东北粳稻遗传多样性及穗部性状基因定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着分子标记技术的快速发展,传统育种技术与分子标记技术的有效结合
     己成为当前作物育种的重要方向。品种资源是育种家选育亲本的基础,其遗传多样性水
     平可为种质资源利用和杂交亲本选配提供理论依据,而穗部性状是育种家选育新品种的
     重要指标。良好的穗部形态直接决定着水稻的产量和品质。本研究从品种的选育地区和
     推广年代两个方面入手,系统分析了东北粳稻近40年来育成品种的遗传多样性,并基于
     籼粳杂交衍生系群体对水稻穗部性状进行遗传分析和基因定位研究,旨在为开展东北粳
     稻分子标记辅助选择育种(MAS)奠定基础。试验主要结果如下:1.东北粳稻遗传多样性水平较低。54个SSR多态性引物共检测到195个等位基因,
     平均每个位点的等位基因数为3.61。不同地区的粳稻品种的遗传多样性存在差异,其中
     吉林省粳稻品种多样性水平较高,而黑龙江省水稻品种较低;不同年代粳稻品种的遗传
     多样性分析表明,近年东北粳稻品种多样性水平略有提高。分子方差分析(AMOVA)结
     果证明,等位基因变异主要来自于群体内部,其中不同省份地区之间的种内变异为
     88.18%,而不同推广年代间的种内变异为96.86%。通过Neighbor-joining(NJ)聚类分
     析将东北粳稻品种划分为三个类群,分别对应于辽宁、吉林和黑龙江三个省份。群体结
     构分析表明,东北粳稻遗传结构存在明显的分化,且黑龙江省品种与辽宁省品种存在较
     大差异。2.部分产量相关功能基因在东北粳稻育种中得到利用。对8个产量相关的功能基因
     检测发现,东北粳稻中除了IPA1和GW2两个基因位点未存在等位基因变异外,其它6
     个产量相关的功能位点均存在等位基因变异,表明GS3,GS5,qSW5,Gn1a,qGW8以
     及DEP1这6个功能基因位点均部分的被固定到了现代粳稻品种中。3.东北地区近现代以来育成品种的籼型基因频率逐渐增加。对近年来育成的粳型超
     级稻品种遗传结构进行分析可知,参试15份粳型超级稻品种均含有一定的籼型血缘,且
     不同地区超级稻品种所含籼型基因频率(Fi)有所不同。对不同年代育成的参试材料的籼
     型基因频率(Fi)进行比较分析发现,以2005-2011年育成的超级稻品种籼型基因型频率
     最高,Fi为0.068;12份1977-1999年育成的栽培品种次之,Fi为0.033;9份1963-2000
     年育成的日本品种几乎不含有籼型血缘,Fi为0.011。4.检测到14个控制穗部性状的QTLs,包括2个穗长QTLs,1个穗重QTL,2个一次枝梗数QTLs,2个二次枝梗数QTLs,2个颖花数QTLs,3个结实率QTLs,1个千粒重QTL和1个着粒密度QTL,它们分布于第1,3,4,5,6,7,11和12号染色体上进一步分析发现,控制穗部性状的QTL多分布在第1号染色体上,数量占总数的40%以上。控制穗部性状的单个QTL的贡献率在8.06%-58.62%之间,其中有6个增效等位基因来源于七山占,8个来源于秋光。
     5.检测到27个控制粒形性状的QTLs,包括3个粒长QTLs,11个粒宽QTLs和13个粒厚QTLs,它们分布于第1,2,3,4,5,11和12号染色体上,可分别解释14.45-38.48%、28.98-52.36%和38.77-44.23%的表型变异。在2011年检测到7个QTLs,包括3个粒宽QTLs和4个粒厚QTLs;2012年检测到11个QTLs,包括2个粒长QTLs,5个粒宽QTLs和4个粒厚QTLs;2013年检测到9个QTLs,包括1个粒长QTL,3个粒宽QTLs和5个粒厚QTLs。检测到两个重演性较好的QTLs,分别为控制粒宽的qGW5a和控制粒厚的qGT12c,它们在三个年份中均稳定表达。控制粒形性状的单个QTL的贡献率在5.58-26.90%之间,其中有6个增效等位基因来源于七山占,14个来源于秋光。
     6.sp突变体是一个散穗型突变体材料,田间表现为穗部一次枝梗向外延伸,与穗轴夹角增大,穗向周围散开。与亲本相比,株高极显著增加,穗重极显著减少。遗传分析表明,该性状受一对显性核基因控制。利用sp与02428构建的F2群体进行定位研究,初步将sp基因定位在第4号染色体长臂端,位于E3和RM17578之间的62.9Kb区域内,跨越OSJNBb0022F16和OSJNBa0071I132个BAC克隆群。
     7.lax(t)俐突变体是一个散穗型突变体材料,与野生型相比,其一次枝梗正常,二次枝梗小穗发育受阻,小穗退化,只长有末端籽粒。利用极端个体分组与隐性基因组分析法(Bulked extremes and recessive class analysis, BERCA),将lax(t)基因初步定位在第4号染色体长臂RM16883和MM1466之间159.6kb区域。进一步通过扩大F2定位群体和筛选合成新的多态性引物,将lax(t)基因精细定位在MM1406和RM16890之间47.8kb区域。利用RAP-DB进行基因预测分析,发现该区域只有一个候选基因Os04g0396500,其编码一个参与调节水稻AM形成的蛋白因子。测序分析表明,lax(t)与日本晴存在三个位点上的碱基差异,推测lax(t)可能是lax2的一个新的等位基因。
With the development of molecular marker technology, the traditional breeding in combination with marker-assistant selection has become the mainstream of the crop breeding in recent years. Germplasm resource is the base of parents selection. Genetic diversity of the germplasm resources provides us with the theoretical reference to the utilization of the germplasm,
     The panicle traits decides the yield and quality of rice directly which is regarded as an important factor in new variety selection for breeders. In this study, the genetic diversity of japonica rice cultivars released from1970's to now and the fine mapped gene controlling the panicle traits in the northeast of China were analyzed which will benefit the breeding community in japonica rice.The major results are as follows:
     1.There is a lower genetic diversity level of'the japonica rice cultivars in northern China and the cultivars genetic diversity are different among release years and geographic locations. A total of195alleles (Na) are detected with an average of3.61alleles per locus. Further analysis showed that the genetic diversity of the cultivars from Jilin province is the highest among the three geographic distribution zones while the Heilongjiang is lower. According to the genetic diversity among different release years, it is showed that the cultivars genetic diversity increased slightly these years. The Analysis of molecular variance (AMOVA) reveals that genetic differentiations are more diverse within the population than that among the populations and the intraspecific variation in different location and release year are88.18%and96.86%, respectively. The Neighbor-joining (NJ) tree indicates that cultivar clusters based on geographic distribution represent three independent groups, with on behalf of Heilongjiang, Jilin and Liaoning province. The population structure of Heilongjiang cultivars is significantly different to the cultivars from Liaoning, a significant differentiation of population structure in japonica rice collection.
     2. Many of functional gene related yield were used in japonica rice breeding in northern China. Eight of functional gene tags were detected in japonica rice cultivars, which showed that most of functional gene tags had allelic variation in japonica rice cultivars except for IPA1and GW2. It implied that these6functional genes such as GS3, GS5, qSW5, Gnla, qGW8and DEP1are fixed into the modem japonica rice varieties.
     3. There is a gradually increasing of indica-allele frequencies in northern China. To analyze the genetic components of super japonica rice, we found that indica linage have already introgressed into the genomes of 15super-rice varieties at different level which represented by indica-type frequency (F,). The F, variation of super-rice varieties reflected registration periods difference, varieties bred in2005-2011are highest (F,=0.068), followed by1977-1999(F1=0.03) and rarely in1963-2000(0.011).
     4. A total of14QTLs which control panicle traits were detected, including2QTLs for PL,1QTL for PW,2QTLs for PBN,2QTLs for SBN,2QTLs for SNP,3QTLs for SSR,1QTL for GD and1QTL for TGW, which were identified on chromosomes1,3,4,5,6,7,11and12. Further analysis showed that the number of QTLs which detected on chromosome1accounted for more than40%of the totals. It is implied that the expression of gene on chromosome1plays an important role in rice panicle traits. Furthermore, the contribution of single QTL in this study was between8.06%-58.62%, and there were8efficiency alleles from the typical japonica rice'Akihilari'and6efficient alleles from indica rice'Qishanzhan'.
     5. From2011to2013, a total of27QTLs of grain shape traits were detected on chromosomes1,2,3,4,5,11and12, including3QTLs for grain length,11QTLs for grain width and13QTLs for grain thickness, which explained the phenotypic variation14.45-38.48%,28.98-52.36%and38.77-44.23%, respectively. Seven QTLs were detected in2011including3QTLs of grain width and4QTLs of grain thickness; Eleven QTLs were detected in2012including2QTLs of grain length,5QTLs of grain width and4QTLs of grain thickness; Nine QTLs were detected in2013including1QTL of grain length,3QTLs of grain width and5QTLs of grain thickness. The qGW5a and qGT12c were detected in three years, which implied that they were stable expression and stronger repeatability. Further analysis showed that the QTL controlling grain traits are mainly located on chromosome3and12, and accounted for more than44.44%of QTLs. The contribution of single QTL in this study was between5.58-26.90%. There were6efficient alleles from 'Qishanzhan'and14efficient alleles from 'Akihikari'.
     6. sp mutant is a spreading panicle mutant material with the panicle branch extending outward, the angle between primary branch and rachis increasing and the panicle growing around. Comparing with wild type parents, the plant height of sp significantly increased and the panicle weight has significantly decreased. The genetic analysis showed that the phenotype of sp was controlled by a single dominant nuclear gene. Primary mapping based on the F2derived line between sp and02428showed that the sp gene was located on the long arm of chromosome4, narrowed down to a62.9kb region between marker E3and RM17578and included two BAC such as OSJNBb0022F16and OSJNBa0071I13.
     7. A lax panicle natural mutant lax(i) was found from the recombinant inbred lines (RILs) which derived from a cross between 'Akihikari'(japonica) and 'Qishanzhan'(indica). From phenotype identification in the field, we find that the lax(i) mutant showed the second branch disappearance and lateral spikelet degradation. Genetic analysis showed that lax(t) phenotype was controlled by a single recessive nuclear gene. By map-based cloning based on BERCA, the target gene was located on a159.6kb region between marker RM16883and MM1466on the chromosome4. Fine mapping by expanding the mapping population and designing new markers, we finally narrowed down to a47.8kb region between markers MM1406and RM16890. Gene prediction shows that there was only one candidate gene Iax2in this region and it guide the AM formation. Sequence analysis revealed that there were three mutant locates between lax(t) and Nippobare, it is indicated that lax(t) is anew allelic genes of lax2possibly.
引文
1.鲍根良,郑涛,骆荣挺,左晓旭,王俊敏,俞法明,吴益芳.2007.粳稻伞穗型突变体的诱发与特性评价,核农学报,21(6):537-540.
    2.曹立勇,占小登,庄杰云,郑康乐,程式华.2003.水稻产量性状的QTL定位与上位性分析.中国农业科学,36(11):1241-1247.
    3.曹立勇.2002.水稻几个重要性状的QTL定位及抗白叶枯病基因分子标记辅助选择.浙江大学博士学位论文.
    4.陈红旗,陈宗祥,倪深,左示敏,潘学彪,朱旭东.2008.利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性.中国水稻科学.,22(1):23-27.
    5.陈萍萍,叶胜海,陆艳婷,金庆生,张小明.2013.晚粳稻浙粳22散穗突变体spr8的特征特性及其突变基因定位.核农学报,27(1):1-8.
    6.陈温福,徐正进,张龙步,张文忠,杨守仁.2002.水稻超高产育种研究进展与前景.中国工程科学,4(1):31-35.
    7.陈温福,徐正进.2007.水稻超高产育种理论与方法.北京:科学出版社:1-14.
    8.陈温福.2010.北方水稻生产技术问答.北京:中国农业出版社:1-2.
    9.刁林林,赵宏伟,王敬国,刘化龙,赵雪,孙健,邹德堂.2012.水稻重要农艺性状的QTL定位.东北农业大学学报,43(1):48-54.
    10.樊叶杨,庄杰云,吴建利,孙宝龙,郑康乐.2000.应用微卫星标记鉴别水稻籼粳亚种,中国农业科学,22(6):392-394.
    11.冯志簧.2012.水稻稀穗突变体的鉴定及分析.华中农业大学硕士学位论文.
    12.高虹,林晗,孙健,王嘉宇,马殿荣,唐亮,徐正进.2012.北方粳型超级稻中籼粳杂交优势贡献的分子基础.沈阳农业大学学报,43(4):394-400.
    13.郭桂珍,刘才哲,丛文春,周广春.2002.日本稻种资源在吉林省水稻常规育种上的利用.吉林农业科学,27(6):20-25.
    14.郭龙彪,罗利军,邢永忠,徐才国,梅捍卫,王一平,钟代彬,钱前,应存山,石春海.2003.水稻重要农艺性状的两年QTL剖析.中国水稻科学,17(3):211-218.
    15.国家水稻数据中心-水稻品种系谱查询.http://www.ricedata.cn/variety/,2013-01.
    16.韩龙植,魏兴华.2006.水稻种质资源描述规范和数据标准.北京:中国农业出版社:1-132.
    17.郝伟,张旭,徐正进,董思言,刘芳.2008.东北三省水稻遗传多样性和亲缘关系的SSR分析.河南农业科学,4:18-24.
    18.赫圣博,何玮,陈红旗,朱旭东,杨军,胡筱荷,罗达.2009.水稻突变体des2和des5的研究和定位.基因组学与应用生物学,28(1):1-9.
    19.华蕾,袁筱萍,余汉勇,王一平,徐群,汤圣祥,魏兴华.2007.我国水稻主栽品种SSR多样性的比较分析.中国水稻科学,21(2):150-154.
    20.纪现军,叶胜海,周涯,修芬连,邓晓梅,尚海漩,刘继云,陈萍萍,李小华,金庆生,张小明.2013.水稻矮秆突变体Zj88d的鉴定与基因定位.中国水稻科学,27(1):35-40.
    21.姜树坤,徐正进,陈温福.2008.水稻QTL图位克隆的特征分析.遗传,30(9):1121-1126.
    22.姜树坤,张喜娟,王嘉宇,刘进,张凤鸣,徐正进.2011.水稻粒形相关性状的QTL分析.沈阳农业大学学报,42(3):269-272.
    23.姜树坤.2010.水稻重要农艺性状遗传基础解析及株型QTL精细定位.沈阳:沈阳农业大学博士论文.
    24.江良荣,王伟,黄建勋,黄荣裕,郑景生,黄育民,王侯聪.2009.水稻粒形性状的上位性和QE互作效应分析.分子植物育种,7(4):690-698.
    25.蒋洪蔚,刘春燕,高运来,李灿东,张闻博,胡国华,陈庆山.2008.作物QTL定位常用作图群体.生物技术通报(增刊):12-17.
    26.黎毛毛,徐磊,任军芳,曹桂兰,余丽琴,贺浩华,韩龙植,高熙宗.2009.粳稻粒形性状的数量性状基因座检测.中国农业科学,42(7):2255-2261.
    27.李红宇,侯昱铭,陈英华,徐正进,陈温福,赵明辉,马殿荣,徐海,王嘉宇.2009.用SSR标记评估东北三省水稻推广品种的遗传多样性.中国水稻科学,23(4):383-390.
    28.李红宇,张龙海,刘梦红,司洋,王海泽,徐正进,赵明辉,徐海,王嘉宇.2011.东北地区水稻品种与日本引进品种遗传多样性比较.核农学报,25(6):1082-1087.
    29.李绍波,杨国华,章志宏,李绍清,李阳生,朱英国.2008.水稻产量要素相关性状QTL定位.武汉大学学报:理学版,54(6):713-718.
    30.李宁辉,程广燕.2010.东北三省粳稻产业现况及供需展望.农业生产展望,10:20-24.
    31.林鸿宣,闵绍楷,熊振民,钱惠荣,庄杰云,陆军,郑康乐,黄宁.1995.应用RFLP图谱定位分析籼稻粒形数量性状基因座位.中国农业科学,28(4):1-7.
    32.林世成,闵绍楷.1991.中国水稻品种及其系谱.上海:科学技术出版社:254-262.
    33.刘丹,孙健,马殿荣,王嘉宇,唐亮,苗微,陈温福.2012.利用SRAP分子标记分析47份杂草稻样品遗传多 样性.中国水稻科学,26(1):70-76.
    34.刘迪,李红宇,孙健,徐正进.2011.应用SSR分子标记评价不同年代东北三省粳稻基因组遗传构成.黑龙江农业科学,7:1-6.
    35.刘进,刘丹,任春元,张宇,王嘉宇.2012.水稻产量相关性状QTL分析.中国科技论文在线:1-6.
    36.刘化龙,王敬国,赵宏伟,邹德堂,陈温福,徐正进.黑龙江水稻骨干亲本及系谱分析.东北农业大学学报,42(4):18-21.
    37.刘海燕,崔金腾,高用明.2009遗传群体偏分离研究进展.植物遗传资源学报,10(4):613-617.
    38.刘胜,魏祥进,邵高能,唐绍清,胡培松.2013.一个水稻“斑马叶”叶色突变体基因zebra leaf2(z12)的图位克隆.中国水稻科学,27(3):231-239.
    39.刘笑然.2011.2011年东北稻米市场形势分析及2012年展望.粮食形势,12:27-32.
    40.卢宝荣,蔡星星,金鑫.2009.籼稻和粳稻的高效分子鉴定方法及其在水稻育种和进化研究中的意义.自然科学进展,19(6):628-639.
    41.毛艇,徐海,郭艳华,朱春杰,陈凯,王嘉宇,徐正进.2009.利用SSR分子标记进行水稻籼粳分类体系的初步构建.华北农学报,24(1):119-124.
    42.穆平,张洪亮,姜德峰,刘立峰,李自超.2005.利用水、旱稻DH系定位产量性状的QTL及其环境互作分析.中国农业科学,38(9):1725-1733.
    43.潘文博.2009.东北地区水稻生产潜力及发展战略研究.沈阳农业大学博士学位论文.44-61.
    44.齐永文,张冬玲,张洪亮,王美兴,孙俊立,廖登群,魏兴华,裘宗恩,汤圣祥,曹永生,王象坤,李自超.2006.中国水稻选育品种遗传多样性及其近50年变化趋势.科学通报,51(6):693-699.
    45.任三娟,孙出,童川,赵霏,舒庆尧,沈圣泉.2013.水稻小穗退化突变体spd-hp73的遗传分析及基因定位.浙江大学学报(农业与生命科学版),39(3):267-273.
    46.邵国军,李玉福,秋福林.1995.辽宁省水稻育种研究与进展.辽宁农业科学,6:28-33.
    47.施立明,贾旭,胡志昂.1993.遗传多样性.见:陈灵芝主编.中国的生物多样性现状及其保护对策.北京:科学出版社:31-113.
    48.石春海,申宗坦.1995.早籼粒形的遗传和改良.中国水稻科学,9(1):27-32.
    49.孙健,王敬国,刘化龙,杨亮,赵雪,谢冬微,邹德堂.2011.黑龙江省主栽水稻品种的遗传多样性分析.作物杂志,1:63-67.
    50.孙岩松.1993.从寒地水稻育种实践看骨干亲本的作用.作物品种资源,(1):7-9.
    51.谭耀鹏,李兰芝,李平,王玲霞,胡中立.2005.利用DH群体定位水稻谷粒外观性状的QTL.分子植物育 种,3(3):314-322.
    52.万建民.2010.中国水稻遗传育种与品种系谱.北京:中国农业出版社:208-369.
    53.王大为,王伯伦,于洪兰,王伟.2010.辽粳371×辽粳326组合一次枝梗数性状遗传模型分析与QTL定位.沈阳农业大学学报,41(3):259-264.
    54.王嘉宇,徐正进,陈温福.2009.粳稻直立穗型的主基因+多基因混合遗传分析.湖北农业科学.48(1):4-8.
    55.王军,朱金燕,周勇,杨杰,范方军,李文奇,梁国华,仲维功.2013.基于染色体单片段代换系的水稻粒形QTL定位.作物学报,39(4):617-625.
    56.王簧.2003.水稻稀穗突变体的遗传分析及基因的精细定位.四川农业大学硕士学位论文.
    57.王贇,肖晗,钱前,李红昌,李仕贵,朱立煌.2003.水稻稀穗突变体的遗传分析及基因的精细定位.科学通报,48(15):1666-1670.
    58.王智权,刘喜,江玲,刘世家,陈亮明,尹长斌,翟虎渠,万建民.2011.控制水稻穗形相关性状的QTL定位.江苏农业学报,27(1):5-12.
    59.吴亚辉,陶星星,肖武名,郭涛,刘永柱,王慧,陈志强.2013.水稻穗部性状的QTL分析.作物学报,40(2):214-221.
    60.夏宝森,大场伸哉,菊池文雄,武田和羲.1994.水稻半矮生基因sd-1的遗传性状表现-Ⅳ.半矮生性与大粒性的结合.遗传学报,21(1):59-66.
    61.肖珂.2008.水稻穗部结构性状相关基因定位.上海:上海师范大学.
    62.邢永忠,谈移芳,徐才国,华金平,孙新立.2001.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因.植物学报,43(3):840-845.
    63.邢永忠,徐才国,华金平,谈移芳.2001.水稻穗部性状的QTL与环境互作分析.遗传学报,28(5):439-446.
    64.徐正进,陈温福,马殿荣,吕英娜,周淑清,刘丽霞.2004.稻谷粒形与稻米主要品质性状的关系.作物学报,30(9):894-900.
    65.徐正进,陈温福,张龙步,杨守仁.1995a.水稻直立穗性状评价与利用研究进展.沈阳农业大学学报,26(4):335-341.
    66.徐正进,陈温福,张龙步,张春利.1995b.水稻直立穗性状的遗传与其它性状的关系.沈阳农业大学学报,26(1):1-7.
    67.许凌,张亚东,朱镇,赵凌,赵庆勇,张巧凤,王才林.2008.不同年份水稻产量性状的QTL分析.中国水稻 科学,22(4):370-376.
    68.薛庆中,张能义,熊兆飞,李羽中,朱立煌.1998.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,24(6):581-582.
    69. 玄英实,姜文洙,刘宪虎,程正海,Koh HJ,元东林.2010.中国东北地区水稻主要栽培品种的遗传多样性分析.植物遗传资源学报,11(2):206-212.
    70.杨官品,Saghai Maroof MA,张启发,秦昌华,罗忠训.1998.水稻一多拷贝微卫星DNA多态性分析.遗传,20(2):27-30.
    71.杨联松,白一松,许传万,胡兴明,王伍梅.2001.水稻粒形与稻米品质间相关性研究进展.安徽农业科学,29(3):312-316.
    72.杨占烈,戴高兴,翟荣荣,林泽川,王会民,曹立勇,程式华.2013.多环境条件下超级杂交稻协优9308重组自交系群体粒形性状的QTL分析.中国水稻科学,27(5):482-490.
    73.杨占烈.2013.超级杂交稻协优9308重组自交系籽粒充实相关性状遗传分析与基因定位.杭州:中国农业科学院博士学位论文.
    74.叶少平,张启军,李杰勤,赵兵,李平.2005.用(培矮64S/Nipponbare)F2群体对水稻产量构成性状的QTL定位分析.作物学报,31(12):1620-1627.
    75.张德水,陈受宜,惠东威,庄炳昌.1997.栽培大豆与半野生大豆杂种F2群体中RFLP标记的偏分离及其形成原因的分析.遗传学报,24(4):362-367.
    76.张光宏,张国平,钱前,徐律平,曾大力,腾胜,包劲松.2004.不同环境条件下稻谷粒形数量性状的QTL分析.中国水稻科学,18(1):16-22.
    77.张立国.2012.水稻显性矮秆基因Epi-df的图位克隆、表观修饰特征分析及功能研究.南京农业大学博士学位论文.
    78.张立娜,曹桂兰,韩龙植.2012.利用SSR标记揭示中国粳稻地方品种遗传多样性.中国农业科学,45(3):405-413.
    79.张亚东,张颖慧,董少玲,陈涛,赵庆勇,朱镇,周丽慧,姚姝,赵凌,于新,王才林.2013.特大粒水稻材料粒型性状的QTL检测.中国水稻科学,27(2):122-128.
    80.赵芳明,张桂权,曾瑞珍,杨正林,凌英华,桑贤春,何光华.2011.基于单片段代换系的水稻粒型QTL加性及上位性效应分析.作物学报,37(3):469-476.
    81.赵芳明,张桂权,曾瑞珍,杨正林,凌英华,桑贤春,何光华.2012.利用单片段代换系研究水稻产量相关性状QTL加性及上位性效应.作物学报.38(11):2007-2014.
    82.赵向前,吴为人.2008.水稻ILP标记遗传图谱的构建遗传.遗传,30(2):225-230.
    83.郑雷英,朱旭东,钱前,赵忠,张建军,胡筱荷,林鸿宣,罗达.2003.水稻穗部突变体C1的形态和定位分析.科学通报,48(3):264-267.
    84.朱立宏,顾铭洪.1979.水稻落粒性的遗传.遗传,1(4):17-19.
    85.庄杰云,钱惠荣,陆军,林鸿宣,郑康乐.1996.籼稻品种遗传变异性初探.中国农业科学,29(2):17-22.
    86.周鹏,邓其明,涂诗航,郑家团,李平.2012.水稻穗部簇生突变体(Cl-dz)的遗传分析与初步定位.福建农业学报,27(5):481-484.
    87. Ashikari M, Matsuoka M.2006. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci,11(7):344-50.
    88. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M.2005.Cytokinin oxidase regulates rice grain production. Science.309 (5735):741-745.
    89. Bird A.200.DNA methylation patterns and epigenetic memory. Genes Dev,16:6-21.
    90. Bradbury LM, Fitzgerald TL, Henry RJ, Jin QS, Waters DL.2005.The gene for fragrance in rice. Plant Biotechnology Journal,3(3):363-370.
    91. Choudhary G, Ranjitkumar N, Surapaneni M, Deborah DA, Vipparla A, Anuradha G, Siddiq EA, Vemireddy LR.2013.Molecular Genetic Diversity of Major Indian Rice Cultivars over Decadal Periods. PLoS One.8:e66197. doi:10.1371/journal.pone.0066197.
    92. Christiansen MJ, Andersen SB, Ortiz R.2002.Diversity changes in an intensively bred wheat germplasm during the 20th century. Molecular Breeding,9:1-11.
    93. Clerc VL, Bazante F, Baril C, Guiard J, Zhang D.2005.Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet,110:294-302.
    94. Das B, Sengupta S, Parida SK, Roy B, Ghosh M, Prasad M, Ghose TK.2013.Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India. BMC Genet 14:71.doi:10.1186/1471-2156-14-71.
    95. Doyle JJ, Doyle JL.1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull,19:11-15.
    96. Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang H, Wan JM.2013. A Rice Virescent-Yellow Leaf Mutant Reveals New Insights into the Role and Assembly of Plastid Caseinolytic Protease in Higher Plants.Plant Physiology,162(4):1867-1880.
    97. Du QZ, Wang B, Wei ZZ, Zhang D, Li B.2012.Genetic diversity and population structure of Chinese White poplar (Populus tomentosa) revealed by SSR markers. J Hered,103:853-862.
    98. Duan YL, Diao ZJ, Liu HQ, Cai MS, Wang F, Lan T, Wu WR.2010.Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.). Plant Molecular Biology,74(6):605-615.
    99. Evanno G, Regnaut S, Goudet J.2005.Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Mol Ecol,14:2611-2620.
    100. Excoffier L, Laval G, Schneider S.2005.Arlequin (version 3.0):an integrated software package for population genetics data analysis. Evol Bioinform Online,1:47-50.
    101. Fan CC, Xing YZ, Mao HL, Lu T, Han B, Xu CG, Li XH, Zhang QF.2006. GS3 a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet,112:1164-1171.
    102. Ferriol M, Pico B, Nuez F.2003.Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet,107:271-282.
    103. Fu YB, Peterson GW, Scoles G, Rossnagel B, Schoen DJ, Richards KW.2003.Allelic diversity changes in 96 Canadian oat cultivars released from 1886 to 2001. Crop Sci,43:1989-1995.
    104. Gao LZ, Zhang CH, Chang LP, Jia JZ, Qiu ZE, Dong YS.2005.Microsatellite diversity within Oryza sativa with emphasis on indica-japonica divergence. Genet Res,85:1-14.
    105. Garris AJ, Tai TH, Coburn J, Kresovich T, McCouch S.2005.Genetic structure and diversity in Oryza sativa L.Genetics 169:1631-1638.
    106. Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD.1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res, 19(23):6553-6558.
    107. Glaubitz JC.2004.convert:A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Molecular Ecology Notes 4:309-310.
    108. Hackett CA.2002.Statistical methods for QTL mapping in cereals. Plant Mol Biol.48(5-6):585-99.
    109. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T.I998. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 148(1):479-94.
    110. He GM, Luo XJ, Tian F, Li KG, Zhu ZF, Su W, Qian XY, Fu YC, Wang XK, Sun CQ, Yang JS.2006.Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res,16:618-626.
    111. Heang D, Sassa H.2012.An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breed Sci.62(2):133-141.
    112. Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N.2000.Fine mapping and DNA marker assisted pyramiding of the three major genes for blast resistance in rice.Theor Appl Genet,100:1121-1128.
    113. Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M.2005.The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell,17(8):2243-2254.
    114. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS.1997.Pyramiding of bacterial blight resistance genes in rice:marker assisted selection using RFLP and PCR. Theor Appl Genet,95:313-320.
    115. Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD.2009.Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics,41(4):494-497.
    116. Ishii T, Numaguchi K, Miura K, Yoshida K., Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M.2013. OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet,45(4):462-465.
    117. Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E.2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics.45(6):707-711.
    118. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J.2005.Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol,46(l):79-86.
    119. Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY.2010.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.Nature Genetics,42(6):541-544.
    120. Jiang GH, Xu CG, Li XH, He YQ.2004. Characterization of the Genetic Basis for Yield and Its Component Traits of Rice Revealed by Doubled Haploid Population. Acta Genetica Sinica,31 (1):63-72.
    121. Kato T, Horibata A.2012.A novel frameshift mutant allele, fzp-10, affecting the panicle architecture of rice Euphytica,184(1):65-72.
    122. Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G2009.Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria.The Plant Journal,59(5):738-749.
    123. Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J. 2003.LAX and SPA:Major regulators of shoot branching in rice. PNAS.100(20):11765-11770.
    124. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J.2003. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development,130(16):3841-3850.
    125. Komatsu M, Maekawa M, Shimamoto K, Kyozuka J.2001.The LAX1 and FRIZZY PANICLE 2 Genes Determine the Inflorescence Architecture of Rice by Controlling Rachis-Branch and Spikelet Development. Developmental Biology,231(2):364-373.
    126. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y.1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet. 8(4):365-72.
    127. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA.1987. Mapmaker:An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1(2):174-181.
    128. Lee J, Park JJ, Kim SL, Yim J, An G.2007. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Molecular Biology,65(4):487-499.
    129. Lestari P, Lee G, Ham TH, Reflinur, Woo MO, Piao R, Jiang W, Chu SH, Lee J, Koh HJ.2011.Single nucleotide polymorphisms and haplotype diversity in rice sucrose synthase 3. J Hered,102:735-746.
    130. Li F, Liu WB, Tang JY, Chen JF, Tong HN, Hu B, Li CL, Fang J, Chen MS, Chu CC.2010.Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation.Cell Research, 20(7):838-849.
    131. Li M, Tang D, Wang KJ, Wu XR, Lu LL, Yu HX, Gu MH, Yan CJ, Cheng ZK.2011. Mutation in the F-box gene LARGER PABICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal,9(9):1-12.
    132. Li SB, Qian Q, Fu ZM, Zeng DL, Meng XB, Kyozuka J, Maekawa M, Zhu XD, Zhang J, Li JY, Wang YH.2009.Short paniclel encodes a putative PTR family transporter and determines rice panicle size. The Plant Journal,58(4):592-605.
    133. Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ, Li XH, Xiao JH, He YQ, Zhang QF.2011.Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics,43(12):1266-1269.
    134. Li J, Chu HW, Zhang YH, Mou T, Wu CY, Zhang QF, Xu J.2012.The Rice HGW Gene Encodes a Ubiquitin-Associated (UBA) Domain Protein That Regulates Heading Date and Grain Weight. PLoS ONE,7(3):e34231.
    135. Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY.2003.Control of tillering in rice. Nature,422(6932):618-621.
    136. Lin H, Wang RX, Qian Q, Yan MX, Meng XB, Fu ZM, Yan CY, Jiang B, Su Z, Li JY, Wang YH. 2009.DWARF27,an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth.The Plant Cell,21(5):1512-1525.
    137. Liu K, Muse SV.2005. PowerMarker:an integrated analysis environment for genetic marker analysis. Bioinformatics,21:2128-2129.
    138. Liu WZ, Wu C, Fu YP, Hu GC, Si HM, Zhu L, Luan W J, He ZQ, Sun ZX.2009.Identification and characterization of HTD2:a novel gene negatively regulating tiller bud outgrowth in rice.Planta,230(4): 649-658.
    139. Luo JJ,Hao W,Jin J, Gao JP, Lin HX.2008. Fine Mapping of Spr3, a Locus for Spreading Panicle from African Cultivated Rice (Oryza glaberrima Steud.).Molecular Plant,1(5):830-838.
    140. Mackill DJ, Bonman JM.1992.Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology,82:746-749.
    141. Mantegazza R, Biloni M, Grassi F, Basso B, Lu BR, Cai XX, Sala F, Spada A.2008.Temporal Trends of Variation in Italian Rice Germplasm over the Past Two Centuries Revealed by AFLP and SSR Markers. Crop Science,48:1832-1840.
    142. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L.2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res,9:199-207.
    143. McCouch SR, Cko YG, Yano M.1997. Report on QTL nomenclature. Rice Genet Newslett,14:11-13.
    144. Michelmore RW, Paran I, Kesseli RV.1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis:A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA,88:9828-9832.
    145. Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, KyozukaJ.2010.FINE CULM1 (FC1) Works Downstream of Strigolactones to Inhibit the Outgrowth of Axillary Buds in Rice.Plant and Cell Physiology,51(7):1127-1135.
    146. Oikawa T, Kyozuka J.2009.Two-Step Regulation of LAX PANICLE 1 Protein Accumulation in Axillary Meristem Formation in Rice. The Plant Cell,21 (4):1095-1108.
    147. Pritchard JK, Stephens M, Donnelly P.2000. Inference of population structure using multilocus genotype data. Genetics,155:945-959.
    148. Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han L, Ma W, Koh HJ.2011. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.).Theoretical and Applied Genetics,122(7):1439-1449.
    149. Ren DY, Li YF, Zhao FM, Sang XC, Shi JQ, Wang N, Guo S, Ling YH, Zhang CW, Yang ZL, He GH.2013. MULTI-FLORET SPIKELET1,which Encodes an AP2/ERF Protein, Determines Spikelet Meristem Fate and Sterile Lemma Identity in Rice. Plant Physiology,162(2):872-884.
    150. Rohlf F J.2000. Numerical taxonomy and multivariate analysis system v2.1 user guide. Applied biostatistics Inc:29-38.
    151. Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F.2005. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet,111:162-170.
    152. Sanchez AC, Brar DS, Huang N, Li Z, Khush GS.2000.Sequence tagged site markerassisted selection for three bacterial resistance genes in rice. Crop Science,40:192-191.
    153. Salvi S, Tuberosa R.2005. To clone or not to clone plant QTLs:present and future challenges. Trends Plant Sci,10(6):297-304.
    154. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M.2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet,40:1023-1028.
    155. SodaN, Kushwaha HR, Soni P, Singla-Pareek SL, Pareek A.1997. Report on QTL nomenclature. Rice Genet Newslett,14:11-13.
    156. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX.2007.A QTL for rice grain width and weight encodes a previously unknown RENG-type E3 ubiquitin ligase.Nature Genetics,39:623-630.
    157. Sun J, Liu D, Wang JY, Ma DR, Tang L, Gao H, Xu ZJ, Chen WE 2012. The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China. Theor Appl Genet 125:1149-1157.
    158. Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X, Yoshida H, Kyozuka J, Chen F, Sato Y.2011. LAX PANICLE2 of Rice Encodes a Novel Nuclear Protein and Regulates the Formation of Axillary Meristems. The Plant Cell,23(9):3276-3287.
    159. Tamura K, Dudley J, Nei M, Kumar S.2007. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution,24:1596-1599.
    160. Teng S, Qian Q, Zeng DL, Kunihiro Y, Huang DN, Zhu LH.2002. QTL analysis of rice peduncle vascular bundle system and panicle traits. Acta botanica Sinica,44(3):301-306.
    161. Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ.2006. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet,113:619-629.
    162. Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani K, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, Abe K, Miyao A, Hirochika H, Hattori T, Takeda S.2013. RICE SALT SENSITIVE3 Forms a Ternary Complex with JAZ and Class-C bHLH Factors and Regulates Jasmonate-lnduced Gene Expression and Root Cell Elongation.The Plant Cell,25(5):1709-1725.
    163. Wan XY, Weng JF, Zhai HQ, Wang JK, Lei CL, Liu XL, Guo T, Jiang L, Su N, Wan JM.2008. QTL analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics,179:2239-2252.
    164. Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD.2012. Control of grain size, shape and quality by OsSPL16 in rice.Nature Genetics,44(8): 950-954.
    165. Wang YH, Li JY.2005.The plant architecture of rice (Oryza sativa). Plant Molecular Biology,59:75-84.
    166. Wei XH, Yuan XP, Yu HY, Wang YP, Xu Q, Tang SX.2009.Temporal changes in SSR allelic diversity of major rice cultivars in China. Journal of Genetics and Genomics,36:363-370.
    167. Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP, Wang JL, Jiang L, Zhai HQ, Wan JM.2008. Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight. Cell Research,18(12):1199-1209.
    168. Wu XR, Tang D, Li M, Wan KJ, Cheng ZK.2013.Loose Plant Architecturel, an INDETERMINATE DOMAIN Protein Involved in Shoot Gravitropism, Regulates Plant Architecture in Rice.Plant Physiology,161(1):317-329.
    169. Xiao JH.1997.Identidication of heterosis-enhancing alleles from a rice wild relative,Oryza rufipogon. Plant and animal gonome V abstracts:147.
    170. Xie X, Song MH, Jin F, Ahn SN, Suh JP, Hwang HG, McCouch SR.2006. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet,113:885-894.
    171. Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF.2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,40(6):761-777.
    172. Yan CJ, Yan S, Yang YC, Zeng XH, Fang YW, Zeng SY, Tian CY, Sun YW, Tang SZ, Gu MH.2009. Development of gene-tagged markers for quantitative trait loci underlying rice yield component. Euphytica,169:215-226.
    173. Yan CJ, Zhou JH, Yan S, Chen F, Yeboah M, Tang SZ, Liang GH, Gu MH.2007. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.).Theor Appl Genet,115:1093-1100.
    174. Yeh F.1997.Population genetic analysis of codominant and dominant markers and quantitative traits. BelgJBot,129:157.
    175. Yoshimura S, Yoshimura A, Iwata N, McCouch SR, Abenes ML, Baraoidan MR, Mew TW, Nelson RJ.1995.Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed,1:375-387.
    176. Zhang P, Li JQ, Li XL, Liu XD, Zhao XJ, Lu YG. 2011. Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One.6:e27565.doi: 10.1371/journal.pone.0027565.
    177. Zhang QF, Saghai Maroof MA, Lu TY,Shen ZB.1992. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet,83:495-499.
    178. Zhang QF, Shen BZ, Dai XK, Mei MH, Saghai Maroof MA, Li ZB.1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genie male sterility in rice. Proc Natl Acad Sci U SA,91(18):8675-8679.
    179. Zhang YY, Su AL, Zhang LN, Cao GL, Han LZ.2011. Analysis of Genetic Structure for Indica Rice Landraces from Different Provinces in China. Acta agronomica sinica 37:2173-2178.
    180. Zhang ZY, Li JJ, Yao GX, Zhang HL, Dou HJ, Shi HL, Sun XM, Li ZC.2011. Fine mapping and cloning of the grain number per-panicle gene (Gnp4) on chromosome 4 in rice (Oryza sativa L.). Agricultural Sciences in China,10(2):1825-1833.
    181. Zhao WG, Chuang JW, Ma KH, Kim TS, Kim SM, Shin DL, Kim CH, Koo HM, Park YJ.2009. Analysis of genetic diversity and population structure of rice cultivars from Korea, China and Japan using SSR markers. Genes and genomics,31:283-292.
    182. Zhu KM, Tang D, Yan CJ, Chi ZC, Yu HX, Chen JM, Liang JS, Gu MH, Cheng ZK.2010. Erect panicle2 encodes a novel protein that regulates panicle erectness in Indica rice.Genetics,184(2):343-350.
    183. Zhu QH, Hoque MS, Dennis ES, Upadhyaya NM.2003. Ds tagging of Branched floretless 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L).BMC Plant Biology,3:6.
    184. Zhu ZF, Tan LB, Fu YC, Liu FX, Cai HW, Xie DX, Wu F, Wu JZ, Matsumoto T, Sun CQ.2013. Genetic control of inflorescence architecture during rice domestication. Nat Commun,4:2200.
    185. Zhou PH, Tan Y F, He YQ, Xu C G, Zhang Q.2003. Simultaneous improvement four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet, 106:326-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700