fixed by 0-7era soil layer. The top-dressing fertilizer had most evidentimpact on soil available P of 0-7cm soil layer. After applying top-dressing fertilizer,soil available P content of most treatments and soil layers would achieve maximumvalue on 2nd day.
     3 The dynamic effects and loss rate evaluation of nitrogen and phosphorus instraw and soil tillage water layer
     The results showed: 1-7 days after fertilization were the key periods of the lossof nitrogen and phosphorus. The straw returning could significantly decrease totalnitrogen (TN), total phosphorus (TP), ammoniacal nitrogen(NH_4~+-N) and nitratenitrogen(NO_3~--N) contents at initial fertilization periods. After 1-7 days of basicfertilizer, tiller fertilizer and panicle fertilizer, the aquatic TN content under strawtreatment reduced 37.48%、28.17% and 23.39% compared with the non-strawtreatment. After 1-7 days of basic fertilizer and tiller fertilizer, the aquatic TP contentunder straw treatment reduced 106.10% and 194.50% compared with the non-strawtreatment. In 7 days after applying tillering fertilizer, the no-tillage, rotary tillage, lowtillage and deep tillage of straws treatments, ammonium nitrogen content in the waterof paddy-field were respectively 8.74%, 27.55%, 15.10% and 19.98% less than thoseof non-straw treatment and the nitrate-nitrogen decreased 56.04%, 42.59%, 44.66%and 30.43% respectively. Tilling methods had obviously influence on the aquatic TNand TP content in paddy field. The tilling depth after the basic fertilizer was the mainfactor on the aquatic TN and TP and the aquatic TN and TP had negative correlationwith the tilling depth. The distribution of straw after topdressing fertilization had themain effect on the aquatic TN and TP. The deeper the straw buried, the less effects onthe aquatic TN and TP.
     The aquatic total nitrogen content within 7 days applying fertilizer could befigured by the fitting according with the one stage reaction equation (y=C0×e~(kt)), andthe aquatic total nitrogen content accorded with exponentiation (y=C0×t~(-k)), and theresults of fitting achieved a significant level. Based on that we set up the NP drainmodel within 7 days applying fertilizer, the nitrogen loss amount (kg·ha-1)=∑(C0×e~(kt))×AR×10~(-2) t∈[1, 7], the phosphorus loss amount (kg·ha-1)=∑(C0×t ~(-k))×AR×10~(-2) t∈[1,7]. The affect coefficient of the nitrogen and phosphorus loss toenvironment adopts respectively 0.17 and 0.83. By evaluating different treatments andfrom the point of nitrogen and phosphorus loss to environment pollution we can drawa conclusion that the effects of the N, P loss to environment pollution decreased42.25%(Ns), 41.82%(Rs), 43.12%(Ls), 38.31%(Ds) each in the straws treatments thannon-straw treatment. The shallow tillage+straw disposal had least influence toenvironment N, P pollution and it is a comparative ideal combination.
引文
[1] 张继泉,孙玉英,关凤梅,等.玉米秸秆稀硫酸预处理条件的初步研究[J].纤维素科学与技术,2002,10(2):32-36
    [2] 翁伟,杨继涛,赵青玲,等.我国秸秆资源化技术现状及其发展方向[J].中国资源综合利用,2004(7):18-21
    [3] 韩鲁佳,闰巧娟,刘向阳,等.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002,18(3):87-91
    [4] 宋硕.焚烧秸秆造成的危害及其综合利用技术[J].山东环境,1999,(5):1-52
    [5] 张金城,刘松.江苏省秸秆还田及秸秆综合利用的发展现状与思考[J].农业装备技术,2006,32(3):13-14
    [6] 杨捷.焚烧秸秆对土壤有机质和微生物的影响[J].农业与技术,2004,24(2):71-72
    [7] OECD. OECD Environmental Outlook to 2020. Paris: OECD 2001
    [8] Hallberg G R. From hoes to herbicides: Agriculture and groundwater quality [J]. Soil Water Cons, 1986,41 (6): 357-364
    [9] Croll B T, Haves C R. Nitrate and water supplies in the United Kingdom. Environ Poll, 1988,(50):163-187
    [10] Stevenaon F J. Cycles of Soil Carbon, Nitrogen, Phosphorous, Sulfur, Micronutrients[J]. NewYork: Willey and Sons, 1986, 106-154
    [11] Zhang W, Tian Z, Zhang N, et al. Nitrogen pollution of groundwater in Northern China agriculture. Ecosyst Environ, 1996,59:223-231
    [12] 金相灿,朱萱.我国主要湖泊和水库水体的营养特征及其变化[J].环境科学研究,1991,4(1):11-20
    [13] 崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报,2000,20(4):660-662
    [14] 吕耀.农业生态系统中氮素造成的非点源污染[J].农业环境保护,1998,17(1):35-39
    [15] 熊正琴,邢光熹,沈光裕,等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境,2002,18(2):29-33
    [16] Zhu Z L. Nitrogen Fertility of Chinese Soils and Agricultural Nitrogen Management. China Agriculture Press, 1998:160-211
    [17] Parry R. Agricultural phosphorus and water quality: A U.S. Environmental Protection Agency Perspective [J]. Environ. Qual., 1998,27:258-261
    [18] Van der Molen DT, Breeuwsma A, Boers PCM. Agricultural nutrient losses to surface water in the Netherlands: impact, strategies, and perspectives [J]. Environ. Qual.,1998,27:4-11
    [19] Sharpley AN, Daniel TC, Pore DH. Determining environmentally sound soil phosphorus levels [J]. Soil and Water Cons.,1996,51 (2):160-166
    [20] 刘怀旭.土壤肥料[M].合肥:安徽出版社,1987:202-230
    [21] 高超,张桃林.欧洲国家控制农业养分污染水环境的管理措施[J].农村生态环境,1999,15(2):50-53
    [22] 彭近新.水质富营养化与防治[J].北京:中国环境科学出版社,1988:191
    [23] 杨爱玲,朱颜明.地表水环境非点源污染研究[J].环境科学进展,1999,7(5):60-67
    [24] Van der Molen D T, Breeuwsma A, Boers PCM. Agficultural nutrient losses to surface water in theNetherlands: impact, strategies, and perspectives[J]. Environ. Qual., 1998,27:4-11
    [25] 余存祖.水土流失区农田物质循环与改善[J].中国水土保持,1987,58(5):13
    [26] 王少平,俞立中,许世远,程声通.苏州河非点源污染负荷研究[J].环境科学研究,2002,15(6):20-23,27
    [27] 张大弟,张晓红,章家骐,等.上海市郊区非点源污染综合调查评价[J].上海农业学报,1997,13(1):31-36
    [28] 徐谦.我国化肥和农药非点源污染状况综述[J].农村生态环境,1996,12(2):39-43
    [29] 张志剑,王珂,朱荫湄,等.浙北水稻主产区田间土—水磷素流失潜能[J].环境科学,2001,22(1):98-101
    [30] 张玉屏,朱德峰,林贤青,等.田间条件下水稻根系分布及其与土壤容重的关系[J].中国水稻科学,2003,17(2):141-144
    [31] 江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213
    [32] 李月华,郝月皎,李娟茹,等.秸秆直接还田对土壤养分及物理性状的影响[J].河北农业科学,2005,9(4):25-27
    [33] 吴婕,朱钟麟,郑家国,等.秸秆覆盖还田对土壤理化性质及作物产量的影响[J].西南农业学报,2006,19(2):192-195
    [34] 吴婕,朱钟麟,郑家国,等.秸秆覆盖还田对土壤理化性质及作物产量的影响[J].西南农业学报,2006,19(2):192-195
    [35] 吕军杰,姚宇卿,王育红,等.不同耕作方式对坡地土壤水分及水分生产效率的影响[J].土壤通报,2003,34(1):74-76
    [36] 严杰,邓良基,黄剑.保护性耕作对土壤理化性质和作物产量的影响[J].中国农机化,2:31-34
    [37] 武秀凤,武金书,陈正龙.稻麦双耕栽培对土壤的影响及对策[J].江苏农机与农艺,1998,5:7
    [38] 冯跃华,邹应斌,王淑红,等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究,2004,3:137-140
    [39] 庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44
    [40] 汪金平,何圆球,柯建国,等.厢沟免耕秸秆还田对作物及土壤的影响[J].华中农业大学学报,2006,25(2):123-127
    [41] 李金峰,许春林,初江,等.水稻节水保护性栽培的技术效果[J].中国水稻科学,2005,19(6):567-569
    [42] 何礼健,夏瑜,徐世宏,等.免耕对稻田物理、化学和生物学特性的影响[J].杂交水稻,2006,21(S1):140-142
    [43] 冯跃华,邹应斌,Roland Bush,等.免耕直播对一季晚稻田土壤特性和杂交水稻生长及产量形成的影响[J].作物学报,2006,32(11):1728-1731
    [44] 陈乐梅,马林.免耕覆盖对春小麦灌浆期干物质积累特性及最终产量的影响[J].干旱地区农业研究,2006,24(6):21-24
    [45] 彭文英.免耕措施对土壤水分及利用效率的影响[J].土壤通报,2007,38(2):379-383
    [46] 张艳红.免耕对土壤水分影响的研究[J].黑龙江农业科学,2007,(2):21-23
    [47] 刘世平,张洪程,戴其根,等.免耕套种与秸秆换田对农田生态环境及小麦生长的影响[J].应用生态学报,2005,16(2)393-396
    [48] 张锡洲,李廷轩,余海英,等.水旱轮作条件下长期自然免耕对土壤理化性质的影响[J].水土保持学报,2006,20(6):145-147
    [49] 辛平,黄高宝,张国盛,等.耕作方式对表层土壤饱和导水率及紧实度的影响[J].甘肃农业大学学报,2005,2:203-207
    [50] 胡实,彭娜,谢小立,等.农田秸秆覆盖保墒研究[J].中国农业气象,2007,28(1)49-53
    [51] 李玲玲,黄高宝,张仁陟,等.免耕秸秆覆盖对旱作农田土壤水分的影响[J].水土保持学报,2005,19(5):113-116
    [52] 牛伊宁,沈禹颍,高崇岳,等.覆盖和耕作对黄土高原冬小麦土壤入渗特性的影响[J].山地学报,2006,24(1):13-18
    [53] 付国占,李潮海,王俊忠,等.残茬覆盖与耕作方式对土壤性状及夏玉米水分利用效率的影响[J].农业工程学报,2005,21(1):52-56
    [54] 刘世平,聂新涛,张洪程,等.稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析[J].农业工程学报,2007,23(2):48-53
    [55] 吕雯,汪有科.不同秸秆还田模式冬麦田土壤水分特征比较[J].干旱地区农业研究,2006,24(3):68-71
    [56] 徐友萍.免耕覆盖播种的技术要素与效益分析[J].农机化研究,2005,(2):276
    [57] 姚宝林,施炯林,席琳乔.河西内陆河灌区覆盖免耕的农田水分效应[J].干旱地区农业研究,2001,25(1):98-101
    [58] 郑家国,姜心禄,朱钟麟,等.季节性干旱丘区的麦秸还田技术与水分利用效率研究[J].灌溉排水学报,2006,25(1)29-32
    [59] 王明权,李效栋,景明.覆盖免耕的节水效应与土壤温度的变化[J].甘肃农业大学学报,2007,1:119-122
    [60] 刘世平,张洪程,戴其根,等.免耕套种与秸秆换田对农田生态环境及小麦生长的影响[J].应用生态学报,2005,16(2)393-396
    [61] 张锡洲,李廷轩,余海英,等.水旱轮作条件下长期自然免耕对土壤理化性质的影响[J].水土保持学报,2006,20(6):145-147
    [62] 卢萍,单玉华,杨林华,等.秸秆还田对稻田土壤溶液中溶解性有机质的影响[J].土壤学报,2006,43(5):736-741
    [63] 罗珠珠,黄高宝,张国盛.保护性耕作对黄土高原旱地表土容重和水分入渗的影响[J].干旱地区农业研究,2005,23(4):7-11
    [64] 顾克礼,刘世平,郭勋斌,等.超高茬麦田套稻麦秸全量自然覆盖还田对土壤肥力和稻米品质的影响[J].江苏农业学报,2006,22(4):410-414
    [65] 孙海国.不同耕作方式对土壤有机质及氮磷钾含量的影响[J].河北农业科学,1996(3):20-22
    [66] 肖海涛,陈国德.平原高沙土区合理种植及耕作方式对土壤性状的影响[J].水土保持通报,2003,23(3):21-23
    [67] 张电学,韩志卿,刘微,等.不同促腐条件下秸秆直接还田对土壤养分时空动态变化的影响[J].土壤通报,2005,36(3):360-364
    [68] Staley T E. Soil microbial and organic component alteration in a no-tillage chrono sequence [J]. Soil Sci Soc Am J,1988,52(4):998-1005
    [69] Bales dent J. Effects of tillage on soil organic carbon mineralization estimated from ~(13)C abundance in maize fields [J]. Soil Sci,1990,4 1(4):587-598
    [70] 冯跃华,邹应斌,王淑红,等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究,2004,3:137-140
    [71] 高亚军,朱培立,王志明,等.稻麦轮作条件下长期不同土壤管理对磷、钾和pH的影响[J].土壤,2000,5:257-261
    [72] 曾希柏,关光复.稻田不同耕作制下有机质和氮磷钾的变化研究[J].生态学报,1999(1):90-95
    [73] 黄丽芬,庄恒扬,刘世平,等。长期少免耕对稻麦产量与土壤肥力的影响[J].扬州大学学报,1999,2(1):48-52
    [74] 庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44
    [75] 肖剑英,张磊,谢德体,等.长期免耕稻田的土壤微生物与肥力关系研究[J].西南农业大学学报,2002,24(2):82-85
    [76] Lodge. D. J. and Ingham. E. R. A comparison of agar film techniques for estimating fungal biovolumes in litter and soil [J]. Agric. Ecosystems Environ.,1991,34:131-144
    [77] 王昌全,魏成明.不同免耕方式对作物产量和土壤理化性状的影响.四川农业大学学报,2001,19(2):184-187
    [78] 邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报,2005,19(3):19-23
    [79] Dalai R C, Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. Loss of organic carbon from different density fractions August[J]. soil Res, 1986,24:133-138
    [80] 李琳,李素娟.保护性耕作下土壤碳库管理指数的研究[J].水土保持学报.2006,20(3):106-109
    [81] 梁爱珍,张晓平,杨学明,等.耕作方式对耕层黑土有机碳库储量的短期影响[J].中国农业科学,2006,39(6):1287-1293
    [82] 郑立臣,解宏图等.秸秆还田对水溶性有机碳的影响.辽宁工程技术大学学报[J].2006,(25) 增刊:330-332
    [83] 逢蕾,黄高宝.不同耕作措施对旱地土壤有机碳转化的影响[J].水土保持学报,2006,20(3):110-113
    [84] 吴华,张礼康,刘雪基.稻麦双免双套连作方法及其对耕地质量的影响[J].江苏农业科学,2007,(1):27-28
    [85] 朱普平,常志州等.麦草还田及耕作方式对稻田水氮、磷浓度和水稻产量的影响[J].江苏农业科学,2004,6:151-153
    [86] Steward B A, et al. Are agro ecosystems sustainable in semiarid regions [J]. Advances in Agronomy,1997,60:191-228.
    [87] 徐泰平,朱波,汪涛,等.秸秆还田对紫色土坡耕地养分流失的影响[J].水土保持学报,2006,20(1):30-32
    [88] 李全起,陈雨海,于舜章,等.覆盖与灌溉条件下农田耕层土壤养分含量的动态变化[J].水土保持学报,2006,20(1):37-40
    [89] 李友军,黄明,吴金枝,等.不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响[J].水土保持学报,2006,20(2):42-45
    [90] 胡立峰,胡春胜,安忠民,等.不同土壤耕作方法对作物产量及土壤硝态氮淋失的影响[J].水土保持学报,2005,19(6):186-189
    [91] 秦辉,吕永波,王明国,等.免耕对土壤侵蚀及土壤养分影响的研究[J].水土保持应用技 术,2006,2:20-21
    [92] 温美丽,刘宝元,叶芝菡,等.免耕与土壤侵蚀研究进展[J].中国生态农业学报,2006,14(3):1-3
    [93] 宴维金,尹澄清,孙濮,等.氮磷在水田湿地中的迁移转化及径流流失过程[J].应用生态学报,1999,10(3):312-316
    [94] 梁文伟,罗培敏,沈莹,等.稻草还田免耕抛秧栽培试验初报[J].杂交水稻,2006,21(S1):93-95
    [95] 黄锦发,俞慧明,陆建贤,等.稻田免耕直播对土壤肥力性状与水稻生长的影响[J].浙江农业科学,1997,5:226-228
    [96] 顾志权.水稻免耕套播生态技术与应用效果[J].土壤肥料,2004,1:31-33
    [97] 李如平,唐茂艳,杨为芳,等.稻草还田免耕抛秧稻的立苗与根系生长及对产量的影响.杂交水稻,2006,21(S1):96-99
    [98] 徐世宏,郎宁,李如平,等.稻草隔层免耕抛秧新技术研究[J].杂交水稻.2006,21(S1):127-129
    [99] 郎宁,黄世乃,许立明,等.水稻免耕抛秧技术试验研究[J]总结.杂交水稻,2006,21(S1):16-19
    [100] 汪立赓,徐世宏,李如平,等.稻田耕作方式对抛秧稻分蘖特性的影响[J].杂交水稻,2006,21(S1):23-2
    [101] 徐世宏,李如平,郎宁,等.水稻不同耕作栽培方式比较研究.杂交水稻,2006,21(S1):130-133
    [102] 孙广建,邓旭先,刘素爱,等.免耕对小麦产量的影响[J].河南农业科学,2006,7:37-39
    [103] 吴登,黄世乃,李明灌,等.稻草还田免耕抛秧的增产效果及节水效应[J].杂交水稻,2006,21(S1):109-112
    [104] 王育红,姚宇卿等.豫西坡耕地不同耕作方式麦田水分动态及其生态效益。西北农业学报,2001,10(4):55-57
    [105] 刘世平,聂新平,戴其根,等.免耕套种与秸秆还田对水稻生长和稻米品质的影响[J].中国水稻科学,2007,21(1):71-76
    [106] 韩宾,李增嘉,王芸,等.土壤耕作及秸秆还田对冬小麦生长状况及产量的影响[J].农业工程学报,2007,23(2):48-53
    [107] 徐世宏,江立庚等.免耕抛栽水稻的根系生长立苗特性[J].杂交水稻,2006,21(S1):26-28
    [108] 陈耀福,廖恒登等.稻草还田免耕抛秧技术研究[J].杂交水稻,2006,21(S1):90-92
    [109] 杨为芳,韦柏林,许立明,等.稻草还田免耕抛秧水稻的生长发育特点及经济效益分析[J].杂交水稻,2006,21(S1):87-89
    [110] 秦红灵,李春阳等.干旱区保护性耕作对土壤水分的影响研究[J].干旱区资源与环境, 2006,20(4)166-170
    [111] 刘秀梅,李琪,梁文举,等.潮棕壤免耕农田土壤酶活性的动态变换[J].应用生态学报,2006,17(12):2347-235
    [112] 李友军,吴金芝,黄明,等.不同耕作方式对小麦旗叶光合特性和水分利用效率的影响.农业工程学报,2006,22(12):44-48
    [113] 李如平,徐世宏,秦华东,等.免耕抛栽水稻若干生理特性研究[J].杂交水稻,2006,21(S1):20-22
    [114] 刘世平,聂新涛,张洪程,等.稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析[J].农业工程学报,2006,22(7):48-51
    [115] Gfiffith D R. Long-term tillage and rotation effects on corn growth and yield on high and low organic matte rand poorly drained mils[J]. A gron J,1985,80:599-605
    [116] Dick W A. Continuous application of no tillage to ohio soils[J]. Agron J, 1991,83:65-73
    [117] Lal R. Influence of 25 years of continuous corn production by three tillage methods on water infiltration for two soils in ohio[J]. Soil Tillage Res,1990,16:71-84
    [118] Hammel J E. Long-term tillage and crop rotation effects on winter wheat production in northern Ida no[J]. Agron, 1995 87: 16-22
    [119] Hammel J E. Long-term tillage and crop rotation effects on bulk density and soil impediment in northern ihaho[J]. Soil Sci Soc Am J,1989,53: 1515-1519
    [120] 张金城,刘松.江苏省秸秆还田及秸秆综合利用的发展现状与思考[J].农业装备技术,2006,32(3):13-14
    [1] 江永红.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,(5):209-213
    [2] 张国志,徐琪.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报,1998,35(3):384-390
    [3] 李华兴,卢维盛,刘远金,等.不同耕作方法对水稻生长和土壤生态的影响[J].应用生态学报,2001,12(4):553-556
    [4] 刘世平,张洪程,戴其根,等.免耕套种与秸秆还田对农田生态环境及小麦生长的影响[J].应用生态学报,2005,16(2):393-396
    [5] 曾木祥,张玉杰.秸秆还田对农田生态环境的影响[J].农业环境与发展,1997,(1):1-7
    [6] 冯跃华,邹应斌,王淑红,等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究,2004,(3):137-140
    [7] 张玉屏,朱德峰,林贤青,等.田间条件下水稻根系分布及其与土壤容重的关系[J].中国水稻科学,2003,17(2):141-144
    [8] 江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213
    [9] 李月华,郝月皎,李娟茹,等.秸秆直接还田对土壤养分及物理性状的影响[J].河北农业科学,2005,9(4):25-27
    [10] 吴婕,朱钟麟,郑家国,等.秸秆覆盖还田对土壤理化性质及作物产量的影响[J].西南农业学报,2006,19(2):192-195
    [11] 卢萍,单玉华,杨林华,等.秸秆还田对稻田土壤溶液中溶解性有机质的影响[J].土壤学报,2006,43(5):736-741
    [12] 罗珠珠,黄高宝,张国盛.保护性耕作对黄土高原旱地表土容重和水分入渗的影响[J].干旱地区农业研究,2005,23(4):7-11
    [13] 顾克礼,刘世平.超高茬麦田套稻麦秸全量自然覆盖还田对土壤肥力和稻米品质的影响[J].江苏农业学报,2006,22(4):410-414
    [14] 孙海国.不同耕作方式对土壤有机质及氮磷钾含量的影响[J].河北农业科学,1996(3): 20-22
    [15] 肖海涛,陈国德.平原高沙土区合理种植及耕作方式对土壤性状的影响[J].水土保持通报,2003,23(3):21-23
    [16] Staley T E. Soil microbial and organic component alteration in a no-tillage chrono sequence [J]. Soil Sci Soc Am J,1988, 52(4):998-1005
    [17] Bales dent J. Effects of tillage on soil organic carbon mineralization estimated from ~(13)C abundance in maize fields [J]. Soil Sci, 1990,41(4):587-598
    [18] 冯跃华,邹应斌,王淑红,等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究,2004,(3):137-140
    [19] 高亚军,朱培立,王志明,等.稻麦轮作条件下长期不同土壤管理对磷、钾和pH的影响[J].土壤,2000,5:257-261
    [20] 曾希柏,关光复.稻田不同耕作制下有机质和氮磷钾的变化研究[J].生态学报,1999(1):90-95
    [21] 肖剑英,张磊等.长期免耕稻田的土壤微生物与肥力关系研究[J].西南农业大学学报,2002,24(2):82-85
    [22] Lodge. D. J. and Ingham. E. R. A comparison of agar film techniques for estimating fungal biovolumes in litter and soil [J].Agric. Ecosystems Environ.,991,34:131-144
    [23] 王克如,李少昆,汤永禄,等.成都平原免耕及不同麦秸还田量种植水稻的研究[J].水土保持学报,2006,20(5):171-174
    [24] 李如平,唐茂艳,杨为芳,等.稻草还田免耕抛秧稻的立苗与根系生长及对产量的影响.杂交水稻,2006,21(S1):96-99
    [25] 徐世宏,郎宁,李如平,等.稻草隔层免耕抛秧新技术研究[J].杂交水稻.2006,21(S1):127-129
    [26] 梁文伟,罗培敏,沈莹,等.稻草还田免耕抛秧栽培试验初报[J].杂交水稻,2006,21(s1):93-95
    [27] 黄锦发,俞慧明,陆建贤,等.稻田免耕直播对土壤肥力性状与水稻生长的影响[J].浙江农业科学,1997,5:226-228
    [28] 顾志权.水稻免耕套播生态技术与应用效果[J].土壤肥料,2004,1:31-33
    [29] 郎宁,黄世乃,许立明,等.水稻免耕抛秧技术试验研究总结[J].杂交水稻,2006,21(S1):16-19
    [30] 汪立赓,徐世宏,李如平,等.稻田耕作方式对抛秧稻分蘖特性的影响[J].杂交水稻,2006,21(S1):23-2
    [31] 徐世宏,李如平,郎宁,等.水稻不同耕作栽培方式比较研究.杂交水稻,2006,21(S1):130-133
    [32] 孙广建,邓旭先,刘素爱,等.免耕对小麦产量的影响[J].河南农业科学,2006,7:37-39
    [33] 陈耀福,廖恒登等.稻草还田免耕抛秧技术研究[J].杂交水稻,2006,21(S1):90-92
    [34] 杨为芳,韦柏林,许立明,等.稻草还田免耕抛秧水稻的生长发育特点及经济效益分析[J].杂交水稻,2006,21(S1):87-89
    [35] 刘世平,聂新涛,张洪程,等.稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析[J].农业工程学报,2006,22(7):48-51
    [1] 江永红.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,(5):209-213
    [2] 张国志,徐琪.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报,1998,35(3):384-390
    [3] 李华兴,卢维盛,刘远金,等.不同耕作方法对水稻生长和土壤生态的影响[J].应用生态学报,2001,12(4):553-556
    [4] 刘世平,张洪程,戴其根,等.免耕套种与秸秆还田对农田生态环境及小麦生长的影响[J].应用生态学报,2005,16(2):393-396
    [5] 曾木祥.张玉杰.秸秆还田对农田生态环境的影响[J].农业环境与发展,1997,(1):1-7.
    [6] 冯跃华,邹应斌,王淑红,等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究,2004,(3):137-140
    [7] 连纲,王德建,林静慧等.太湖地区稻田土壤养分淋洗特征[J].应用生态学报,2003,14(11):1879-1883
    [8] 李伟波,吴留松,廖海秋,等.太湖地区高产稻田的氮肥施用与作物吸收利用研究[J].土壤学报,1997,34(1):61-73
    [9] 崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻氮肥利用率及氮肥淋洗量的研究[J].中国农业大学学报,1998,3(5):51-54
    [10] 张国粱,章申.农田氮素淋失研究进展[J].土壤,1998,(6):291-296
    [11] Gao X J, Hu X F, Wang S P, et al. Nitrogen losses from flooded rice field[J]. Pedosphere, 2002,12(2):151-156
    [12] 李方敏,樊小林,陈文东.控释肥对水稻产量和氮肥利用效率的影响[J].植物营养与肥料学报,2005,11(4):494-500
    [13] 田玉华,贺发云,尹斌,等.不同氮磷配合下稻田田面水的氮磷动态变化研究[J].土壤,2006,38(6):727-733
    [14] 周全来,赵牧秋,鲁彩艳,等.施磷对稻田土壤及田面水磷浓度影响的模拟[J].应用生态学报,2006,17(10):1845-1848
    [15] 邱卫国,唐浩,王超.水稻田面水氮素动态径流流失特性及控制技术研究[J].农业环境科学学报,2004,23(41:740-744
    [16] 纪雄辉,郑圣先,刘强,等.施用猪粪和化肥对稻田土壤表面水氮磷动态的影响[J].农业环境科学学报,2007,26(1):29-35
    [17] 纪雄辉,郑圣先,鲁艳红,等.施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律[J].中国农业科学,2006,39(12):2521-2530
    [18] 闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响[J].土壤学报,2005,42(3):440-446
    [19] 刘世平,陆建飞,单玉华,等.稻田轮耕土壤氮素矿化及土壤供氮量的研究[J].扬州大学学报(农业与生命科学版),2003,24(2):36-39
    [20] 张奇春,王光火,方斌.不同施肥处理对水稻养分吸收和稻田土壤微生物生态特性的影响[J].土壤学报,2005,42(1):116-121
    [21] 徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].生态学报,2002,39(1):89-96
    [22] 张英,褚秋华,邱多生,等.11年连续肥料处理对水稻土碳、氮及微生物量的影响[J].南京农业大学学报,2004,24(4):112-114
    [23] Doran J W. Soil microbial and biochemical changes associated with reduced tillage[J]. Soil Sci Soc Am J,1980,44: 765-771
    [24] Doran J W. Microbial changes associated with reduced management with reduced tillage[J]. Soil Sci Soc Am J,1980,44:518-524
    [25] 卜元卿,黄为一.稻秸对土壤细菌群落分子多态性的影响[J].土壤学报,2005,42(2):270-277
    [26] 陈芝兰,张涪平,蔡晓布,等.秸秆还田对西藏中部退化农田土壤微生物的影响[J].土壤学报,2005,42(4):696-699
    [27] 高云超,朱文珊,陈文新.秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究[J].生态学杂志,2001,20(2):30-36
    [28] Staley T E.耕作方式对土壤微生物生物量影响的研究[J].水土保持科技情报,2001,(1):12-13
    [29] 汪金平,何圆球,柯建国,等.南方双季稻秸秆厢沟腐熟还田免耕土壤生态效应研究[J].南京农业大学学报,2004,27(2):21-24
    [30] 何玉梅,张仁陟,张丽华,等.不同耕作措施对土壤真菌群落结构与生态特征的影响[J].生态学报,2007,27(1):113-119
    [31] 张丽华,黄高宝,张仁陟,等.免耕及覆盖对土壤纤维素分解强度和纤维素分解菌的影响[J].草原与草坪,2007,(1):5-13
    [32] 张丽莉,张玉兰,陈利军,等.稻.麦轮作系统土壤酶活性对开放式CO2浓度增高的响应[J].应用生态学报,2004,15(6):1019-1024
    [33] Ekenler M, Tabatabal MA. 2003. Tillage and residue management effects on β-glucosam in idase. Soil Biol B iochem,35: 871-874
    [34] 姜勇,梁文举,闻大中.免耕对土壤生物学特性的影响[J].土壤通报,2004,35(3):347-351
    [35] 张电学,韩志卿,刘微,等.不同促腐条件下秸秆直接还田对土壤酶活性动态变化的影响[J].土壤通报,2006,37(3):475-478
    [36] 李春霞,陈阜,王俊忠,等.秸秆还田与耕作方式对土壤酶活性动态变化的影响[J].河南 农业科学,2006,(11):68-70
    [37] 赵勇,李武,周志华,等.秸秆还田后土壤微生物群落就够变化的初步研究[J].农业环境科学学报,2005,24(6):1114-1118
    [38] 刘秀梅,李琪,梁文举,等.潮棕壤免耕农田土壤酶活性的动态变换[J].应用生态学报,2006,17(12):2347-2351
    [39] 高明,周保同,魏朝富,等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报,2004,15(7):1177-1181
    [1] 赵国梁,张申.农田氮素淋失研究进展[J].土壤,1998,(6):291-296
    [2] 赵其国.土壤与环境问题国际研究概况及其发展趋向—参加第16届国际土壤学会专题综述[J].土壤,1998,(6):281-310
    [3] Mosier AR. Environmental challenges associated with needed increases in global nitrogen fixation[J]. Nutient Cvelint, in Agro-cosvstem. 2002. 63:101-106
    [4] 邢光熹,施书莲,杜丽娟,等.苏州地区水体氮污染状况[J].土壤学报,2001,38(4):540-546
    [5] 司友斌,王慎强,陈怀满.农田氮磷的流失与水体富营养化[J].土壤,2000,4:188-193
    [6] 朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6
    [7] Chen L D, Fu BJ, Zhang S R, et al. A comparative study on nitrogen-concentration dynamics in surface water in a heterogeneous landscape[J]. Environmental Geology,2002,42:424-432
    [8] Smith K A, Jackson D R, Pepper T J. Nutrient Losses by Surface Run-off Following the Application of Organic Manures to Arable Land Nitrogen[J]. Environment Pollution, 2001,112:41-51
    [9] 梁新强,田光明,李华,等.天然降雨条件下水稻田氮磷径流流失特征研究[J].水土保持学报,2005,19(1):59-63
    [10] Ribaudo M O, Heimlich R, Claassen R, et al. Analysis least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin[J]. Ecological Economies,2001,37:183-197
    [11] 晏维金,尹澄清,孙濮,等.磷氮在水田湿地中的迁移转化及径流流失过程[J].应用生态学报,1999,10(3):312-316
    [12] 张维理,冀宏杰,Kolbe H,等.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制[J].中国农业科学,2004,37:1018-1025.
    [13] Cuttle SP, Hallard M, Daniel G. Nitrate leaching from sheep-grazed grass/clover and fertilized grass pastures[J]. J AgricSci,1989,119: 335-343
    [14] Jung J, Dressel J, Kuchenbuch R. Nitrogen balance of legume-wheat cropping sequences[J]. J Agron CropSci, 1992,162:1-9
    [15] Owens LB. Nitrate-nitrogen concentration in percolate from lysmeters planted to a legume-grass mixture[J]. J Environ Qual, 1990,19:131-155
    [16] 邱卫国,唐浩,王超.水稻田面水氮素动态径流流失特性及控制技术研究[J].农业环境科学学报,2004,23(4):740-744
    [17] 纪雄辉,郑圣先,刘强,等.施用猪粪和化肥对稻田土壤表面水氮磷动态的影响[J].农 业环境科学学报,2007,26(1):29-35
    [18] 纪雄辉,郑圣先,鲁艳红,等.施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律[J].中国农业科学,2006,39(12):2521-2530
    [19] 周全来,赵牧秋,鲁彩艳,等.施磷对稻田土壤及田面水磷浓度影响的模拟[J].应用生态学报,2006,17(10):1845-1848
    [20] 王强,杨京平,沈建国,等.稻田田面水中三氮浓度的动态变化特征研究[J].水土保持学报,2003,17(3):51-54
    [21] 汪华,杨京平,金洁,等.不同氮素用量对高肥力稻田水稻-土壤-水体氮素变化及环境影响分析[J].水土保持学报,2006,20(1):50-54
    [22] 连纲,王德建,林静慧,等.太湖地区稻田土壤养分淋洗特征[J].应用生态学2003,14(11):1879-1883
    [23] 闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响[J].土壤学报,2005,42(3):440-446
    [24] 朱普平,常志州,孙丽,等.麦草还田及耕作方式对稻田水氮、磷浓度和水稻产量的影响[J].江苏农业科学,2004,(6):151-153
    [25] 纪雄辉,郑圣先,刘强,等.施用猪粪和化肥对稻田土壤表面水氮磷动态的影响[J].农业环境科学学报,2007,26(1):29-35
    [1] Parry R. Agricultural phosphorus and water quality: A U. S. Environmental Protection Agency Perspective[J]. Environ. Qual.,1998,27:258-261
    [2] Van der Molen DT, Breeuwsma A, Boers PCM. Agricultural nutrient losses to surface water in the Netherlands: impact, strategies, and perspectives[J]. Environ. Qual.,1998,27:4-11
    [3] 单艳红,杨林章,王建国.土壤磷素流失的途径、环境影响及对策[J].土壤,2004,36(6):602-1508
    [4] Sharpley A N, Chapra S C, Wedepohl R, et al. Managing agricultural phosphorus for protection of surface waters:issues and options[J]. Environ. Qual., 1994,23:437-451
    [5] Lee G Fred. Role of phosphorus in eutrophication and diffuse source control. In: Water Research Pergamon Press[J]. Printed in Great Britain. 1973,7:111-128.
    [6] Iscmann K. Share of agriculture in nitrogen and phosphorus emissions into the surface waters of Western Europe against the background of their eutrophication[J]. Fert. Res.,1990,26: 253-269
    [7] Correll DL. The role of phosphorus in the eutrophication of receiving waters: a review[J]. Environ. Qual., 1998,27:261-266
    [8] 范成新.太湖水体生态环境历史演变[J].湖泊科学,1996,8(4):297-304
    [9] 裴洪平,王维维,何金土,周宏.杭州西湖引水后生态系统中磷循环模型[J].生态学报,1998,18(6):648-653
    [10] Charpenter S R, Cameo D L, Correll, et al. Non-point pollution of surface waters with phosphorus and nitrogen[J]. Ecology, 1998,8(3):559-568
    [11] 王珂,许红卫,王人潮,等.应用污染模型和地理信息系统评价和管理农业非点源污染[J].环境污染与防治,1997,(6):30-33
    [12] Sharpley A N, Chapra S C, Wedepohl R, et al. Managing agricultural phosphorus for protection of surface waters:issues and options[J]. Environ.Qual., 1994,23:437-451
    [13] Edwards A C, Withers P J A. Soil phosphorus management and water quality: a UK perspective[J]. Soil Use and Manage.,1998, 14:124-129
    [14] 韩晓增,王守宇,宋春雨,等.黑土区水田化肥氮去向的研究[J].应用生态学报,2003,14(11):1859-1862
    [15] Stevenaon F J, Cycles of Soil Carbon, Nitrogen, Phosphorous, Sulfur, Micronutfients[J]. NewYork:WilleyandSons, 1986:106-154.
    [16] 赵允格,邵明安,张兴昌.成垄压实施肥对氮素运移及氮肥利用率的影响[J].应用生态学报,2004,15(1):68-72
    [17] Packer P J, Leach S A. Origin and significance of nitrite in water. In: Hill Med. Nitrates and Nitrites in Food and Water[J]. Chichester: Ellis Horwood Press, 1991: 77-92
    [18] Van der Molen D T, Breeuwsma A, Boers P C M. Agricultural nutrient losses to surface water in the Netherlands: impact, strategies, and perspeetives[J].Environ. Qual., 1998, 27: 4-11
    [19] 隋红建,杨邦杰,张家炳.入渗条件下土壤中磷离子迁移的数值模拟[J].环境科学学报,1996,16(3):302-307
    [20] 王超.磷肥污染物在非饱和土壤种迁移特性研究[J].南京大学学报(自然科学版),1997,(33):253-255
    [21] 田玉华,贺发云,尹斌,等.朱兆良不同氮磷配合下稻田田面水的氮磷动态变化研究[J].土壤,2006,38(6):727-733
    [22] 纪雄辉,郑圣先,鲁艳红,等.施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律[J].中国农业科学,2006,39(12):2521-2530

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700