太湖流域腹部城市化对水系结构变化及其调蓄能力的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武澄锡虞区位于太湖流域腹部,河网密布,水系发达。自改革开放以来,城市化进程不断加快,为了争夺有限的土地资源,大量城市河流水面被侵占,低等级河道、小水体等被填埋,造成区域水面率不断下降,河网结构在人类活动的强烈干预下偏离了自然发育规律,逐渐趋于单一化、主干化,最终导致区域河网调蓄功能萎缩,防洪排涝压力加大,洪涝灾害频发。因此,从河流地貌学角度出发,结合土地利用变化,研究城市化背景下平原河网地区水系结构特征及其调蓄能力的变化,对探讨区域水面率及水系结构的恢复与保护,提高区域调蓄功能至关重要。
     论文依托水利公益专项科研项目“改善长江三角洲地区水系结构与河湖连通研究”(编号:201201074),基于3期土地利用数据、水系数据及代表性水位站的特征水位值,以武澄锡虞区为研究区,借助ArcGIS、SPSS软件,运用自然地理综合分析法,从多时相、多尺度及多指标角度对比分析了研究区近16年来的土地利用时空变化特征,近50年来的河网水系时空变化特征以及水系结构变化下的河网调蓄功能的变化特征,并结合研究区自身特点,分析了区域水系结构变化的驱动因素,提出了基于调蓄功能变化的水系保护对策,以便为研究区未来城市化发展过程中河网水系的保护与管理提供相关参考依据。
     论文基于1991、2001和2006年3期土地利用图,从土地利用变化幅度、变化速度、结构变化及转移方向变化等角度,对比分析该区域在1991-2006年间的土地利用变化过程和空间分布特征。结果表明:(1)研究区土地利用类型主要以水田、城镇用地为主,两者共占研究区总面积的90%以上;(2)近16年来城镇用地共增加126.9%,水域共减少79.8%;(3)研究区土地利用变化总量不断增加,城镇用地每年以6倍于转移速度的新增速度增长,水域则以10倍于新增速度的转移速度减少,城镇、水田是水域最主要的流向地类;(4)城镇用地主要集中于城市化水平较高的无锡、常州两市,不同城市化水平的城市均表现出城镇用地大幅增加,水田、水域不断减小,但变化幅度不尽相同,且无锡在各地类总量变化上最突出。
     论文采用4项河网水系结构表征指标,即河网密度、水面率、河网复杂度和水系分维,对比分析1960s、1980s和2009年3个不同时期的河网水系结构特征以及同一时期不同城市化水平下的水系空间变化特征。结果表明:(1)研究区河流总长度不断减少,近50年来总减幅达35.74%,且1980s后变化更为剧烈;(2)不同等级的河流总长度均不断减小,且等级越低,河流总长度的减幅越大;(3)研究区总体水面积变化趋势与河流总长度的变化趋势一致,即逐年代不断减少;(4)研究区河网密度、水面率、河网复杂度以及水系分维均不断下降,说明城市化水平越高,河网复杂度越小,河网结构就越简单,河网发育正趋于主干化、单一化;(5)研究区不同城市的水系结构参数均呈现出逐年代减少的趋势,这不仅与各市现有的城市化水平有关,还与其城市发展建设速率相关;(6)无锡、常州两市的非农业人口、国内生产总值等与河网水面率的相关性分析进一步证实了城市化对河网水系影响的显著性。
     论文选取研究区4个代表性水位站,采用河道槽蓄容量C、可调蓄容量AC、单位面积槽蓄容量SR和单位面积可调蓄容量ASR4个参数,对比分析不同等级河道容蓄能力和可调蓄能力的时空变化特征,揭示区域水面率与区域调蓄功能的内在联系。结果表明:(1)不同等级河道的SR和ASR均表现为逐年代不断减小,且河道等级越低,河道容蓄能力、可调蓄能力减小越多;(2)与高等级河道相反,三级河道ASR减小率大于SR减小率,说明其在河网水系中的调蓄、汇水作用更明显,高等级河道用于调蓄的那部分容积占河道总容积的比例相对较小;(3)不同城市的SR和ASR逐年代不断减小,其数值大小顺序与四市水面率大小顺序一致;(4)研究区水面率Wp-SR、Wp-ASR相关分析进一步证实了水系结构与调蓄功能密切相关,因此可以通过拓宽河道、沟通水体、增加人工水体等措施提高区域水面率,从而实现区域水系结构的保护和恢复。
Located in the center of Tai Lake Basin, Wuchengxiyu region is densely covered with river networks. Since Reform and Opening in1978, the process of urbanization is accelerating continuously. For the limited land resources, a large number of water surface are occupied while low-grade river and some small water bodies are landfilled. These human activities result in the decline of water surface ratio and the stream structure is becoming much simpler in urbanized area. Finally, the regulating and storage function of river networks is weakened and the flood disaster happens frequently. Therefore, in the perspective of fluvial geomorphology, research on the variation characteristics of stream structure and its storage effect in urbanized area, combined with LUCC, is of great significance.
     This paper is supported by the public welfare project of ministry of water resources (No:201201074). Based on landuse、water system and water level data in three different periods, it analyzed the spatial and temporal changes in landuse, stream structure and its storage effect comparatively between different periods and scales with multiple indicators. Also, this paper analyzed the driving factors of the change in stream structure with ArcGIS and SPSS, and put forward some protection countermeasure of the stream structure based on the regulating and storage function. These countermeasures will provide relevant references for the protection and management of stream structure in the future.
     Based on remote sensing images of landuse in1991,2001and2006, this paper analyzed the spatial and temporal changes in landuse comparatively from the perspective of total change, structural change and the intensity change. The results showed that:(1) paddy field and urban construction land were the two main landuse types, which account for more than90%of the total area;(2) In the past16years, the urban construction land increased dramatically, and the increasing rate is126.9%; The decreasing rate of water was79.8%;(3) The total amount of landuse change is increasing year by year, and the increasing speed of urban construction land is six times of its transferring speed; Water land was mainly transferred into urban construction land and paddy field;(4) Four cities in Wuchengxiyu Region with different level of urbanization showed the same change trends in landuse, a substantial increase in urban construction land and continuously decreasing in water land; But the change ranges were different, and Wuxi city showed the most prominent changes in the total change.
     In order to analyze the spatial and temporal changes in stream structure comparatively, this paper calculated four characterization indicators, Rd, Wp, CR and D in1960s,1980s and2009. The results showed that:(1) the total length of rivers is continuously reducing in the past50years, and its reducing rate is35.74%; The reducing rate between1980s and2009was much larger than the last period;(2) The lower river grade is, the greater the reduction rate of river total length was;(3) Water areas in Wuchengxiyu Region showed the same change trends as the total length;(4) Since1960s, four indicators, Rd, Wp, CR and D declined year by year, which indicated that the higher the urbanization level is, the simpler the stream structure is;(5) Four indicators in different cities also reduced continuously, and the reducing rate is not only related to the urbanization level, but also to its development speed;(6) The significant impact of urbanization on stream structure was futher confirmed by the correlation analysis between non-agricultural population, GDP and the water surface rate.
     This paper choosed four representative water level stations to analyze the spatial and temporal changes in storage effect comparatively. Four parameters, C, AC, SR and ASR were analyzed in different periods and different river grades. The results showed that:(1) the value of SR and ASR in different grade rivers were declined continuously; The lower the river grade was, the greater the reduction of storage function was;(2) Affected by the same environment change, the third-grade river showed a positive function in regulating and storage, and the higher-grade rivers mainly showed water diversion and drainage functions;(3) The value of SR and ASR in different cities were reduced year by year, and the size order is consist with the water surface ratio;(4) Regulating and storage function closely related to stream structure is futhur confirmed by the correlation analysis between SR, ASR and Wp; Therefore, we can broaden the river channel, connect the rivers and increase the artificial water body to improve regional water surface ratio.
引文
[1]Aear. D. A, Mewson M. D. Environmental change in river channel:a neglected element. Towards geomorphological typologies, standards and monitoring [J]. The Science of Total Environment,2003,310:17-23.
    [2]Agnese C, et al. Scaling properties of topologically random channel networks [J]. Journal of Hydrology,1996,187:183-193.
    [3]Amaud-Fassetta G. River chabbel changes in the Rhone Delta (France) since the end of the Little Ice Age:geomorphological adjustment to hydroclimatic change and natural resource management. Catena,2003,18(51):141-172.
    [4]Arthur N. Strahler. Quantitative Analysis of Watershed Geomorphology [J]. Transaction, American Geophysical Union,1957,38(6):913-920.
    [6]Bronstert Axel, Daniel Niehoff, Gerd Burger. Effects of climate and land-use change on stormrunoff generation:present knowledge and modelling capabilities. Hydrological Processes, 2002,16(2):509-529.
    [7]Butzer. K. W. Early Hydraulic Civilization in Egypt [M]. The University of Chicago, Chicago, 1976.
    [8]Claps P., Oliveto G. Reexamining the determination of the fractal dimension of river networks [J]. Water Resources Research,1996,32(10):3123-3135.
    [9]Dimitry N., Andreas P., Klement T. etc. Imundation dynamics in braided floodplains: Tagliamento River, Northest Italy. Ecosystems,2002,5:636-647.
    [10]Kirchner J W.,汪兴华译Horton规律统计的必然性与河网的随机分布[J].世界地质,1994,13(4):107-111.
    [11]La Barbera P, Rosso R. On the fractal dimension of stream networks [J]. Water Resources Research,1989,25(4):735-741.
    [12]Mark A., Wiering, Peter P. J. Driessen. Beyond the art of diking:interactive policy on river management in the Netherlands. Water policy,2001(3):283-296.
    [13]Melton, M. A., An Analysis of the Relations among the Elements of Climate, Surface Properties, and Geomorphology[R], Technical Report 11, New York:Department of Geology, Columbia University,1957.
    [14]Nazrul Islam. The open approaches to flood control:the way to the future in Bangladesh. Futures,2001,33:783-802.
    [15]Nicola S, Massimo R. Morphological response to river engineering and management in alluvial channels in Italy [J]. Geomorphology,2003,50(4):307-326.
    [16]Rao Z., Moore I. N., Connell P. E O etc. An interactive management system for operational control of Kirazdere Reservior (Turkey). Water resources management,2001,15:223-234.
    [17]RhondaY., BrainW., RoyV.A.. Urban effects on flood Plain natUral hazards:Wolf River Tennessee, USA. Engineering Geology,2003,70:1-15.
    [18]Said, R. The Geological Evolution of the River Nile. Springer-Verlag New York,1981.
    [19]Schuller D J, Rao AR, Jeong G D. Fractal characteristics of dense stream networks [J]. Journal of Hydrology,2001,1-16.
    [20]Tarboton D G., et al. The fractal nature of river networks [J]. Water Resources Research,1988, 24:1317-1322.
    [21]Veltri M., Veltri P., Maiolo M. On the fractal description of natural channel networks [J]. Journal of Hydrology,1996,187:137-144.
    [22]Wilchelm L F. Brinkmann, Arthur Magnuszewski, Steffen Zober. The structure and function of the Vistual River floodplain near Plock, Poland. Ecological engineering,2000,16: 159-166.
    [23]陈德超,陈中原.浦东开发以来的河网变迁研究[J].苏州科技学院学报:自然科学版,2004,21(4):1-7.
    [24]陈德超,李香萍,杨吉山等.上海城市化进程中的河网水系演化[J].城市问题,2002,9(5):31-35.
    [25]陈德超.上海城市化进程中河网体系变迁与水环境演化研究[D].华东师范大学2002届博士学位论文,2002.
    [26]陈涛,孙建中,盛学斌.环渤海环境污染与自然灾害整治研究[M].北京:中国环境科学出版社,1998.
    [27]陈浩.陕北黄土高原沟道小流域形态特征分析[J].地理研究,1986,5(1):82-92.
    [28]陈晓宏,陈永勤.珠江三角洲河网区水文与地貌特征编译及其成因[J].地理学报,2002,57(4):429-436.
    [29]陈云霞,许有鹏,付维军.浙东沿海城镇化对河网水系的影响[J].水科学进展,2007,18(1):68-73.
    [30]程江.上海中心城区土地利用/覆被变化的环境水文效应研究[D].华东师范大学博士论文,2007
    [31]程江,杨凯,赵军等.上海中心城区河流水系百年变化及影响因素分析[J].地理科学,2007,27(1):85-91.
    [32]陈莹.长江三角洲地区中小流域城镇化的水文效应分析[D].南京大学博士论文,2009.
    [33]陈家其.长江三角洲城市建设发展与城市水害[J].长江流域资源与环境,1995,4(3):202-208.
    [34]陈春根,史军.长江三角洲地区人类活动与气候环境变化[J].干旱气象,2008,26(1):28-34.
    [35]陈彦光,刘继生.水系结构的分形和分维—Horton水系定律的模型重建及其参数分析[J].地球科学进展,2001,16(2):178-183.
    [36]董哲仁.河流生态恢复的目标[J].中国水利,2004(10):56-58.
    [37]冯平,冯焱.河流形态特征的分维计算方法[J].地理学报,1997,7(4):324-330.
    [38]高俊峰,陆铭峰.太湖流域省市边界圩区建设问题初探[J].湖泊科学,2004,16(3):203-208.
    [39]高俊峰.太湖流域土地利用变化及洪涝灾害响应[J].自然资源学报,2002,17(2):150-156.
    [40]高俊峰,闻余华.太湖流域土地利用变化对流域产水量的而影响[J].地理学报,2002,57(2):194-200.
    [41]高华端,杨亦锋.近50年来人类活动对博斯腾湖水位影响的量化研究[J].地理科学,2005,25(2):305-309.
    [42]龚家栋,李吉钧.黑河流域水系发育特征[J].中国沙漠,2000,20(4):389-392.
    [43]郭跃.沟谷系统结构理论和实践意义的探讨[J].重庆师范学院学报,1995,12(2):4-13.
    [44]韩昌来,毛锐.太湖水系结构特点及其功能变化[J].湖泊科学,1997,9(4):300-306.
    [45]何隆华,赵宏.水系的分形维数及其含义[J].地理科学,1996,16(2):124-128.
    [46]胡尧文,申来明,裘烨勇.试论水库功能调整和调蓄水面在城市防洪排涝中的重要性[J].浙江水利水电专科学校学报,2001,13(3):19-21.
    [47]黄奕龙,王仰麟,刘珍环等.快速城市化地区水系结构变化特征—以深圳市为例[J].地理研究,2008,27(5):1212-1220.
    [48]黄涛珍,袁汝华.气候异常对太湖流域水资源及社会经济影响的对策分析[J].地理学 报,2000,55(增刊):143-149.
    [49]黄宜伟.如何管好水乡的水[J].中国水利,1989,4:20-22.
    [50]金卫斌,刘章勇.围湖垦殖对湖泊调蓄功能的累加效应分析[J].长江流域资源与环境,2003,12(1):74-76.
    [51]贾卫红.传统市政雨水排水模式的优化[J].中国市政工程,2003,101(1):55-58.
    [52]姜永清,邵明安,李占斌等.黄土高原流域水系的HORTON级比数和分形特性[J].山地学报,2002,20(2):206-211.
    [53]李燕,李恒鹏.太湖流域土地利用变化的水文效应及其风险评价[J].水土保持通报,2007,27(5):37-40.
    [54]李义天,何用,邓金运等.多因素作用下洞庭湖啊洪水调蓄量的变化[J].安全与环境学报,2001,1(6):26-30.
    [55]黎安田.长江1998洪水与防汛抗洪[J].人民长江,1999,30(1):1-8.
    [56]刘盛和,何书金.士地利用动态变化的空间分析测算模型[J].自然资源学报,2002,1 7(5):533-540.
    [57]毛锐.建国以来太湖流域三次大洪水的比较及对今后治理洪涝的意见[J].湖泊科学,2000,12(1):12-18.
    [58]孟飞,刘敏,吴健平等.高强度人类活动下河网水系时空变化分析—以浦东新区为例[J].资源科学,2005,27(6):156-161.
    [59]蒙吉军,李正国.河西走廊张掖绿洲LUCC的驱动力分析[J].地理科学,2003,23(4):464-470.
    [60]蒙吉军,李正国.河西走廊土地利用格局及影响因研究—以张掖绿洲为例[J].北京大学学报(自然科学版),2003,39(2):236-243.
    [61]彭静,廖文根,骆辉煌.城市水系建设的环境重塑[J].中国水利水电科学研究院学报,2003,1(4):255-299.
    [62]秦伯强,吴庆农,高俊峰等.太湖地区的水资源与水环境—问题、原因与管理[J].自然资源学报,2002,17(2):221-228.
    [63]芮孝芳.水文学原理[M].北京:水利电力出版社,1984,132-143.
    [64]苏伟忠,杨桂山.太湖流域南河水系无尺度结构[J].湖泊科学,2008,20(4):541-519.
    [65]苏伟忠,杨桂山,陈爽.太湖流域湖西区城市化空间过程及其生态效应[J].生态学报,2008,28(9):4306-4312.
    [66]覃永良,袁雯.人类活动对上海地区河网水系演变影响初探[J].中国科技论文在线,http://www.paper.edu.cn,2007.
    [67]王腊春,史运良,周寅康等.长江三角洲水环境治理[J].长江流域资源与环境,2003(3):223-227.
    [68]王腊春,许有鹏,周寅康等.太湖水网地区河网调蓄能力分析[J].南京大学学报(自然科学版),1999,35(6):712-718.
    [69]王克林,章春华,易爱军.洞庭湖区洪涝灾害形成机理与生态减灾和流域管理对策[J].应用生态学报,1998,9(6):561-568.
    [70]王慧玲,梁杏.洞庭湖调蓄作用分析[J].地理与地理信息科学,2003,19(3):64-66.
    [71]王学雷,William A Gough,吴宜进.江汉平原典型区域洪涝调蓄能力估算研究[J].武汉大学学报(理科版),2002,48(4):461-465.
    [72]王济川,郭志刚Logistic回归模型—方法与应用[M].北京:高等教育出版社,2001.
    [73]王桥,毋河海.地图信息的分形描述与自动综合研究[M].武汉:武汉测绘科技大学出版社,1998.
    [74]王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87.
    [75]王同生.太湖流域防洪与水资源管理[M].北京:中国水利水电出版社,2006.
    [76]吴文敏,戴淑英,王长新.天山北坡河流的数学地貌特征及河流产沙分析初探[J].八一农学院学报,1990,13(2):21-30.
    [77]夏军,孙雪涛,朱一中.中国西部流域水循环研究进展与展望[J].地球科学进展,2003,18(1):58-67.
    [78]许有鹏,葛小平,张立峰,都金康.东南沿海中小流域平原区洪水淹没模拟[J].地理研究,2005,24(1):38-45.
    [79]徐欣,张虎.浅谈山水城市建设中水系的治理[J].人民珠江,2001(1):11-12.
    [80]杨维权,刘兰亭,林鸿洲.多元统计分析[M].北京:高等教育出版社,1989,262-265.
    [81]杨桂山.长江三角洲近50年耕地数量变化的过程与驱动机制研究[J].自然资源学报,2001,16(2):121-127.
    [82]杨桂山,王德建等.太湖流域经济发展·水环境·水灾害[M].北京:科学出版社,2003.
    [83]杨凯,唐敏,刘源等.上海中心城区河流及水体周边小气候效应分析[J].华东师范大学学报:自然科学版,2004(3):105-114.
    [84]杨凯,唐敏,周丽英.上海近30年蒸发变化及其城郊差异分析[J].地理科学,2004,24(5): 557-564.
    [85]杨凯,袁雯,赵军等.感潮河网地区河网水系结构特征及城市化响应[J].地理学报,2004,59(4):557-564.
    [86]杨凯,唐敏.中国感潮河网地区调蓄效应分析[J].中国科技论文在线,http://www.paper.edu.cn.
    [87]杨世伦,陈吉余.太湖流域洪涝灾害的形成与演变[J].地理科学,1995,15(4):307-314.
    [88]易波琳,李晓斌,梅金华.洞庭湖面积容积与水位关系及调蓄能力评估[J].湖南地质,2002,1 9(4):267-270.
    [89]尹义星,许有鹏,陈莹.太湖流域点兴趣50年代以来极值水位时空变化[J].地理研究,2011,30(6):1077-1088.
    [90]尹义星.太湖流域城镇化背景下河网水系与水文过程变化研究[D].南京大学博士论文,2010.
    [91]虞孝感,吴泰来,姜加虎等.关于1999年太湖流域洪水灾情、成因及流域整治的若干认识和建议[J].湖泊科学,12(1):1-5.
    [92]袁雯,杨凯,徐启新.城市化对上海河网结构与功能的发育影响[J].长江流域资源与环境,2005,14(2):133-138.
    [93]袁雯,杨凯,吴建平.城市化进程中平原河网地区河流结构特征及其分类方法探讨[J].地理科学,2007,27(3):40 1-407.
    [94]曾照英.长三角地区城市化过程中的士地问题研究[J].湖南财经高等专科学校学报,2007,23(107):62-65.
    [95]周洪建,史培军,王静爱等.近30年来深圳河网变化及其生态效应分析[J].地理学报,2008,9(63):969-980.
    [96]周洪建,王静爱,岳耀杰等.基于河网水系变化的水灾危险性评价—以永定河流域京津段为例[J].自然资源学报,2006,15(6):45-49.
    [97]郑国强,江南,于兴修.长江下游沿线土地利用区域结构演化分析[J].自然资源学报,2002,17(5):533-540.
    [98]朱伟,夏霆,姜谋余等.城市河流水环境综合评价方法探讨[J].水科学进展,2007,18(5):736-744.
    [99]朱晓华,蔡运龙.中国水系的盒维数及其关系[J].水科学进展,2003,14(6):731-735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700