水稻感光基因dth2的精细定位及感温基因LTG1的图位克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻品种的抽穗期主要由其感光性、感温性和基本营养生长性决定。感光性、感温性和基本营养生长性组合的多样性,使得抽穗期呈现多种多样的变化;这使得抽穗期的遗传表现异常复杂,呈现典型的质量/数量性状(QTL)遗传特征。因此,发掘和鉴定新的水稻抽穗期基因/QTLs,开展抽穗期基因精细定位、克隆等方面的研究,深入探讨水稻抽穗期基因的网络调控对于阐明植物开花的分子机理与合适生育期水稻品种的选育具有重要的理论和实践意义。
     利用Asominori遗传背景携带IR24插入片段的染色体片段置换系,并进一步构建近等基因系,我们成功地鉴定了一个感光基因dth2和一个控制低温生长的感温基因LTGl。本文中,我们还对LTG1的功能进行了分析,发现它的C端发生单个氨基酸替换后,使得水稻变得对低温极其敏感,影响了水稻的生长发育进程,进而影响水稻产量。LTG1还可能是一个驯化相关基因。主要结果如下:
     1.水稻抽穗期QTL定位及感光基因dth2的分离、鉴定与精细定位。
     利用源于籼稻品种IR24和粳稻品种Asominori的重组自交系(RILs)群体,检测到3个抽穗期QTLs,dth2,dth6和dth8,分别位于第2,6和8染色体,LOD值分别为3.82,5.23和5.46,贡献率分别为14.64%,20.03%和27.35%。这三个QTL分别和前人报道的Hd7,Hd1以及Hd5等位,鉴于Hdl和Hd5均已被克隆而Hd7仅仅被初步定位于相距20cM以上的标记C1221与C1408之间,我们选择dth2进行更深入、细致的研究。为了精细定位QTL dth2,利用以Asominori为背景亲本,IR24为供体亲本的染色体片段置换系(CSSLs)群体,鉴定出晚抽穗的携带dth2插入片段的家系CSSL23.从CSSL23与Asominori杂交构建的次级F2群体中,再次检测到dth2(LOD值24.70,贡献率26.22%)。此外,还检测到另一个QTL dth3(LOD值13.12,贡献率14.91%),该QTL和前人报道的Hd8等位,并被限定在3.2cM以内。利用南京自然长日照环境、人工遮光短日环境以及海南冬季自然短日等多个环境处理发现,dth2和dth3都具有在长日照条件下延迟抽穗的功能并且这两个QTL是独立遗传的,这两个感光性质相同的QTL之间的联合作用显著延迟了CSSL23的抽穗期。进一步利用分子标记辅助选择的方法(MAS),构建了仅携带dth2的近等基因系-NIL(dth2)并利用NIL(dth2)×Asominori的次级F2、F2:3以及F3:4群体,最终将dth2限定在标记RM13910与ind8之间约56.8kb的区间范围内,共有13个候选基因。序列分析发现第8个编码Zn-finger蛋白且与Hdl同源的基因在两亲本之间存在序列差异,导致氨基酸序列改变,暗示着该基因可能是目的基因。这些结果为对dth2的进一步图位克隆奠定了基础。
     2. LTG1的图位克隆与功能分析
     在本研究中,我们在携带IR24插入片段的Asominori染色体片段置换系(共66个家系)中,发现一个对温度极其敏感的家系CSSL13。利用构建的次级分离群体,将该基因定位于标记RM3762和RM263之间,并命名为LTG1。随后利用初定位的结果,通过回交以及分子标记辅助选择的方法,构建了微目的片段的近等基因系NIL(ltg1),将该基因进一步定位于标记dcapsl和ind14之间约25.4-kb的区间范围内,和标记L264、dcaps2共分离。该区间内有4个假定的ORFs,从序列比较和转基因的结果判断:ORF3是目的基因,它编码一个Casein kinase I亚家族的蛋白。尽管LTG1无论在高温还是低温条件下,在两个亲本之间的酶活都无显著差异,但在低温条件下,来自IR24位点的Ug1表达量明显减少。亚细胞定位表明,LTG1主要定位在细胞核和细胞质,并且不随温度的改变而改变。RT-PCR、Real-time PCR以及GUS染色结果表明LTG1是一个组成性表达的基因。为了探明LTG1的作用途径,利用基因芯片以及Real-time PCR分析了LTG1的可能参与途径,结果表明LTG1可能参与ABA作用途径,并且位于光周期基因Hd3口以及RFT1的上游。最后我们分析了LTG1各种基因型的地理分布以及感温性变化,并且探讨了LTG1在北方种植时对产量的影响以及其在稳定水稻抽穗期方面的潜在育种价值。
Heading date (HD) is a key determinant for adaptation to different cultivation areas and cropping seasons in rice. Therefore, high-yielding potential combined with moderate heading date is a major target in rice breeding. Heading date is mainly affected by three factors, i.e. duration of the basic vegetative growth (BVG), photoperiod-sensitivity (PS) and temperature-sensitivity (TS). Diversification of heading date resulted from the complexity of the genetic mechanism of HD provides abundant resources for rice breeding in different habitats. However, it also synchronously enhances difficulty in breeding of rice cultivars with optimum growth duration. Therefore, identification, isolation as well as map-based cloning of novel genes/QTLs will be helpful for disclosing the molecular mechanism of flowering regulation pathway and provide guidance for breeding in rice.
     In this study, by using a set of chromosome segment substitution lines (CSSL), we successfully isolated a photoperiod sensitivity QTL dth2and a temperature sensitivity gene LTG1which controls low temperature growth. Then we mainly focused on LTG1and analyzed the function of LTG1.Our results suggested that LTG1is a domestication-related gene and the substitution of artificial selection in the Itgl region during domestication led to the transition from low temperature sensitive to insensitive. On the other hand, we found that LTG1controls yield when planted in a low temperature duration condition. Moreover, LTG1also plays a very important role in stabilizing rice HD, which is crucial for rice breeding. Taken together, the main founding are as follows:
     1. QTL analysis of heading date in rice and fine mapping of a photoperiod sensitivity allele, dth2, located on chromosome2
     In this study, the genetic basis of HD in rice was dissected into three quantitative trait loci (QTL, denoted dth2, dth6, and dth8) using71F7recombinant inbred lines derived from a single cross between Asominori (Japonica) and IR24(Indica). These three QTLs were located on chromosome2,6and8, respectively. The loci of these three QTLs overlap with previously reported heading date QTL Hd7, Hdl and Hd5, respectively. As Hdl and Hd5had been cloned and Hd7was only roughly mapped to about20cM region between markers C1221and C1408, we selected dth2for fine mapping. The genetic effect of dth2was first confirmed in the chromosome segment substitution line23(CSSL23) through its extremely late heading and transgressive phenotype. Then the QTL was remapped using the CSSL23/Asominori BC4F2population. The QTL dth3, corresponding to the previously reported hd8, was also detected in this population. The LOD score was13.12and the phenotypic variance explained was14.91%. Two nearly isogenic lines (NILs), NIL (dth2) and NIL (dth3), were developed from the BC4F2population using a marker-assisted selection strategy. Further analysis showed that dth2and dth3were independently involved in photoperiod sensitivity, resulting in the transgressive phenotype of CSSL23. Finally, based on the segregation of the HD phenotype and molecular marker genotype in NIL (dth2)/Asominori F2, F3, and F4populations, dth2was dissected into a single recessive gene located in a56.8-kb genomic region with13predicted open reading frames (ORFs). We speculated that ORF8was the candidate gene. This study provides a basis for map-based cloning of the dth2gene and guidance for controlling HD in rice breeding.
     2. Map-based cloning and functional analysis of the LTG1gene controlling low temperature growth in rice
     In this study, by using CSSLs, we found a line CSSL13which was more sensitive to low temperature condition than Asominori. Further, we mapped this gene (named as LTG1) between markers RM3762and RM263by using the secondary segregation population. Then we constructed the near isogenic line (NIL) which harbored a very narrow target segment. By using this NIL and the advanced segregation population, LTG1was delimited to a25.4kb region located between markers dcapsl and ind14and co-segregated with markers L264and dcaps2. According to the genome annotation by TIGR, this region has four putative ORFs. Based on the sequence polymorphism beween the two parents and expression information, we speculate the ORF1and ORF3were the most probable target genes. We then confirmed that ORF3was the authentic target gene by genetic transformation experiments. Subsequently, Blast analysis demonstrated that ORF3encodes a putative casein kinase I subfamily protein. In order to clarify the potential reason of the phenotype differences between the two parents, we measured and compared the kinase activity of the LTG1protein encoded by the two parents under different temperature conditions. Moreover, we also analyzed the expression differences under different temperature conditions. Our results suggested that proteins encoded by the LTG1and Itgl allele may target different substrates to produce the phenotype differences under low temperature condition. The decreased expression of Itgl in NIL (Itgl) under low temperature condition may further enhance the low temperature sensitivity of Itgl. In addition, the LTG1protein was localized in the nuclear and cytoplasm and this subcellular location pattern did not change with the variation of the temperature. On the other hand, RT-PCR, real-time PCR and GUS staining analysis indicated that LTG1was a constitutively expressed gene. By using the microarray and real-time PCR analysis, we found that LTG1may participate in the ABA regulation pathway and HD pathway. LTG1may locate upstream of the HD genes Hd3a and RFT1. Finally, we also analyzed the geographical distribution and the temperature sensitivity variation of rice cultivars with different haplotypes of the LTG1gene. The potential breeding value of LTG1with regard to controlling yield and stabilizing HD was discussed.
引文
Abe M, Fujiwara M, Kurotani K, Yokoi S, Shimamoto K. Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP). Plant Cell Physiol., 2008,49:420-432.
    Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science,2005,309:1052-1056.
    Ahn J H, Miller D, Winter V J, Banfield M J, Lee J H, Yoo S Y, Henz S R, Brady R L, Weigel D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J.,2006,25:605-614.
    Andaya V C, Mackill D J. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot,2003,54:2579-2585.
    Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005,309:741-745.
    Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarfl encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci USA,1999,96:10284-10289.
    Babat sikos C, Yup sanis T. Separation and purification of both CKI and CKII casein kinases in developing maize endosperm phosphorylation of native HMG-proteins. J. Plant Physiol.,2000,156:492-503.
    Ben-Nissan G, Cui W, Kim D J, Yang Y, Yoo B C and Lee J Y. Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules. Plant Physiology,2008,148:1897-1907.
    Cegielska A, Gietzen K F, Rivers A, Virshup D M. Autoinhibition of casein kinase I epsilon (CKI epsilon) is relieved by protein phosphatases and limited proteolysis. J.Biol.Chem, 1998,273(3):1357-1364.
    Chang T T, Li C C, Vergara B S. Component analysis of duration from seeding to heading in rice by the basic vegetative phase and photoperiod-sensitive phase. Euphytica,1969, 18:79-91.
    Chang T T. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rice. Euphytica,1976,25:435-441.
    Chardon F, Damerval C. Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol.,2005,61:579-590.
    Cheng CY, Motohashi R, Ohtsubo E. Polyphyletic origin of cultivated rice:based on the interspersion pattern of SINEs. Mol Biol Evol,2003,20:67-75.
    Cheng X F and Wang Z Y. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. The Plant Journal,2005,43:758-768.
    Colasanti J, Yuan Z, and Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell,1998,93:593-603.
    Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, and Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science,2007,316:1030-1033.
    Daniel X, Sugano S, Tobin E M. CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc.Natl.Acad.Sci., USA,2004,101: 3292-3297.
    Danilevskaya O N, Meng X, Hou Z L, Ananiev E V, Simmons C R. A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol., 2007,146:250-264.
    David K M, Armbruster U, Tama N, Putterill J. Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark. FEBS Lett,2006,580:1193-1197.
    Dellapporta S L, Wood J and Hicks J B. A plant DNA mini preparation:Version II. Plant Mol.Biol. 1983, Rep 1:19-21.
    Dhillon N, Hoekstra M F. Characterization of two protein kinases from Schizosaccharomyces pombe involved in the regulation of DNA repair. EMBO J., 1994,13 (12):2777-2788.
    Dobrowol ska G, Meggio F, Pinna L A. Characterization of multiple forms of maize seedling kinases reminiscent of animal casein kinases S (type 1) and TS (type 2). Biochim.Biophys.Acta,1987,931:188-195.
    Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form. The Plant Cell,1998,10:1075-1082.
    Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature,1997, 386:485-488.
    Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, et al. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes & Dev.,2004,18:926-936.
    Else M A, Tiekstra A E, Croker S J, Davies W J, Jackson M B. Stomatal Closure in Flooded Tomato Plants Involves Abscisic Acid and a Chemically Unidentified Anti-Transpirant in Xylem Sap. Plant Physiol,1996,112:239-247.
    Erdmann H, BOcher M and Wagner K G. Two protein kinases from nuclei of cultured tobacco cells with properties similar to the cyclic nucleotide-independent enzymes (NI and NII) from animal tissue. FEBS Lett.,1982,137:245-248.
    Fan C C, Xing Y Z, Mao H L, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet,2006,112(6):1164-1171.
    Fish K J,Cegielska A,Getman M E, Landes G M, Virshup D M. Isolation and characterization of human casein kinase I (CKI), a novel member of the CKI gene family. J.Biol.Chem,1995,270 (25):14875-14883.
    Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland, Putterill J. GIGANTEA:a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J,1999,18:4679-4688.
    Frary An, Nesbitt T C, Frary Am, Grandillo S, Knaap E V D et al. fw2.2:A quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88.
    Fridman E F, Carrari Y S, Liu A R, Fernie and Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science,2004,305:1786-1789.
    Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, and Yano M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. PNAS,2008,105(34):12623-12628.
    Furutani I, Sukegawa S, Kyozuka J. Genome-wide analysis of spatial and temporal gene expression in rice panicle development. Plant J.,2006,46:503-511.
    Garris A J, Tai T H, Coburn J, et al. Genetic structure and diversity in Oryza sativa L. Genetics,2005,169:1631-1638.
    Griffiths S, Dunford R P, Coupland G. Laurie D A. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol,2003,131:1855-1867.
    Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol,2004,135:677-684.
    Hayama R, Izawa T, Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol,2002,43:494-504.
    Hayama R., Yokoi S., Tamaki S., Yano M., and Shimamoto K., Adaptation of photoperiodic control pathways produces short-day flowering in rice, Nature,2003,422:719-722.
    He G M, Luo X J, Tian F K, Li G, Zhu Z F, et al. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res.2006,16:618-626.
    Hemming M N, Peacock W J, Dennis E S, Trevaskis B. Low temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol.,2008, 14:355-366.
    Hou X, Xie K, Yao J, Qi Z, and Xiong L. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. PNAS,2009,106(15): 6410-6415.
    Howell P M, Marshall D F and Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome,1996,39:348-358.
    Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, and Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev.,2009,23:1805-1817.
    Huq E, Tepperman J M, Quail P H. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc.Natl.Acad.Sci..USA,2000,97:9789-9794.
    Imaizumi T, Kay SA. Photoperiodic control of flowering:not only by coincidence. Trends Plant Sci.,2006,11:550-558.
    International Rice GenomE Sequencing Project. The map-based sequence of the rice genome. Nature,2005,436:793-800.
    International Rice Research Institute (IRRI). Rice production in Europe, Australia, USA, World,2002, http://www.riceweb.org/riceprodleurope.htm
    Ito Y, Katsura K, et al. Functional Analysis of Rice DREB1/CBF-type Transcription Factors Involved in Cold-responsive Gene Expression in Transgenic Rice. Plant and Cell Physiology,2006,47(1):141-153.
    Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev.,2002,16:2006-2020.
    Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). The Plant Journal,2000, 22:391-399.
    Izawa T, Takahashi Y and Yano M. Comparative biology comes into bloom:Genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol.,2003,6:113-120.
    Izawa T. Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot,2007,58:3091-3097.
    Jackson S D, Plant responses to photoperiod. New Phytologist,2008, doi:10.1111/j.1469-8137.2008.02681.x.
    Jaeger K E, Wigge P A. FT protein acts as a long-range signal in Arabidopsis. Curr Biol, 2007,17:1050-1054.
    Jefferson, R. Assaying chimeric genes in plants:The GUS gene fusion system. Plant Molecular Biology Reporter,1987,5:387-405.
    Jeon J S, Lee S, Jung K H, Yang W.S, Yi G H, Oh B G, An G H. Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol Breed.,2000,6:581-592.
    Ji S L, Jiang L, Wang Y H, Liu S J, Liu X, Zhai H Q, Atsushi Y, Wan J M. QTL and epistasis for low temperature germinability in rice. Acta Agron Sin.,2008, 34(4):551-556.
    Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D & Lin H X. Genetic control of rice plant architecture under domestication. Nature Genetics,2008, doi:10.1038/ng.247.
    Jung J H, Seo Y H, Seo P J, Reyes J L, Yun J, Chua N H, Park C M. The TEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell,2007,19:2736-2748.
    Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science,1999, 286:1962-1965.
    Kim K N, Lee J S, Han H, Choi S A, Go S J, Yoon I S. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol Biol,2003,52: 1191-1202.
    Kim S L, Lee S,Kim H J, Nam H G,An G. OsMADS51 is a short-day flowering promoter that functions upstream of Ehdl, OsMADS14, and Hd3a. Plant Physiol,2007, 145:1484-1494.
    Klimczak L J, Cashmore A R. Purification and characterization of casein kinase I from broccoli. Biochem J.,1993,293:283-288.
    Klimczak L J, Farina D, Lin C, Ponti D, Cashmore A R and Giuliano G. Multiple isoforms of arabidopsis casein kinase I combine conserved catalytic domains with variable carboxyl-terminal extensions. Plant Physiol.,1995,109:687-696.
    Kobayashi Y, and Weigel D. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes & Dev,2007,21:2371-2384.
    Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science,1999,286:1960-1962.
    Kojima S, Takahashi Y, Kobayashi Y. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowing downstream of Hdl under short-day conditions. Plant Cell Physiology,2002,43(10):1096-1105.
    Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development,2008,135:767-774.
    Komiya R, Yokoi S and Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development,2009,136,3443-3450.
    Konishi S, Izawa T, Lin S Y, et al. An SNP caused loss of seed shattering during rice domestication. Science,2006,312:1392-1396.
    Kubo T, Nakamura K, and Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet. Newsl,1999,16: 104-106.
    Kusuda J, Hirai M, Tanuma R, Hashimoto K. Cloning, expression analysis and chromosome mapping of human casein kinase I gamma 1, CSNK1G1:Identification of two types of cDNA encoding the kinase protein associated wit h heterologous carboxy-terminal sequences. Cytogenet Cell Genet.,2000,90(3-4):298-302.
    Kyozuka J, Kobayashi T, Morita M, Shimamoto K. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol.,2000,41:710-718.
    Lander E S, Green P, Abrahamson J, Barlow A, Daly, M J, et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181.
    Lee S, An G. Diversified mechanisms for regulating flowering time in a short-day plant rice. J. Plant Biol.,2007,50:241-248.
    Lee S, Kim J, Han J J, Han M J, An G Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVERE OF CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J,2004,38:754-764.
    Lee Y, Lloyd A M, Roux S J. Antisense expression of the CK2 alpha-subunit gene in Arabidopsis. Effects on light-regulated gene expression and plant growth. Plant Physiol,1999,119:989-1000.
    Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics,2007,175:361-374.
    Li L, Wang X F, Stolc V, et al. Genome wide transcripton analyses in rice using tilling microarray. Nature Genetics,2006,38:124-130.
    Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, et al. Control of tillering in rice. Nature, 2003,422:618-622.
    Lin H X, Ashikari M, Yamanouch U, et al.Identification and Characterization of a Quantitative Trait Locus, Hd9, Controlling Heading Date in Rice. Breeding Science, 2002,52:35-41.
    Lin H X, Chiba B, Isobe S, et al. Newly detected two QTLs, HdI2 and HdI3 controlling heading date in rice using advanced backcross progenies of Nipponbare and Kasalath. Breeding Science,1998b,48 (suppl):125.
    Lin H X, Liang Z W, Sasaki T, Yano M. Fine mapping and characterization of quantitative trait loci Hd-4 and Hd-5 controlling heading date in rice. Breeding Science,2003,53: 51-59.
    Lin H X, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interaction three QTLs, Hd-1, Hd-2 and Hd-3, controlling heading date of rice using nearly isogenic lines. Theor.Appl. Genet,2000,101:1021-1028.
    Lin S Y, Sasaki T, and Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L, using backcross inbred lines. Theor Appl Genet,1998a,96:997-1003.
    Lin, H X, Liang Z W, Sasaki T, Yano M. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breeding Sci.,2003,53: 51-59.
    Liu C, Chen H, Er H L, Soo H M, Kumar P P, Han J H, Liou Y C, Yu H. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development,2008, 135:1481-1491.
    Liu J P, Eck J V, Cong B, et al. A new class of regulatory genes underlying the cause of pear-shape tomato fruit. PNAS,2002,99(20):13302-13306.
    Liu W, Xu Z H, Luo D, Xue H W. OsCKIl, a rice casein kinase I, plays significant roles in auxin related root development and functions of plant hormones. Plant J.,2003,36: 189-202.
    Locke J C, Kozma-Bognar L, Gould P D, Feher B, Kevei E, Nagy F, Turner M S, Hall A, Millar A J. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol,2006,2:59.
    Maarten K, Carlos A B, Anton J M, et al. Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol,1998,49:345-370.
    Mackill D J, Lei X. Genetic variation for traits related to temperate adaptation of rice cultivars. Crop Sci,1997,37:1340-1346.
    Martin-Tryon E L, Kreps J A, Harmer S L. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol,2007,143:473-486.
    Mas P, Kim W Y, Somers D E, Kay S A. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature,2003,426:567-570.
    Matsubara K, Yamanouchi U, Wang Z X, Minobe Y, Izawa T, Yano M. Ehd2, a Rice Ortholog of the Maize INDETERMINATE1 Gene, Promotes Flowering by Up-Regulating Ehdl. Plant Physiology,2008, Vol.148,1425-1435.
    McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res,2002,9:199-207.
    Michaels S D, Himelblau E, Kim SY, Schomburg F M, Amasino R M. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol.,2005,137:149-156.
    Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell,2005, 17:2255-2270.
    Moncada P, Martinez C P, Borrero J, Chatel M H, Gauch J R, et al. Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl.Genet,2001,102:41-52.
    Monna L, Lin H X, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet,2002,104:772-778.
    Mouradov A, Cremer F, and Coupland G Control of flowering time:Interacting pathways as a basis for diversity. The Plant Cell,2002,14:S111-S130.
    Mukhopadhyay K. Purification and characterization of a protein kinase from winged bean. Phytochemistry,1997,46:461-467.
    Murakami A, Kimura K, Nakano A. The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec 12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum. J.Biol.Chem., 1999,274:3804-3810.
    Murray M G, Guilfoyle T J and Key J L. Chromatin-associated protein kinase from soybean. Isolation and characterization of a Plant Physiol.,1978a,61:1023-1030.
    Murray M G, Guilfoyle T J and Key J L. Isolation and preliminary characterization of a casein lcinase from cauliflower nuclei. Plant Physiol.1978b,62:434-437.
    Nayar N M. Origin and cytogenetics of rice. Adv Genet,1973,17:153-292.
    Panek H R, Stepp J D, Engle H M, Marks K M, Tan P K, Lemmon S K and Robinson L C. Suppressors of YCK-encoded yeast casein kinase 1 deficiency define the four subunits of a novel clathrin AP-like complex. EMBO J.,1997,16:4194-4204.
    Park D H, Somers D E, Kim Y S, Choy Y H, Lim H K, Soh M S, Kim H J, Kay S A, Nam H G Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science,1999,285:1579-1582.
    Park S J, Kim S G, Lee S Y, et al. Rice Indeterminate 1 (Osldl) is necessary for the expression of Ehd1(Early heading date 1) regardless of photoperiod. The Plant Journal,2008, doi:10.1111/j.1365-313X.2008.03667.x.
    Peters J M, Mcka Y R M, Mckay J P, Graff J M. Casein kinase I transduces Wnt signals. Nature,1999,401(6751):345-350.
    Putterill J, Laurie R, and Macknight R. It's time to flower:the genetic control of flowering time. BioEssays,2004,26:363-373.
    Putterill J, Robbson F, Lee K. et al. The CONSTANS gene Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factor. Cell, 1995,80:847-857.
    Ren Z H, Gao J P, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature genetics,39:1141-1146.
    Rubio V and Deng X W. PLANT SCIENCE:Standing on the Shoulders of GIGANTEA. Science,318 (5848):206-207.
    Rychlik W and Zagorski W. Purification and characterization of adenosine-3', 5'-phosphate-independent protein kinase from wheatgerm. EurJ.Biochem.1980,106: 653-659.
    Sanguinetti, C J, Dias N E, and Simpson, A J G Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques,1994,17:915-919.
    Sas Institute, SAS/STAT User's Guide; 1989,Vers.6, Vol.2, Ed.4. SAS Institute, Cary, NC.
    Sawa M, Nusinow D A, Kay S A, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science,2007,318:261-265.
    Schroeder J I, Kwak J M, Allen G J. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature,2001,410:327-330.
    Second G. Origin of the genetic diversity of cultivated rice:study of the polymorphism scored at 40 isozyme loci. Jpn J Genet,1982,57:25-57.
    Shin B S, Lee J H, Lee J H. Circadian regulation of rice(Oryza sativa L.) CONSTANS-like gene transcripts. Mol Cells,2004,17(l):10-16.
    Shitsukawa N, Ikari C, Shimada S, Kitagawa S, SakaMoto K, Saito H, Ryuto H, Fukunishi N, Abe T, Takumi S, Nasuda S, Murai K. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst.,2007,82:167-170.
    Shomura A, Izawa T, Ebana K. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genet,2008,40:1023-1028.
    Simpson G G, and Dean C. Arabidopsis, the Rosetta stone of flowering time? Science,2002, 296:285-289.
    Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics,2007,39(5): 623-630.
    Sothern R B, Tseng T S, Orcutt S L, Olszewski N E, Koukkari W L. GIGANTEA and SPINDLY genes linked to the clock pathway that controls circadian characteristics of transpiration in Arabidopsis. Chronobiol Int,2002,19:1005-1022.
    Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F and Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis thaliana. Nature,2001,410:1116-1120.
    Sugano S, Andronis C, Ong M S, Green R M, Tobin E M. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc. Natl. Acad. Sci. USA,1999,96:12362-12366.
    Suh J P, Jeung J U, Lee J I, Choi Y H, Yea J D, Virk P S, Mackill D J, Jena K K. Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.) Theor Appl Genet,2009, DOI 10.1007/s00122-009-1226-8.
    Takada S, Goto K. TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell.,2003,15:2856-2865.
    Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA,2001,98(14):7922-7927.
    Takahashi Y, Teshima K M, Yokoi S, Innan H, and Shimamoto K. Variations in Hdl proteins, Hd3a promoters, and Ehdl expression levels contribute to diversity of flowering time in cultivated rice. Proc.Natl.Acad.Sci. USA,2009,106 (11): 4555-4560.
    Takeuchi Y, Lin S Y, Sasaki T, and Yano M. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor.Appl.Genet,2003,107:1174-1180.
    Tamaki S, Matsuo S, Wong H L, Yokoi S, Shimamoto K. HdSa protein is a mobile flowering signal in rice. Science,2007,316:1033-1036.
    Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution,2007,24: 1596-1599.
    Tardieu F, Davies W J. Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol,1992,98:540-545.
    Teper-Bamnolker P, Samach A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell.,2005,17:2661-2675.
    Thomas F S, and Steve A K. Circadian clocks in daily and seasonal control of development, Science,2003,301:326-328.
    Tsai K H. Further observations on the Ef-1 gene for early heading. Rice Genet Newslett, 1985,2:77-78.
    Tsai K H. Gene loci and alleles controlling the duration of basic vegetative growth of rice. In:Rice Genetics. International Rice Research Institute,1986,339-349.
    Tsuji H, Tamaki S, Komiya R, Shimamoto K. Florigen and the Photoperiodic Control of Flowering in Rice. Rice,2008,1:25-35.
    Tsunematsu H, Yoshimura A, Harushima Y, Agamura N, Urata, et al. RFLP framework map using recombinant inbred lines in rice. Breeding Sci,1996,46:279-284.
    Vergara B S, Chang T T. The flowering response of the rice plant to photoperiod, a review of the literature,4thed.[M]. Manila:International Rice Research Institute,1985.61.
    Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor. Appl. Genet,2006,112:1258-1270.
    Wan X Y, Wan J M, Su, C C, Wang C M, Shen, W B, et al. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor. Appl. Genet,2004,10:71-79.
    Wang E T, Wang J J, Zhu X D, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics,2008,40:1370-1374.
    Wang J, Wan X, Crossa J, Crouch J, Weng J, et al. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genetical Research, 2006,88:93-104.
    Weng J,Gu S, Wan X, GaoH, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research,2008,18:1199-1209.
    Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science,2005,309:1056-1059.
    Wu C Y, You C J, Li S, Long T, Chen G X, Byrne M E, and Zhang Q F. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc.Natl Acad.Sci. USA,2008,105 (35):12915-12920.
    Xiang Y, Huang Y M, and Xiong L Z. Characterization of Stress-Responsive CIPK Genes in Rice for Stress Tolerance Improvement. Plant Physiology,2007,144:1416-1428
    Xu L M, Zhou L, Zeng Y W, Wang F M, Zhang H L, Shen S Q, Li Z C. Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice nearisogenic line. Plant Sci.,2008,174:340-347.
    Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics,2008, 40:761-767.
    Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, and Yano M. Fine mapping of quantitative trait loci Hdl, Hd2 and Hd3, controlling heading date of rice, as single Mendellian factors. Theor Appl Genet.,1998,97:37-44.
    Yamamoto T, Lin H X, Sasaki T, and Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics,2000,154:885-891.
    Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell, 2000,12:1591-1606.
    Yamanouchi U, Nonoue Y, Ashikari M, Lin H, Sasaki X T, et al. Heading Date 5, a putative subunit of the CCAAT-box-binding transcription factor, plays an important role in photoperidic flowering in rice. Plant & Animal Genomes XIII Conference January, 2005,15-19.
    Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc.Natl.Acad Sci. USA,2006,103:19581-19586.
    Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc.Natl.Acad.Sci.USA,2003, 100:6263-6268.
    Yano M, Harushima Y, Nagamura Y, Kurata N, MInobe Y, et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor. Appl. Genet,1997,95:1025-1032.
    Yano M, Izawa T, Yamanouchi U, Nakagawa H, Ogiso E, et al. Genetic control of flowering time in rice. Plant & Animal Genomes ⅩⅢ Conference January,2005,15-19.
    Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, et al. Hdl, a major photoperiod sentivity quantitative locus in rice, is closely related to the Arobidopsis flowering time gene CONSTANS. Plant Cell,2000,12:2473-2483.
    Yano M, Kojima S, Takahashi Y, Lin H X, and Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol,2001,127:1425-1429.
    Yanovsky, M J, and Kay, S A. Living by the calendar:how plants know when to flower. Nat. Rev.Mol.Cell.Biol,2003,4:265-275.
    Yaron Y L, Caroline D. The transition to flowering. Plant Cell,1998,10:1973-1989.
    Yoshida S. Climatic environment and its influence. In:Fundamentals of rice crop science. IRRI, Los Banos.,1981, pp:1-268.
    Zhang Q F, Shen B Z, Dai X K, Mei M H, Maroof M A S, et al. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genie male sterility in rice. Proc.Natl.Acad.Sci. USA,1994,91:8675-8679.
    Zhu Q H, Ge S. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol,2005,67:249-265.
    丁颖.中国栽培稻种的起源及其演变.农业学报,1957,8(3):243-260.
    李子先,陈忠友,刘国平等.水稻抽穗期遗传变异的初步研究.作物学报,1980,3(1):179-188.
    罗林广,翟虎渠,万建民.水稻抽穗期的遗传研究.江苏农业报,2001,17(2):119-126.
    水稻光温协作组,中国水稻品种的光温生态.北京科学出版社,1978,1-40.
    唐锡华,倪彭寿,童本仙等在控制条件下对不同稻种日长和温度反应发育特性的研究.祝我生理学报,1978,4(2):153-161.
    吴光南.中国水稻品种对光照反应特性研究Ⅰ品种对光照长度的反应及其与原产地的关系.华东农业科学通报,1957,8:367-382.
    邢永忠.用分子标记剖析水稻重要农艺性状的遗传基础.博士学位论文.武汉:华中农业大学图书馆,1999.
    余四斌.优良杂交水稻釉稻汕优63杂种优势遗传学基础的分子标记剖析.博士学位论文.武汉:华中农业大学图书馆,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700